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A Star-Wheel Design of Single Crystal Sapphire Optical Fiber
Promoting Single Mode Operation in the Infrared Regime
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Abstract—In this study, a star-wheel design of single crystal sapphire optical fiber is proposed to
achieve single mode operation in the infrared regime. In the azimuthal direction the structure retains
a reduced core of higher refractive index. It is connected to the outer boundary via star-wheel
configuration of segments. The region of alternating symmetrical truncated cavities of lower refractive
index is air. The enclosed alternating layers of sapphire and air cavities around the reduced core
function as cladding. Fiber structure in the azimuthal direction is uniformly distributed in the radial
direction. Finite element method is employed to analyze the modal characteristics of fundamental and
higher order modes. Under strongly guided approximation, the structure can effectively eliminate the
large modal interference. The proposed waveguides, at operating wavelength of ∼ 1.55 µm, with the
diameters of ∼ 50 µm, 75 µm, 100 µm, and 125 µm diameter, exhibit confinement loss of ∼ 0.0314 dB/m,
0.0072 dB/m, 0.0023 dB/m, and 0.0009 dB/m, respectively. It is anticipated that such a fiber can be a
potential candidate in addressing a wide range of optical sensors and communication systems, which
unable to sustain in extremely harsh environments. COMSOL multi-physics R© is used to perform
numerical investigations.

1. INTRODUCTION

Superlative material characteristics of single crystal sapphire optical fiber α-Al2O3 (SCF) offers various
advantages, such as high resolution, superior rigidity, high laser power transfer, flexible strength,
chemical unresponsiveness, optical spectroscopy, thermal shock resistance, and high melting point [1–
4]. It is more sustainable and resistant than the ordinary silica fibers and can work under harsh
environments [5–8]. An unclad SCF of a large core structure possesses large value of numerical aperture
and effective refractive index, which turn the optical waveguide unrealistic in terms of reliability
and compatibility. Such waveguides restrict numerous practical applications because of large modal
interference, transmission losses, and contaminations. Efforts are made to design cladding for SCF by
coating low refractive index surface layer, or deposition of highly reflective layer [9–11]. Such coating
structures succeeded in the confinement of light propagation into core region of fiber. These fibers, when
being exposed to extremely harsh environment loses thermal stability, caused by erosion of coated layer.
Due to the lack of adequate cladding, SCF faces major challenges of contamination, reliability, and
dopant diffusion, which hinders the performance and acceptance of such fibers in an optical industry.

Compared to silica fibers, the SCF exhibits wide operational range of temperature ∼ 0 to 1800◦C,
hence, it is becoming a hot topic of research for different industrial units, i.e., gas turbines, coal
gasifiers, and other extreme environment catalyst processes. SCF has diversified operating wavelength
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range of 0.3 to 5 µm [12], enabling it to be used from ultra-violet (UV) to Terahertz (THz) wave-
guiding. Nowadays, SCF is rapidly gaining popularity in interferometry, and numerous applications
have been developed using SCF for interferometric sensing [13] and lasing [14]. SCF is multimode,
and its smallest commercially available diameter is ∼ 75 µm and supports ∼ 23436 modes [15], still
limits the fiber performance owing to large modal interference. Katyba et al. [16, 17] presented photonic
crystal waveguides of hollow cores. They achieved low loss dispersion profile of SCF in THz regime and
developed a circular geometry SCF close to 300 µm diameter for near field scanning probe microscopy.
Nubling and Harrington [18] reported an SCF structure with low loss using laser-heated pedestal-
growth method for the ultra violet and visible infrared wavelength regime. Hill et al. [19] presented
single mode operation with a fiber diameter of 6.5 µm in the infrared wave-guiding regime by a post-
fiber-growth chemical etching process. Cheng et al. [20, 21] explored by simulating a model of windmill
shape SCF, to show that the confinement of single-mode is achievable with low loss by tailoring the
“windmill” parameters at 532 nm of operating wavelength. This structure addresses the fundamental
mode propagation over long distance, but in extreme case the handling of fringes like windmill structure
is quite challenging. The structure does not have any appropriate cover. The fiber may face splintering
of fringes. It can influence transmission deterioration possibly losing functioning in harsh environments.
Recently in [1], our group has reported a precise hexagonal SCF waveguide of ∼ 35 micron radius that
exhibits 0.077 dB/m confinement loss at 200 nm. Since the hexagonal SCF has a large radius, it supports
a large number of modes, where a reduction in fiber diameter would make modal reduction possible,
but it has limited range of operating wavelength.

