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Abstract—Quantum interactions between a single particle and nanoinclusions of spherical or cylindrical
shape are optimized to produce scattering lineshapes of high selectivity with respect to impinging
energies, excitation directions, and cavity sizes. The optimization uses a rigorous solution derived via
electromagnetic scattering formalism while the adopted scheme rejects boundary extrema corresponding
to resonances that occur outside of the permissible parametric domains. The reported effects may inspire
experimental efforts towards designing quantum sensing systems employed in applications spanning from
quantum switching and filtering to single-photon detection and quantum memory.

1. INTRODUCTION

Quantum mechanics are present in every aspect of the physical world, including the measuring devices
whose accuracy is limited due to the inherent uncertainty in the position and the velocity of quantum
particles. To remedy such a weakness in metrology, techniques like squeezing coherent states or quantum
entanglement have been adopted, in an attempt to enhance the measurement reliability [1]. The key
process behind any similar attempt is the quantum sensing, a rapidly growing and well-funded branch
of research [2] that delivers revolutionary experimental setups like nitrogen-vacancy centers in diamond
with unlimited photostability [3]. In addition, quantum sensing precision can be amplified with use
of memories able to enhance the time interval over which wave function phase can be accumulated [4]
or via quantum illumination assisted by highly efficient microwave-optical converters that mitigate
defects in generating microwave entanglement [5]. Finally, methodologies based on coherent quantum
interpolation have been developed to lift the hardware restrictions that hinder the sensor performance [6]
while adapting the spin readout basis in real time can lead to interferometric sensitivity that surpasses
standard measurement limits [7].

Given the similarity of the governing dynamic laws (Helmholtz vs Schrödinger equations)
and the accompanying boundary conditions imposed to the electromagnetic fields or the wave
functions of quantum particles, a clear analogy between electrodynamics and quantum mechanics
is identified. Therefore, the design of quantum sensing components has been greatly aided by
methods developed for electromagnetic waves like the transfer matrix approach implemented at several
quantum interfaces [8]. Importantly, the quantum analogues of electrodynamic metamaterials have been
thoroughly investigated [9, 10] while the interference within a Fabry-Perot cavity has been extensively
examined from the matter-wave point of view [11] and has given highly selective responses with respect
to incidence direction [12] and impinging energy [13]. Moreover, multiple quantum barriers with high
sensing capability are analytically solved with techniques employed in treating the electromagnetic
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interactions between consecutive slabs [14] while a similar setup is utilized to guess the effective quantum
features of a planar sample from transmissive measurements [15].

Typical configurations that serve various sensing purposes require the development of nanometer-
sized inclusions into a suitable host; such a fabrication is feasible with a variety of approaches. In
particular, semiconducting nanowires can be engraved into specific backgrounds via chemical bottom-up
methods to encode high resolution morphology [16] while physical epitaxial techniques have been utilized
for the same purpose [17]. Importantly, top-down fabrication methods for creating diamond nanowires
in polycrystalline diamond that allow for significant collection efficiency of emitted photons, are largely
employed for quantum sensing and information processing applications [18]. Another common inclusion
shape is the spherical one and can be also successfully synthesized via an one-step route in nanometer
dimensions with controllable shell thickness [19] or even by self-assembly processes producing accurately
controlled geometrical conformations [20]. It is also remarked that core-shell nanospheres can be
prepared by solution-based template wetting method [21], where the tension between different materials
shapes the required nanocavities.

The topic of this study is the interaction of matter waves with related nanoinclusions by utilizing the
traditional electromagnetic scattering formalism. The resonances for the considered cavities have been
identified via controlling their response along specific directions with help from phase diagram [22], by
optimizing the textural contrast [23] or with maximizing the overall scattering efficacy [24]. Furthermore,
the cloaking of quantum nanoinclusions has been the objective of several works by regulating the phase
shift of each angular momentum channel [25], through tilting properly the nanorod axis [26, 27], via
using the scattering cancellation principle applied in electrodynamics [28] or with exploiting Aharonov-
Bohm effect [29]. Alternatively, vanishing perturbation of the background quantum signal has been
achieved via the interplay among the nodal points of partial waves [30], through tailoring concentric
layers for furtive detection [31], with employing anisotropic quantum materials [32] or by supporting
internally trapped wave functions [33].

