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Computation of Oscillation Frequency in a Plasma Filled
Rectangular Cavity Resonator

Pragya Shilpi*, Dharmendra Upadhyay, and Harish Parthasarathy

Abstract—Oscillation frequency in a plasma filled rectangular dielectric resonator antenna is
computed. Perturbation method for solving differential equation is applied to find oscillation frequencies
of dielectric cavity resonator. Equilibrium distribution function of collisionless Boltzmann equation
is slightly perturbed. Distribution function of plasma is perturbed by altering external applied
electromagnetic field. Perturbed Boltzmann equation satisfies with the relaxation time approximation
used for the collision. The resulting Maxwell equations are subjected to appropriate boundary condition.
Multilinear algebra tensor decomposition technique is done to find eigenfrequincies of cavity resonator
antenna considered in this paper. A simulation study of a ionized gas plasma antenna is done on
HFSS. Numerically calculated oscillation frequency is cross verified with HFSS result and found in good
agreement.

1. INTRODUCTION

Maxwell’s equations can be solved either in time domain or in frequency domain. By assuming harmonics
exp(jωt), we find the response of a driving system such as its eigenvalues. Eigenvalues are the natural
oscillation frequencies of the system. To model the source of excitation of a given system “Green’s
function” is of outmost importance. As we write impulse response function for circuit, Green’s function
plays the same role in electromagnetism. By definition it gives response of an electromagnetic system to
delta source, which is an important analytical tool for procuring the response of any arbitrary system
by the method of superposition. In this paper, our aim to construct a Green’s function for plasma and
find the eigenfrequencies of a plasma filled cavity resonator.

In this manuscript, we start with equilibrium state of distribution function of plasma. The
equilibrium distribution function is the time independent solution of the Boltzmann equation in the
absence of external force. In equilibrium state, there is no spatial gradient of particle number density,
and the interaction or collision between particles does not change distribution function. Collisionless
Boltzmann equation is give by

d6Nα(r,v, t) = fα(r,v, t)d3rd3v

Above mentioned equation represents the number of particles of type α, enclosed within the volume
element at an instant t. According to Boltzmann equation, the equilibrium distribution function satisfies
the following condition (

δf

δt

)
coll

= 0

To account for the collision “relaxation model” of plasma is considered. It is assumed that the effect
of collision is to restore the situation of local equilibrium. Local equilibrium is characterized by the
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distribution function fα0(r,v). It is assumed that initially the situation is not in equilibrium in the
absence of external force, described by distribution function fα(r,v, t) different from fα0(r,v). After
collision situation reaches a local equilibrium condition exponentially with time having a relaxation time
τ . Relaxation time is in the order of time between between two consecutive collisions. and is written as
ν−1, where ν represents a collision frequency. This model was developed by Krook and mathematically
represented as (

δf

δt

)
coll

= −fα − fα0
τ

The solution of above differential equation is given by

fα(v, t) = fα0 − [fα(v, t) − fα0]e−t/τ

A pragmatic way to describe the dynamics of plasma is to consider that the plasma particle motion
is governed by the applied external fields plus macroscopic internal electromagnetic fields. Boltzmann
equation is given by

∂f(r,v, t)
∂t

+ v · ∇f(r,v, t) + a · ∇vf(r,v, t)

with the collision term (δfα/δt)coll equal to zero, including the external force and internal fields. We
turn up to a partial differential equation that describes the time evolution of the distribution function
in the phase space (six dimensional space given as d3rd3v) known as Vlasov equation.