To study FM confinement in the wide range of operating wavelength, a novel and effective design
of SCF geometry is proposed. It is proposed that the effective core region is reduced by alternating
symmetrical air cavities rounded with the segment of star-wheel configuration, such that alternating
layers of higher and lower refractive indices are constituted angularly. The structure ensures the
confinement of fundamental mode (FM) over long distance with low confinement loss (CL) and minimal
dispersion. Higher order modes (HOMs) incorporate higher leakage loss, thus HOMs are strip-off, and
clean single mode operation in the fiber is ensured. A rigorous analysis of segmented-cladding fiber
by the radial-effective-index method [22] extends in the numerical investigations. The optical analysis
of waveguides is extended up to 2.0 µm, and it is assumed that their results of optical losses, effective
refractive index, and dispersion will be helpful for incorporating valuable contribution in the area of
high-power fiber thulium and holmium lasers. As such, laser technology is evolving into a variety of
optical applications. Accomplishment of such a fine SCF structure will also boost transmission efficiency,
sensing capabilities, and thermal robustness, opening new corridors in the field of optical sensing and
optics.

2. PROBLEM DESCRIPTION AND FORMULATION

2.1. Geometry of SCF

The transverse and longitudinal cross-section of proposed SCF is shown in Figs. 1(a) and (b),
respectively, where transverse cross-section of SCF lies in the xy-plane; O is the origin; dout is the
SCF original diameter; din is the reduced diameter of effective core region; b is the width of outer
boundary; m1 and m2 are the semi-minor and major-axes used to define the alternating segments of
sapphire along with azimuthally distributed air cavities, as shown in Fig. 1(a). The proposed structure
is uniform in radial direction, as shown in Fig. 1(b). The core and cladding refractive indices are n1

and n2, respectively. The cladding region is taken to be alternating angular array of high and low
refractive indices. Free triangular meshing is defined for the proposed geometry to employ FEM. Using
the predefined function of COMSOL MESH MENU, free triangular meshing sizes of “extra fine” and
“normal” are calibrated for “sapphire” and “air” region, respectively. The perfect match layer (PML)
of ∼ b/2 is used in the simulations, as shown in Fig. 1(c). COMSOL MODE ANALYSIS is used
to obtain the FM and HOM profiles of the structure, as shown in Figs. 1(d) and 1(e), respectively.
In this study, four different samples are analyzed for numerical solutions, and their parameters of
manufacturing are listed in Table 1. In addition, the proposed samples of SCF can be manufactured
by different reported methods, such as edge-defined film-fed growth [23], laser-heated floating-zone
directional solidification [24], laser-heated pedestal-growth [25], and micro pulling down [26].
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Figure 1. (a) Transverse, (b) longitudinal cross-section of the proposed SCF, (c) free triangular meshing
by FEM solution, (d) fundamental mode, and (e) higher order mode profile.

Table 1. Fiber parameters for manufacturing.

Fiber Type dout (µm) din (µm) b (µm) m1 (µm) m2 (µm) PML (µm)

SCF — 50 µm 50 10 6 3 20 3

SCF — 75 µm 75 15 9 4.5 30 4.5

SCF — 100 µm 100 20 12 6 40 6

SCF — 125 µm 125 25 15 7.5 50 7.5

2.2. Theoretical Formulation

In cylindrical coordinates system (r, φ, z), Maxwell’s equations for electromagnetic fields in an optical
waveguide of invariant index profile along the z-direction can be decomposed into transverse and
longitudinal components as