In this work, we examine the scattering of matter waves by nanospheres and nanowires embedded
into certain backgrounds. Our target is to propose maximally or minimally engaging setups which, due
to the resonant nature of the effects, will change substantially and in a stable manner their output for
mild perturbations of their inputs. Such a behavior permits the reported optimized nanoinclusions to
operate as efficient sensors for specific levels of energies, incidence angles and material characteristics;
in particular, we are searching for superscattering nanospheres and tilted cloaked nanorods. The size of
the considered cavities is chosen neither too small to avoid negligible scattering nor too big to admit the
inclusions to work collectively in chain layouts of multiple elements; importantly, maxima and minima
appearing at the boundaries of the parametric boxes are rejected. Accordingly, sharp variations of the
scattering response from the corresponding optimal cavities, with respect to structural, textural and
excitation characteristics of our setup, have been reported. The same approach described in this work
can be adopted for alternative setups that exhibit interesting behavior when excited by electromagnetic
waves like anisotropic inclusions [34], inhomogeneous scatterers [35], cavities hosted in different materials
than the background [36] and inverse considerations [37]. Our results may inspire further theoretical
and experimental efforts of building constitutive blocks or parts in integrating quantum sensing systems
with extensive applications like single-photon detection and time-resolved photon counting.

2. MATHEMATICAL FORMULATION

2.1. Spherical Inclusion

In Fig. 1(a), we regard a plane matter wave representing a beam of particles with energy E that
propagates into a medium with potential energy level V0, where the electrons are traveling as if they have
mass m0 instead of me which is their inertial mass. It should be stressed that our consideration concerns
either a single charged particle or an ensemble of particles that are moving coherently, namely, with
identical stochastic characteristics and possessing the same energy. Importantly, we assume unimpeded
flow of electron over relatively long distances in the background material (ballistic regime) while we
ignore the presence of multiple valleys in the shape of wave bands. The incoming quantum signal meets
a spherical inclusion of radius a that is filled by another medium with respective effective parameters
(V,m). The wave function of the particle Ψ(r) describing its stochastic motion along an axis z, is
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Figure 1. The physical configurations of the consider nanocavities. (a) Nanosphere of radius a, (b)
nanocylinder of radius a, scattering an incoming matter plane wave of energy E. The nanocavities are
filled with a medium with effective quantum characteristics (m,V ) embedded in a background with
effective quantum characteristics (m0, V0).

dependent on the associated spherical coordinates (r, θ, ϕ) and satisfies the time-independent, effective-
mass Schrödinger equation [38]:

∇
[

1
m(r)

∇
]

Ψ(r) +
E − V (r)

�2/2
Ψ(r) = 0, (1)

where � is the reduced Planck constant. The potential energy in each region, expressing the energy
required to extract a particle from the region into vacuum, is denoted by V (r), while the effective mass,
describing the band structure of the Floquet-Bloch waves created due to the crystalline texture, is
denoted by m(r). From the fundamentals of quantum mechanics [39], we know that, with the suitable
normalization, the positive quantity |Ψ(r)|2 is proportional to the probability of finding the electron at
a point with position vector r. In addition, the real vector:

J(r) =
i�

2m(r)
[Ψ(r)∇Ψ∗(r)−Ψ∗(r) ∇Ψ(r)] = − �

m(r)
� [Ψ(r) ∇Ψ∗(r)] (2)

is the so-called “probability current”, the nearest thing one can have to describe the motion direction of
a quantum particle [40]. Across the boundary of two regions with effective masses {m1,m2} and wave
functions {Ψ1,Ψ2} respectively, the probability amplitudes and the probability currents flow should be
continuous:

Ψ1 = Ψ2,
1

m1
n̂ · ∇Ψ1 =

1
m2

n̂ · ∇Ψ2, (3)

where n̂ is the unitary vector normal to the interface of the two media with direction from the first to
the second one.