∂fα

∂t
+ v · ∇fα +

1
mα

[Fext + qα(Ei + v × Bi)] · ∇fα = 0

Time-domain analysis of the forced oscillations in a cavity filled with a plasma in which the system
of time derivative Maxwell’s equations and the time derivative motion equation for the plasma is solved
simultaneously in [1]. Resonating modes inside cavity give insight into antenna design, impedance, and
radiation patterns which is covered in [2]. And discussion of how higher-order modes generated and
control impact bandwidth and antenna gain is also done. The simulation data of the spatial distributions
of the electron energy density and concentrations of electrons of argon plasma filled in Beenakker cavity
are examined in [3]. Analysis of the effect of the background plasma on the electromagnetic properties of
coaxial resonators leading to a decrease or an increase in the resonance frequencies is shown in [4]. For a
dispersive non-magnetized collisional plasma medium, wave propagation is modeled by finite difference
time domain method [5]. A resonator cavity filled with plasma is utilized as a microwave plasma lamp
with a different light emitting mechanism [6]. Relaxation time of plasma is calculated by gauge theory
or string theory in [7]. Probe diagnostic is used to find plasma parameters [8]. Kinetic theory of plasma
is illustrated by Vlasov equations. Vlasov equation is equivalent equation as Boltzmann distribution
function which account for wave-particle and particle-particle interaction [9]. Kinetic theory of plasma is
studied to acquire partial distribution function. To account for all microscopic details of plasma (such as
collisions among plasma particles), a kinetic model is given [10]. The dispersion relation for a open cavity
filled with plasma grating is studied. Under a strong wave modulation, plasma forms a periodical density
grating leading to periodical perturbation in dielectric constant of cavity medium [11]. Relaxation time
in the plasma is derived, which shows that it is dependent on the time taken by the shock wave to
pass through the discharge tube. The authors show that the speed of shock wave is only a function
of circuit inductance and capacitance and is independent of other discharge parameters [12]. The shift
in resonance frequency is calculated by applying electromagnetic boundary conditions to dispersion
relation. A cylindrical cavity partially filled with plasma having constant longitudinal magnetic field is
analyzed, and its natural frequencies are numerically calculated [13].

The dispersion relation is obtained for hybrid modes in a plasma waveguide filled with dielectric
having cylindrical metallic wall with an elliptic cross section. The plasma region is placed on the
outer surface of a dielectric tube of waveguide which is analyzed in [14]. Relaxation time estimation in
non-ideal dusty plasma and characteristic relaxation times of vertical and horizontal motions of dust
particles in gas discharge are calculated by analytical approach, and the analysis of simulation results
is done in [15]. Magnetic field changes the plasma to anisotropic media, and its field analysis in a
coaxial gyrotron cavity with triangular corrugations is done in [16]. The plasma in coaxial cavity with
wedge-shaped corrugations on and inside the gyrotron cavity is a perfect vacuum which is tackled in [17].
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A comprehensive analysis of fundamentals of plasma environment utilizing statistical kinetic theory
is covered in book [18]. The motion of plasma particles under the application of force is formulated,
and the concept of phase space and distribution function is also considered. In book [19], the analysis
and design of several types antennas are given. In book [20], Raman scattering, resonance absorption,
and stimulated Brillouin in plasma are examined. Spontaneous and magnetic field generation in plasma
along with inertial confinement fusion is carried out.

In [21], an argon plasma antenna is designed whose gas composition and pressure of gas could be
customized. In [22], a large gyrotron is realized for different operating magnetic fields, and resultant
harmonics are measured. A theoretical analysis of Green’s function methods applied to quantum systems
under equilibrium and without equilibrium for single molecule junctions is given in [23].

2. RESEARCH HIGHLIGHTS

The plasma within the cavity is perturbed by an EM field. Likewise, the EM field within the cavity
gets perturbed by charge and current density given by the plasma distribution. When we apply
perturbation theory to the problem, the plasma distribution function is perturbed as we perturb the
electromagnetic field. To satisfy a set of linearized equations it is better to approximate boundary partial
differential equation condition. The boundary condition is applied on the side wall of plasma filled
cavity. Distribution function and electro magnetic equation determine the possible set of eigenfunctions
of oscillation by a appropriate design of the cavity. The equations can determine these oscillator
eigenfrequencies. By controlling the permittivity, one or more of the characteristic oscillation frequency
matches the channel resonant frequency, over which we can transmit the waves from the plasmonic
antenna.

3. FORMULATIONS AND EQUATIONS

Equilibrium distribution function of plasma is described as

f0(r,v) = C · exp

(
−βm

(
v2

2
+ U(r)

))
(1)

And perturbed plasma distribution is given by

f(t, r,v) = f0(r,v) + f1(t, r,v) (2)

f0 satisfies equilibrium collisionless Boltzmann equation.