ξ(r, φ, z, t) = {ξt(x, y) + ξz(x, y)} e−j(ωt−βz), (1)

where ξ denotes the E or H field; subscripts t and z denote the transverse and longitudinal components,
respectively; ω is the angular frequency; β is the complex propagation constant used to solve PML
function in the computational domain. When electromagnetic wave reaches the boundary, PML
boundary condition absorbs the electromagnetic waves with no reflection. Thus, light propagates in
an ideal optical waveguide along z-direction. Maxwell’s equations for an anisotropic-type of a PML
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boundary condition can be expressed as [27],
∇× E = −jkoμr [S]H, (2)
∇× H = jkoεr [S]E, (3)

and

[S] =

[
Sx/Sy 0 0

0 Sx/Sy 0
0 0 SxSy

]
, (4)

where [S] is the PML matrix of 3 × 3, ko the wave number in the vacuum, εr the relative dielectric
permittivity, and μr the relative magnetic permittivity. Thereafter, FEM is employed which enables
the modified eigen-mode values equation as [28, 29],

∇× μ−1
r

(
[S]−1∇× E

) − k2
0

(
εr − jσ

ω

)
[S]E = 0, (5)

where

γ = k2
0

(
εr − jσ

ω

)
, (6)

γ is the eigen-mode value, σ the electrical conductivity, and [S]−1 the inverse of matrix [S]. The time
harmonic electric field propagating out of plane can be expressed as,

E(x, y, z) = Re
[
Ẽ(x, y)ejωt−βz

]
, (7)

Ẽ is the electric field phasor, and z is the direction of propagation,
β = koRe(neff ) + koIm(neff ) = −γ, (8)

where Re(neff ) and Im(neff ) are the real and imaginary parts of β. The confinement loss (CL) can be
calculated as [30–32]

CL = 8.868koIm(neff ), (9)

Further, the dispersion relation of an optical waveguide can be estimated as [32],

D = −λ

c

d (Re(neff ))
dλ2

(10)

3. NUMERICAL RESULTS AND DISCUSSION

In order to demonstrate modal reduction, a star-wheel design of SCF structure is proposed. The
star-wheel structure varies azimuthally and radially, and it is uniform. The large core of SCF can be
effectively reduced by introducing the symmetrical air cavities. Alternating high and low refractive
region around the reduced core can be constituted. This region is cladding region. The refractive
index of the sapphire and air region used in the numerical investigation are n1 = 1.7462 and n2 = 1,
respectively. The operating wavelength of 1.5 µm is used for simulation.

3.1. Electric Field Distribution

COMSOL multi-physics� software is employed to perform the modal analysis. The spectral wavelength
range of 0.3–2.0 µm is used for modal analysis. From Eq. (6), FEM is used to obtain the modified eigen-
mode value through the built-in function of free triangular meshing, as shown in Fig. 1(c). Multiple
iterations are performed until the solution converges to a defined error limit. Electric field (E-field)
distributions of FM and HOM for proposed geometry are obtained by employing the PML, as defined
by the PML matrix [S] from Eqs. (4) and (5). The obtained E-fields at 0.3 µm and 1.55 µm for FM
and HOM are shown in Figs. 2(a) and (b), respectively. It can be inferred from Figs. 2(a)–(b) that
counter profile seems analogous but their differential ratio in the case of HOM is inconsistent at lower
and higher wavelengths. The trend for the confinement of FM deemed obvious at both operating
wavelengths. However, the HOM generates strong evanescent field, which may contribute to higher
leakage loss.
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Figure 2. Simulated normalized E-field distribution of (a) FM (top ∼ λ = 0.3 µm and bottom
∼ λ = 1.5 µm, (b) HOM (top ∼ λ = 0.3 µm and bottom ∼ λ = 1.5 µm).

3.2. Confinement Loss and Effective Refractive Index

In order to investigate the leakage loss of FM and HOM, the CL is inspected at different wavelengths, i.e.,
from 0.3 µm to 2.0 µm. CL strongly depends on imaginary part of effective refractive index, and its values
corresponding to given geometry are obtained from Eq. (9). The proposed SCF with different diameters,
i.e., 50 µm, 75 µm, 100 µm, and 125 µm, exhibits CL of 0.0314 dB/m, 0.0072 dB/m, 0.0023 dB/m, and
0.0009 dB/m, respectively, at the operating wavelength of 1.55 µm. The absolute values of CL for

Table 2. Confinement loss and effective refractive index as a function of wavelength.