If the regarded electron in the absence of the spherical scatterer is forced to move along +z axis
with equal probability at every single point of the normal xy planes, its matter wave function is given
by:

Ψinc = eik0z =
+∞∑
n=0

in(2n + 1)jn(k0r)Pn(cos θ), (4)
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where k0 =
√

2m0(E − V0)/� = 2π/λ is the wave vector norm into the background material, jn the
spherical Bessel function of order n, and Pn the Legendre polynomial of degree n. In the presence of
the sphere, the aforementioned wave function, according to Mie theory [41], gets modified and takes the
form:

Ψ(r, θ) =
+∞∑
n=0

in(2n + 1)R(r)Pn(cos θ), (5)

where:

R(r) =
{

Cnjn(kr), r < a
jn(k0r) + Snhn(k0r), r > a

. (6)

The first term of the formula for the wave function outside of the spherical inclusion concerns the
incident component Ψinc of Eq. (4), while the second one corresponds to the scattering component
Ψscat. It is clear that we use the partial wave formalism that has been established in electromagnetic
scattering [42]. The notation hn is used for the spherical Hankel function of first type and order n

and k =
√

2m(E − V )/� equals the wave vector norm into the material of the spherical scatterer. The
coefficients Cn, Sn for n ∈ N can be found by imposing the boundary conditions (3) at r = a and they
take the following explicit forms [43]:

Cn =
k0m

[−i/(k0a)2
]

km0j′n(ka)hn(k0a)− k0mjn(ka)h′
n(k0a)

,

Sn = − km0j
′
n(ka)jn(k0a)− k0mjn(ka)j′n(k0a)

km0j′n(ka)hn(k0a)− k0mjn(ka)h′
n(k0a)

,

(7)

where the prime denotes the derivative with respect to the entire argument. With no loss of
generality [28, 24], we can assume that the potential energy of the background medium is zero (“ground
state”, V0 ← 0), by adjusting properly the potential levels inside the material of the scatterer:
V ← (V − V0). In other words, the energy of the electron E ← (E − V0) expresses its difference from
the original V0. Opposite to electrodynamics, where the contrast between materials is expressed with
ratios of permittivities, permeabilities and wave impedances, in quantum mechanics is the difference
between the potential energies that affects the major characteristics of the matter waves.

By inspection of Eqs. (5) and (6), it is clear that the scattering component Ψscat of the wave
function comprises multiple spherical wave terms hn(k0r) for n ∈ N and thus affects the motion of
the electron mainly along the radial r̂ direction. Inspired by analogous formulation in electrodynamic
scattering [44] where Poynting theorem applies, we can compute the surface integral of the scattering
probability current [45]:

Pscat =
∫

(s)
Jscat(r) · ds = a2

∫ 2π

0

∫ π

0
r̂ · Jscat(r = a, θ, ϕ) sin θdθdϕ (8)

across the normal direction ds of any closed surface (s) containing the spherical scatterer. Such a positive
(for m0 > 0) quantity certainly expresses how significantly the impinging matter wave is affected in
the presence of the scatterer. This Pscat should be compared with the corresponding quantity in the
absence of the sphere while taking into account its size a. Indeed, since the particle is traveling into
background along z axis, one should integrate the vector Jinc = (−�/m0)�[Ψinc ∇Ψ∗

inc] (equaling to the
probability current of the unperturbed motion of the particle) at the maximal xy cross section (s) of the
sphere (which has been hypothetically removed) with ds = dsẑ. In this way, one obtains the quantity
Pinc = �k0πa2/m0 and, accordingly, the metric expressing how strong is our quantum scatterer for its
size a, possesses the formula:

Q ≡ Pscat

Pinc
=

4
(k0a)2

+∞∑
n=0

(2n + 1)|Sn|2. (9)

The scattering efficiency of photonic scatterers is defined in an identical way [46]. The series in Eq. (9)
converges rapidly since |Sn| ∼ |m−m0|

|m+m0|
√

n(e/2)2n(k0a/n)2n for n→ +∞. A substantial (positive) metric
Q indicates the ability of an object with specific size to perturb the matter wave direction of propagation
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and consequently to be perceived by e-beams traveling in its own spatial neighborhood. Reversely
thinking, the same sphere with radius a can be used to effectively detect electrons of specific energy E
in the context of Fig. 1(a). Consequently, maximal efficiencies Q can give quantum designs with several
diverse utilities including high energy selectivity in particle flows, increased readability of inclusions in
homogeneous backgrounds and successful quantum sensing with use of electron beams.