(v,∇r)f0 − (∇U(r),∇v)f0 = 0 (3)

f1 satisfies the perturbed Boltzmann equation with the relaxation time approximation used for the
collision.

∂f1

∂t
+ (v,∇r)f1 +

q

m
(E(t, r) + v × B(t, r),∇v)f0(r,v) +

f1(t, r,v)
τ

= 0 (4)

or
∂f1

∂t
+ (v,∇r)f1 +

q

m
(E,−βmv)f0 +

f1

τ
= 0

or
∂f1

∂t
+ (v,∇r)f1 − βq(E,v)f0 +

f1

τ
= 0

Charge density within the guide

ρ(t, r) = q

∫
f1(t, r,v)d3v (5)

Current density within the guide

J = (t, r) = q

∫
vf1(t, r,v)d3v (6)
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Maxwell’s equations are

∇× E = −∂B
∂t

(7a)

∇×B = μJ + με
∂E
∂t

(7b)

∇ ·E =
ρ

ε
(7c)

∇ ·B = 0 (7d)

Combining the curl equations

∇(∇ ·E) −∇2E = − ∂

∂t

(
μJ + με

∂E
∂t

)

∇2E− μεE,tt = μJ,t +
∇ρ

ε

(8)

Resonator has perfect conducting walls. Ez = 0 at X = 0, a and Y = 0, b. EX = 0 at Y = 0, b and
z = 0, d. EY = 0 at X = 0, a and z = 0, d.

Expanding in accordance with the boundary condition,

EX(X,Y, z, t) =
∑
mnp

EX [nmpt] cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
(9a)

EY (X,Y, z, t) =
∑
mnp

EX [nmpt] sin
(

nπX

a

)
cos
(

mπY

b

)
sin
(pπz

d

)
(9b)

Ez(X,Y, z, t) =
∑
mnp

EX [nmpt] sin
(

nπX

a

)
sin
(

mπY

b

)
cos
(pπz

d

)
(9c)

In the frequency domain k2 = ω2με. We can write Equation (8) as

(∇2 + k2)E(X,Y, z, ω) = jωμJ(X,Y, z, ω) +
∇ρ(X,Y, z, ω)

ε
= jωμJ(r, ω) +

∇ρ(r, ω)
ε

(10)

Expand X,Y, z components of the source field S in a compatible manner and the eth components of E
according to the boundary condition.

J(r, ω) = q

∫
vf1(ω, r,v)d3v (11)

∇ρ(r, ω) = q

∫
∇f1(ω, r,v)d3v (12)

S(r, ω) = jωμJ(r, ω) +
∇ρ(r, ω)

ε
(13)

Expand the source field in terms of modal coefficient.

SX(r, ω) =
∑
mnp

SX [nmp, ω] cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)

= jωμq

∫
vX

∑
mnp

fX [mnp, ω,v] cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
)d3v

+
q

ε

∫ ∑
mnp

f̃X [mnp, ω,v] cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
)d3v (14)

We expand distribution function in terms of modal basis function.

fX [mnp, ω,v] =
2
√

2√
abd

∫
vXf1(ω, r,v) cos

(
nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
)d3v (15)
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Differentiating fX w.r.t X,

f̃X [mnp, ω,v] =
(−nπ

a

)(
2
√

2√
abd

)2 ∫
f1(ω, r,v) sin

(
nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
)dXdY dzd3v (16)

Let

jωμq

(
2
√

2√
abd

)2 N∑
mnp=1

cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
cos
(

nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)

=jωKX [X,Y, z|X ′, Y ′z′] = jωKX [r|r′](
2
√

2√
abd

)2 N∑
mnp=1

(−nπ

a

)
cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
sin
(

nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)

=K̃X [X,Y, z|X ′, Y ′z′] = K̃X [r|r′]

(17)

Then substitute RHS of Equation (17) into Equation (14).