Wavelength (µm) λ= 0.3 λ= 0.8 λ= 1.55 λ= 2.0

Diameter

(µm)
FM HOM FM HOM FM HOM FM HOM

CL

(dB/m)

50 3.31 × 10−4 2.7348 0.00509 17.103 0.03142 40.015 0.057104 59.511

75 8.64 × 10−5 0.85839 0.00105 8.8647 0.00728 15.337 0.013986 21.065

100 3.45 × 10−5 0.38455 3.65 × 10−4 2.4471 0.00238 8.3557 0.004823 10.917

125 1.71 × 10−5 0.20774 1.66 × 10−4 1.2618 9.92 × 10−4 6.4716 0.002017 6.8201

neff

50 1.8143 1.8142 1.7594 1.7597 1.7435 1.7411 1.7341 1.7304

75 1.8143 1.8143 1.7598 1.7595 1.7449 1.7438 1.7364 1.7347

100 1.8143 1.8143 1.7599 1.7598 1.7455 1.7448 1.7372 1.7362

125 1.8143 1.8143 1.76 1.7599 1.7457 1.7453 1.7376 1.737
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(a) (b)
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Figure 3. CL as a function of wavelength for different diameter of SCF, (a) 50 µm, (b) 75 µm, (c)
100 µm, and (d) 125 µm.

different diameters of fiber show that the proposed geometry ensures the propagation of FM with low
CL. On the other hand, the HOM presents high leakage loss with differential loss factor of 103 to
104 dB/m. These modes can be easily stripped off from fiber over the shortest propagation distance,
i.e., less than 1 meter. The graphical summary of CL for different proposed diameters of the SCF
geometry in comparison with FM and HOM as a function of wavelength from 0.3 µm to 2.0 µm is given
in Figs. 3(a)–(d). The effective refractive index of the proposed SCF is also numerically calculated by
Sellmeier equation [1], and a comparison is made by varying the operating wavelength. From Figs. 4(a)–
(d), the graphic summary elucidates the variation of neff as a function of wavelength. The insets of each
figure describe the neff difference of FM and HOM with a comparison of real sapphire refractive index.
The detailed numerical results of CL and neff at different wavelengths of 0.3 µm, 0.8 µm, 1.55 µm, and
2.0 µm are listed in Table 2.
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Figure 4. The variation of effective refractive index neff of proposed SCF as a function of wavelength
in comparison with Sapphire refractive index; for different diameters, (a) 50µm, (b) 75 µm, (c) 100 µm
and (d) 125 µm.

3.3. Chromatic Dispersion

The chromatic dispersion of proposed samples of SCF at the operating wavelengths in between 0.3 µm
and 2.0 µm is shown in Fig. 5. It can be inferred from dispersion curves that the proposed SCF exhibits
ultra-flattened, nearly zero chromatic dispersion over the observed wavelength in between 1.1 and 1.6 µm.
In the range of near and short wavelength of infrared bands, dispersion variation of 4.2 ps/(nm · km) is
observed, which is given in the inset of Fig. 5. However, when the wavelength is increased from 1.6 µm
to 2.0 µm, the fiber posed slightly dispersive from 33 to 117 ps/(nm · km). A comparison of chromatic
dispersion corresponding to FM of SCF with material dispersion of sapphire is numerically evaluated
from Eq. (10), and their results are listed in Table 3.
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Figure 5. Chromatic dispersion as a function of wavelength.

Table 3. Chromatic dispersion as a function of wavelength.

Wavelength (µm) λ= 0.3 λ= 0.8 λ= 1.55 λ= 2.0
Diameter (µm) FM FM FM FM

Chromatic dispersion
(ps/nm · km)

50 −1703.55 −98.35 −3.04 105.76
75 −1695.89 −103.85 −2.90 33.71
100 −1698.41 −107.51 1.96 77.06
125 −1692.75 −105.68 −2.60 117.05

Material dispersion
in Sapphire

- −5108.6 −170.82 25.50 57.316

3.4. Mode Field Radius (MFR) and Numerical Aperture (NA)

In order to analyze the optical properties of the SCF involving mode field analysis and numerical
aperture (NA), FEM is utilized to solve the radial effective index that was used for analyzing any step
index fibers, photonic crystal fibers, and other special structures. Since analytical solution of real and
imaginary propagation constants is quite cucumber to solve, as given in Eq. (8), numerical solution of
FEM is employed. The mode field radius (MFR) and NA are numerically solved, as effective area is 2×

Table 4. Numerical aperture and mode field diameter of proposed fiber.