2.2. Cylindrical Inclusion

In Fig. 1(b), we consider a similar wave scattering problem to that in Fig. 1(a), where the quantum signal
meets obliquely, under angle θ, a cylindrical inclusion of radius a. It should be noted that the length
of the nanocavity is assumed infinite so that the formulated boundary value problem is analytically
treatable. Such a convention can be feasible if the finite spatial front of the incident electron pulse
illuminates the cylinder along a large distance (many wavelengths λ) of z axis. It is only then that
the local dynamics and the interaction across the interfaces will be well-captured by the analytical
solution [43, 47]. The incident wave function is expressed in the associated cylindrical coordinates
(r, ϕ, z) as follows:

Ψinc = eik0(y cos θ+z sin θ) = eik0z sin θ
+∞∑

n=−∞
(−1)nJn(k0r cos θ)einϕ, (10)

where Jn is the cylindrical Bessel function of n-th order. In analogy with Eq. (5), the presence of the
nanorod modifies the wave function in its neighborhood, according to Mie theory treating electrodynamic
scattering [41], and it takes the form:

Ψ(r, ϕ, z) = eik0z sin θ
+∞∑

n=−∞
(−1)nR(r)einϕ, (11)

with, like in Eq. (6):

R(r) =
{

CnJn(βr), r < a
Jn(k0r cos θ) + SnHn(k0r cos θ), r > a

, (12)

where β =
√

k2 − k2
0 sin2 θ and Hn is the cylindrical Hankel function of first type and order n. Note that

again partial wave formalism, routinely employed in electromagnetics, is adopted in Eq. (12) by writing
each angular momentum channel einϕ as a separate term. Furthermore, by applying the necessary
boundary conditions (3) for continuity of wave function and proportionality (with analogy constant
m/m0) of their normal derivatives at r = a [38], one obtains the following explicit form of the complex
coefficients Cn, Sn for n ∈ Z:

Cn =
k0m[−2i/(πk0a)]

βm0J ′
n(βa)Hn(β0a)− β0mJn(βa)H ′

n(β0a)
,

Sn =
β0mJ ′

n(β0a)Jn(βa)− βm0Jn(β0a)J ′
n(βa)

βm0J ′
n(βa)Hn(β0a)− β0mJn(βa)H ′

n(β0a)
,

(13)

where β0 = k0 cos θ.
A metric of how significantly the rod changes the background Ψinc, in its own vicinity, can be found

by computing the probability current from Eq. (2) crossing the cylindrical boundary of the inclusion.
As stated above, if we integrate the r̂ component of probability current around r = a, we derive the
formula:

Q ≡ Pscat

P ′
scat

=

+∞∑
n=−∞

|Sn|2

+∞∑
n=−∞

|S′
n|2

. (14)

The primed quantities P ′
scat and S′

n = −Jn(β0a)/Hn(β0a) concern a strong scatterer of the same size
2a, that demands a vanishing wave function (Ψ = 0) across its volume, namely the quantum analogue
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of the perfect electric conductor (PEC) of classical electrodynamics. The convergence of both the series
in Eq. (14), exactly as happening with Eq. (9), is quite fast as long as the quantity k0a is not huge:
|Sn| ∼ |m−m0|

|m+m0|
√|n|(e/2)2|n|(k0a/|n|)2|n| and |S′

n| ∼
√|n|(e/2)2|n|(k0a/|n|)2|n| for |n| → +∞.

It should be remarked that a sensing purpose is served not only by a large Q but also by a vanishing
one; indeed, what counts is how sharp the response changes when the controlling parameter is perturbed
and not the actual value of response. Therefore, in order to avoid overlapping information with the
results for nanospheres of maximum scattering efficiency in Eq. (9), our aim in that nanowire scenario
is to minimize the modified scattering metric of Eq. (14). When Q is very small, we have the case
of an elongated inhomogeneity that suppresses substantially its own response, renders itself effectively
invisible (cloaked) to impinging electrons and totally free to record their movement. Importantly, such
a perfect cloaking regime prevents also the cavity from being found by the probing particle beams but
it would be completely detectable once the cloaking conditions cease to exist; that is a characteristic of
a sensor.

3. QUANTUM SENSING WITH NANOSPHERES

In order to select the best spherical setups of Fig. 1(a) for sensing quantum waves, we assume that the
effective masses in both regions (background and inclusion) are equal to the inertial mass of electron:
m0 = m = me, regardless of the direction that the particle is traveling. In addition, we consider
potential energy levels for both the areas that cover a substantial range, namely 0 eV < V < 10 eV
and 1 eV < V0 < 11 eV, while the regarded quantum beams can possess energy E belonging to the
interval 0 eV < E < 1 eV. When it comes to the radius a of the spherical cavity, it is selected between
a lower limit to avoid artifacts of maximum Q by a poor scatterer due to the presence of Pinc (being
proportional to size k0a) in the denominator of (9) and an upper limit that permits the nanosphere to
work collectively with other similar scatterers in a chain quantum setup [48]; thus, 0.05 < a/λ < 0.2
where λ = 2π/k0. In Fig. 2, we present the results for our optimization on (V0, E) map; at each point
of this plane, we find the maximum Q by sweeping the size a/λ and the potential of the cavity medium
V before we record the optimal setup. Our mission is to put the maximum “in a box”, namely trapping
the peak of the recorded quantity Q into the (a/λ, V ) rectangular domain defined by the aforementioned
inequalities; accordingly, we reject the configurations exhibiting boundary extrema where the maximum
Q is found at the boundaries of the optimization parametric box [49]. In such cases, we leave the
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Figure 2. The results of our optimization for nanosphere scattering sensors by sweeping the inclusion
radius a/λ and the potential level of the material filling the cavity V . (a) The maximal scattering
efficiency Q of Eq. (9), (b) the radius a of the optimal design normalized by the oscillation wavelength
λ of the incoming natter wave, (c) the optimal potential energy levels V of the cavity materials in
eV, for various background potential energy levels V0 and several impinging energies E of the e-beams.
Assumptions: m0 = m = me, where me is the inertial mass of electron, along all the three directions
of the three-dimensional space. White pixels correspond to combinations that the maximum scattering
cannot be trapped internally to the regarded (a/λ, V ) optimization box.
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corresponding pixel on the (V0, E) map empty (white) since the actual resonance occurs outside of the
regarded (a/λ, V ) region within which we have agreed to perform the parametric sweeps.

In Fig. 2(a), we show the maximum Q obtained via the process described above; one can clearly
notice that the performance is higher for small impinging energies E and higher host potential levels
V0. However, in most of the considered combinations, we obtain high Q, a feature that renders the
corresponding optimal setups suitable to work as quantum sensors. Note that for higher energies E and
lower potentials V , one can hardly find any acceptable optimal solution; however, while blank radial
strips (with E/V ∼= constant) are also appearing across the entire map alternated with valid extrema.
In Fig. 2(b), we show the optimal dimension of the radius a normalized by the operational wavelength
λ = 2π�/

√
2m0E (different for each incident energy E), that give the maximal performances in Fig. 2(a).

It is observed that smaller nanospheres give higher scattering efficiencies, a fact that can be attributed
to the definition of Q in (9). In Fig. 2(c) we represent the corresponding optimal potentials V of the
spherical cavities that are kept moderate with the exception of lower right corner which leads to more
significant scores, as indicated by Fig. 2(a).

In Fig. 3, we observe the influence of a different effective mass into the cavity on some characteristic
optimal designs of Fig. 2(a). In particular, we keep the same all the other parameters and represent the
scattering metric Q as a function of the impinging energy E for various m ∼= me. In Fig. 3(a), we regard
a sensor working at E = 0.15 eV and notice that once the effective mass becomes smaller, the response
gets weaker and the maximum is appeared at larger energies E. A similar trend is recorded in Fig. 3(b),
where a design operated at higher energy levels E = 0.5 eV is examined; in such a case, the represented
scores are lower, as also revealed by Fig. 2(a), and the influence of effective mass miscalculation m less
severe than Fig. 3(a).
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Figure 3. The scattering efficiency Q of nanospheres given by Eq. (9), as function of the incoming
energy E for various effective masses m of the material filling the nanocavity. The optimization has
been executed for m = me. (a) E = 0.15 eV, a/λ = 0.06, (b) E = 0.5 eV, a/λ = 0.11.