Fiber type
Numerical aperture( NA)

MFD (µm)
λ= 0.3 (µm) λ= 0.8µm λ= 1.55µm λ= 2.0µm

SCF — 50 µm 0.0190491 0.0496352 0.097068 0.1221955 13
SCF — 75 µm 0.0190491 0.0324957 0.0647259 0.0833643 18
SCF — 100 µm 0.0190491 0.026533 0.0494387 0.0645811 24
SCF — 125 µm 0.0190491 0.0187619 0.0417846 0.0527333 26
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Figure 6. The evolution of mode field radius via intensity profile of FM, which is formulated in
comparison with effective core radius for different diameters of proposed SCFs, (a) 50 µm, (b) 75 µm,
(c) 100 µm and (d) 125 µm.

times of an order of MFR that is used to define mode field diameter (MFD) and determines the power
field density. As we can see from the summary, Fig. 6, intensity profile of FM shows that smaller MFR
would anticipate higher nonlinear effects on incidence, whereas NA of an angularly segmented cladding
can be defined by replacing n2 with neff [33], thus NA =

√
n2

1 − n2
eff , and its plot as a function of

wavelength is shown in Fig. 7. MFD and NA of the fiber are numerically evaluated as a function of
fiber arc length and operating wavelength, respectively, and their results are listed in Table 4.

3.5. Guided Mode Analysis

The number of guided modes in a fiber is obtained by solving Helmholtz equation with appropriate
boundary conditions. An ordinary single-mode optical fiber ensures single-mode operation under weakly
guided approximations (n1 ≈ n2). Single-mode operation in an optical fiber is only possible if V < 2.405,
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Figure 7. NA as a function of wavelength.

and the parameter V for an optical waveguide can be estimated as [34],

V = π
d

λ

√
n2

1 − n2
2 (11)

where d is the core diameter, λ the operating wavelength, and the number of guided modes for a large
core optical fiber can be estimated as [20]

M =
4
π2

V 2 (12)

The number of guided modes in a conventional SCF with reduced diameter of fiber is given by
Eq. (12). The graphical analysis of M for a conventional SCF in comparison with proposed SCF is
given in Fig. 8. It can be inferred from the summary that a large number of guided modes propagate in
a conventional SCF. This can be decreased by the reduction of core size, but still large modal interference
exists. In contrast, the use of segmented cladding (star-wheel shape) in SCF geometry has significantly

Figure 8. Comparison of number of guided mode in conventional SCF with proposed SCF.
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reduced CL and chromatic dispersion, whereas HOM exhibits higher leakage loss with differential loss
factor of 103 to 104 dB/m than FM. Ultra-flatten dispersion slope in the infrared regime ensures single
mode operation for the proposed SCF samples of 50 µm, 75 µm, 100 µm, and 125 µm. Thus, it is
fully capable of maintaining single mode operation. Compared with the CL of conventional SCF
∼ 106 dB/m [21], the proposed SCF exhibits negligible CL, which is ∼ 10−3 to 10−4 dB/m. Considering
the simulate performance, it is proposed that the star-wheel design of SCF is reliable and sustainable
candidate in the harsh and extremely high-temperature environments. Also, this structure can suppress
large modal interference and gives single mode operation with low CL and minimal chromatic dispersion.

4. CONCLUSION

A novel design of star-wheel shape of SCF with single mode operation in the spectrum of ultraviolet
to short infrared wavelength is demonstrated. The structure retains a reduced core region surrounded
by alternating segmented cladding region in the azimuthal directions, whereas radially fiber remains
uniform. The effect of segmented cladding with the variation of four different fiber diameters is
investigated. FEM analysis successfully demonstrates that differential loss factor of CL for HOM is ∼ 104

times greater than FM, thereafter fiber ensuring clean single mode operation. FM of the waveguides
exhibits low confinement loss of ∼ 0.0314, 0.0072, 0.0023, and 0.0009 dB/m and minimal chromatic
dispersion of ∼ −3.04, −2.90, 1.96, and −2.60 ps/(nm · km), for 50 µm, 75 µm, 100 µm, and 125 µm
diameter, respectively at operating wavelength of ∼ 1.55µm. Numerical results demonstrate that the
proposed SCF can promote its application in wide range of interferometry and optics in extremely harsh
environments.
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