In Fig. 4(a), we represent the scattering efficiency Q as a function of radius a/λ for three distinct
setups of various optimal dimensions operated at different background potentials V0; the optimal regimes
are marked by circular dots. One can clearly observe the very sharply changing responses with huge
maxima Q; such a characteristic makes the reported optimal designs extremely suitable as sensors of
specific inclusion sizes. In addition, we note that thicker structures can give even more highly selective
resonances while due to the adopted resolution in our optimization, the absolute maximum can slightly
differ (and be more substantial) from the one indicated by the marker. In Fig. 4(b), we repeat the same
process but for nanospheres operated at higher energies E that give lower performances as also conveyed
by Figs. 2(a) and 3. The lineshapes are changing less abruptly and again, as happening in Fig. 3(b), a
smaller host potential V0 gives lower scattering efficiencies Q and thicker optimal nanocavities.

In Fig. 5, we investigate how the scattering performance in dB 10 log Q is modified when a mistaken
engineering has led to wrong estimation of the potential levels (V0, V ) while the actual ones are denoted
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Figure 4. The scattering efficiency Q given by Eq. (9), as function of nanosphere radius a divided by
the oscillation wavelength λ for various designs working with different background potential levels V0;
the optimal sizes are denoted by circular markers. (a) E = 0.12 eV, (b) E = 0.4 eV.
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Figure 5. The scattering efficiency Q given by Eq. (9), in dB, of optimal nanospheres when the potential
energy levels for the background and the inclusion (V0, V ) are mis-estimated compared to their true
values (V ′

0 , V ′) with respect to whom the optimization was carried out. (a) V0 = 10.4 eV, V = 0.4 eV,
a/λ = 0.06, E = 0.15 eV. (b) V0 = 10.5 eV, V = 1.3 eV, a/λ = 0.11, E = 0.5 eV.

by primed symbols (V ′
0 , V ′). It is remarkable that an almost vertical, thin strip of high-Q is formed,

unveiling the higher sensitivity of the design to changes of V0 and its relative robustness with respect
to V . Such a behavior is owed to the much larger magnitude of V0 than V that is also reflected in
Fig. 2(c). By inspection of Fig. 5(a), we realize how selective the reported resonances are and how the
respective layouts can serve the purpose of sensing; indeed, such a setup can sharply detect specific
potential levels V0 of background. In Fig. 5(b), we consider a less successful design and, for the same
relative deviations from the optimal values, a higher robustness in the response indicating stability of
the resonances with respect to small perturbations, is remarked.

To demonstrate the strong scattering effect reported by Figs. 2(a), 4, 5, we evaluate the probability
|Ψ(x, y = 0, z)|2 on the (z, x) plane divided by its maximal value Ψmax = max(x,z) |Ψ(x, y = 0, z)|. In
Fig. 6(a), we regard a setup operated under small-energy illumination along z axis and a high signal
concentration is observed into and in the vicinity of the nanosphere while a dipolar scattering pattern is
formed. In Fig. 6(b), where an optimized design working at a mid-energy level and a larger scatterer is
considered, we notice a much larger probability across the external region combined with the appearance
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Figure 6. Spatial distribution of (normalized) probability |Ψ(x, y, z)|2/Ψ2
max in dB across y plane for:

(a) low-energy optimal design (E = 0.15 eV, V0 = 10.4 eV, V = 0.4 eV), (b) mid-energy optimal design
(E = 0.4 eV, V0 = 10.5 eV, V = 1.3 eV), (c) high-energy optimal design (E = 0.62 eV, V0 = 3.6 eV,
V = 0.3 eV). The blue arrows show the transverse direction of probability current J at a fixed y plane
and the green solid line the circular boundary of the sphere.

of a shading behind the cavity. Finally, in Fig. 6(c), we investigate the case of an even more bulky sphere
than the operational wavelength λ which is shorter due to the increased level of energy E. One directly
observes the standing pattern that is created for z < 0 while zones of vanishing Ψ are developed for
z > 0, even though the probability of tunneling through the scatterer is quite high.

4. QUANTUM SENSING WITH NANOCYLINDERS

The main difference between the nanocylinder scattering of Fig. 1(b) and the corresponding one of the
spherical nanocavity in Fig. 1(a) is that the response of the former one depends on the angle θ. Thus,
we modify the optimization scheme described for the first problem and additionally sweep that extra
variable: 0◦ < θ < 90◦. However, we will keep the parameters of the material filling the cavity, fixed:
V = 1.5 eV, m = 0.1me (resembling semi-conductors like GaAs [50]) and the search for extrema will
occur across (a/λ, θ) box. The range for the radius a is identical to that of the previous optimization
0.05 < a/λ < 0.2 for the same reasons mentioned above. As far as the background potential level V0 is
concerned, it can vary within the interval: 6 eV < V0 < 16 eV while m0 = me; indeed, we are searching
for cloaked cylinders and thus a substantial textural contrast between the two media is a prerequisite,
otherwise the problem is trivial. It is noted that the minimization of Q occurs for low energies [26] and
thus we consider electron beams with 0.01 eV < E < 0.09 eV.

In Fig. 7(a), we show the inverse metric 1/Q in dB, and we realize that the suppression of scattering
by four orders of magnitude is possible at every single energy level E as long as V0 is chosen properly.
There are several infeasible combinations of (V0, E) sporadically across the entire map of Fig. 7(a);
however, it seems that for low V0 (as happening also in Fig. 2(a)) is harder to find a non-boundary
extremum within the regarded (a/λ, θ) optimization box. In Fig. 7(b), we show the optimal values of
the normalized radius a/λ for which the peak performances reported in Fig. 7(a) are exhibited; there
is a clear trend that thicker designs are obtained as the energy E increases combined with a decline in
V0. In Fig. 7(c), we show the angles θ in degrees for which substantial suppression of scattering by the
wire is recorded. It is noteworthy that most optimal cloaking regimes occur for very oblique directions
of incidence.

In Fig. 8(a), we show the scattering efficiency in Eq. (14) as a function of the incident beam’s
energy E for various optimal designs operated at different levels of energies and at different beam
directions θ. The setups hosting these sharp resonances can work as very efficient selectors of E and
thus quantum sensing becomes feasible. In Fig. 8(b), we represent the metric Q of the same layouts but
when illuminated at a common angle θ = 60◦ instead of the optimal ones (in Fig. 8(a)). The resonances
are becoming less abrupt and occurring at slightly larger frequencies but still a filtering operation can
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Figure 7. The results of our optimization for the tilted nanowires. (a) The inverse scattering efficiency
1/Q from Eq. (14) in dB, (b) the radius a of the optimal nanocavity divided by the operational
wavelength λ, (c) the optimal incident angle θ (in degrees), for various background potential levels
V0 and incoming particle energies E. Assumptions: m0 = me, m = 0.1me, V = 1.5 eV where me is
the inertial mass of electron. White pixels correspond to combinations that the maximum scattering
cannot be trapped internally to the regarded (a/λ, θ) optimization box.
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Figure 8. The scattering efficiency Q of cylindrical nanocavities from Eq. (14) as a function of impinging
energy E of the particles. (a) Optimized designs, operated obviously at different energies E under
different optimal angles θ. (b) The same designs under an arbitrary oblique incidence (θ = 60◦).

be supported.
In Fig. 9, we perform similar computations to those of Fig. 4 but for cloaked nanorods this time. In

Fig. 9(a), the metric Q from Eq. (14) is represented as a function of a/λ, where the optimal operational
points are indicated by circular markers. We notice that the scattering gets substantially mitigated
and that cloaking regime is very sensitive to changes in radius a. Furthermore, additional resonances
either of minimum or maximum Q emerge along a/λ axis which, due to their large figure of merit, can
be also exploited for sensing scopes. In Fig. 9(b), we repeat the calculations but the incidence angle is
now sub-optimally selected and kept fixed at θ ∼= 60◦, as in Fig. 8(b). We understand that each of the
designs, operated at different energy levels E, gives milder variations with respect to a/λ, similarly to
Fig. 8(b).

In Fig. 10, we investigate the response of structures optimized for specific size a operated under
certain energy levels E when the corresponding actual parameters are different (a′, E′), similarly to
what we did in Fig. 5 for the nanosphere designs. It is remarkable that the response from the optimized
cavities is much more sensitive to a deviation of size a than to the same relative perturbation of energy
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Figure 9. The scattering efficiency Q of nanorods of Eq. (14) as a function of the radius a/λ. (a)
Optimized designs, operated at different energies E, under different optimal angles θ and with their
operational points denoted by circular markers. (b) The same designs under an arbitrary oblique
incidence (θ = 60◦).
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Figure 10. Robustness of the scattering efficiency Q from Eq. (14) for small changes of the cavity
potential level V ′ and the geometrical radius a′ of the cylinder around the optimal values (V, a). (a)
E = 0.01 eV, V0 = 13.3 eV, a/λ = 0.08. (b) E = 0.08 eV, V0 = 9.9 eV, a/λ = 0.136.

E. Such a characteristic is also demonstrated by Fig. 9 where the slightest change of a destroys the
cloaking equilibrium; on the contrary, Fig. 7 shows the emergence of that interesting effect at almost
the same impinging energy level E despite a substantial change in the incidence angle θ. What is also
notable, is that dark strips indicating a perfect cloaking are accompanied by additional parallel strips
of maximal scattering revealing the pattern of Fano resonances [51], particularly befitting to sensing
applications. By comparing Fig. 10(a) with Fig. 10(b), we notice that the second design is less robust
with respect to the same relative modification of E, since its operational energy (E = 0.08 eV) is eight
times higher than the first one (E = 0.01 eV) and thus it corresponds to larger absolute shifts.

Having understood the influence of the background medium (effective mass m0, potential V0)
and the characteristics of the incoming beam (energy E, angle θ) on the sharp response of optimal
setups working at a cloaking resonance, it is meaningful to observe the spatial variation of the actual
quantum signal (wave function Ψ). In Fig. 11, we show the probability of finding the particle at a
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Figure 11. Spatial distribution of (normalized) probability |Ψ(x, y, z)|2/Ψ2
max in dB for: (a) optimal

incidence angle that can achieve cloaking (θ ∼= 87◦), (b) θ = 60◦, (c) normal incidence (θ = 0◦). The
blue arrows show the transverse direction of probability current J at a fixed z plane and the black solid
line the circular boundary of the rod. Plot parameters: E = 0.08 eV, V0 = 11.2 eV. The plane matter
wave is propagated along the positive y axis and the obtained result is not dependent from the selection
of z variable.

specific point across the plane (x, y) and the arrows on top of the contour correspond to the probability
current J from Eq. (2). The represented quantity is normalized in dB: 20 log(|Ψ(x, y, z)|/Ψmax), where
Ψmax = max(x,y) |Ψ(x, y, z)|; note that |eik0z sin θ| = 1 and thus the selection of z does not affect the result
|Ψ|2 from Eq. (10). In Fig. 11(a), we regard a cloaking case and one can observe that the probability
current propagated along y axis according to Eq. (10), is almost unperturbed externally to the scatterer;
it is also noticed the ring of vanishing probability created internally to the rod. In Fig. 11(b), we repeat
the calculations for a non-optimal direction θ = 60◦; therefore, moderate back-scattering is recorded
while two “whirlpools” of probability current around points of vanishing probability are developed for
y < 0. In Fig. 11(c), we examine the normal incidence scenario (θ = 0◦) for the same cylinder, where
the reflections are even more significant than in Fig. 11(b) and the pattern into the cross section of the
rod becomes more complicated and less azimuthally symmetric.

5. CONCLUSIONS

Quantum metrology and quantum sensing study parameter estimation limits in various physical systems
by employing the fundamental laws of quantum physics and have recently attracted significant scientific
and funding attention. The backbone behind the corresponding designs is the sharp variation of the
quantum response with respect to one or more controlling parameters and this purpose is found to
be well-served by the scattering of matter waves from nanoinclusions. The size of nanospheres and
nanowires are carefully paired with the filling media and the impinging excitation in order to scatter
maximally or minimally the incoming electron beam and exhibit high energy and angle selectivity, a
prerequisite for efficient sensing.

An interesting expansion of the present work would be to consider multiple nanoinclusions like the
aforementioned ones to operate collectively in a quantum metasurface layout. The extreme scattering
effects from each of the cavities will create matter wave fronts that can be used to spatially tailor
the reflection and transmission probabilities based on the single-particle interaction with the structure.
Components like these would be exceptionally befitted in a variety of integrated quantum systems from
anomalous reflectors working as multiport quantum networks with controllable probabilities per channel
to quantum memory elements where the signal gets trapped into close loops [52]. Finally, the presented
approach can be used for the study of fundamental electrical properties of engineered nanoscaled devices
operating in the quantum regime. It may eventually lead to the design of new kinds of nanomaterials,
where functionality and structure of quantum nanodevices are described through electrical transport
measurements and quantum phenomena such as superposition or entanglement.
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