SX(r, ω) = jω

∫
KX [r|r′]vXf1(ω, r′,v)d3r′d3v +

∫
K̃X [r|r′]f1(ω, r′,v)d3r′d3v (18)

SX(r, ω) = (∇2 + k2)EX(r, ω)

EX(r, ω) =
∑
mnp

EX [mnp, ω] cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
(19)

EX [mnp, ω] =
SX [mnp, ω](

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

)

SX [mnp, ω] = jωμq

∫
vXfX [mnp, ω,v]d3v +

q

ε

∫
f̃X [mnp, ω,v]d3v

Substitute the value of SX [mnp, ω] into Equation (19).

EX(r, ω) =
∑
mnp

jωμq

∫
vXfX [mnp, ω,v]d3v+

q

ε

∫
f̃X [mnp, ω,v]d3v(

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

) cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)

=
∑
mnp

⎛
⎜⎜⎝

jωμq2
√

2√
abd

∫
vXf1[ω, r′,v] cos

(
nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)

cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
dX ′dY ′dz′d3v

⎞
⎟⎟⎠

(
k2 −

(
n2

a2
+

m2

b2
+

p2

d2

)
π2

)

+
∑
mnp

⎛
⎜⎜⎝

−nπq2
√

2
aε
√

abd

∫
f1[ω, r′,v] sin

(
nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)

cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
dX ′dY ′dz′d3v

⎞
⎟⎟⎠

(
k2 −

(
n2

a2
+

m2

b2
+

p2

d2

)
π2

) (20)
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Let

L
(1)
X (r|r′) =

N∑
mnp=1

μq(2
√

2)2

abd
cos
(

nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)
cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
(

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

)
(21)

L
(2)
X (r|r′) =

N∑
mnp=1

−nπq(2
√

2)2

aεabd
sin
(

nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)
cos
(

nπX

a

)
sin
(

mπY

b

)
sin
(pπz

d

)
(

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

)
(22)

Hence Equation (19) can be written as

EX(r, ω) = jω

∫
L

(1)
X (r|r′)vXfX [ω, r,v]d3r′d3v +

∫
L

(2)
X (r|r′)f1[ω, r,v]d3r′d3v (23)

Likewise

(∇2 + k2)EY = SY (r, ω)

SY (r, ω) = jωμJY (r, ω) +
ρ,Y (r, ω)

ε
= jωμq

∫
vY f1[ω, r,v]d3v +

q

ε

∫
f1,Y [ω, r,v]d3v

where ρ,Y means differentiating ρ w.r.t Y , and f1,Y is the differentiation of f1 w.r.t Y .
In accordance with the boundary condition on EY , we expand by using the basis function

sin
(

nπX
a

)
cos
(

mπY
b

)
sin
(pπz

d

)
.

Then we can write

μq

∫
vY f1[ω, r,v]d3v

�
(

2
√

2√
abd

)2 N∑
mnp=1

∫
vY f1[ω, r,v] sin

(
nπX ′

a

)
cos
(

mπY ′

b

)
sin
(

pπz′

d

)

sin
(

nπX

a

)
cos
(

mπY

b

)
sin
(pπz

d

)
dX ′dY ′dz′d3v

=
∫

K
(1)
Y (r|r′)vY f1[ω, r,v]d3r′d3v

where

K
(1)
Y (r|r′) =

μq(2
√

2)2

abd

N∑
mnp=1

sin
(

nπX ′

a

)
cos
(

mπY ′

b

)
sin
(

pπz′

d

)
sin
(

nπX

a

)
cos
(

mπY

b

)
sin
(pπz

d

)
(24)

Likewise
q

ε

∫
f1,Y [ω, r,v]d3v =

∫
K

(2)
Y (r|r′)f1[ω, r,v]d3r′d3v (25)

where

K
(2)
Y (r|r′) =

q(2
√

2)2

εabd

N∑
mnp=1

(−mπ

b

)
sin
(

nπX ′

a

)
sin
(

mπY ′

b

)

sin
(

pπz′

d

)
sin
(

nπX

a

)
cos
(

mπY

b

)
sin
(pπz

d

)
(26)

EY (r, ω) = jω

∫
L

(1)
Y (r|r′)vY f1[ω, r,v]d3r′d3v +

∫
L(2)

y (r|r′)f1[ω, r,v]d3r′d3v (27)
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where

L
(1)
Y (r|r′) =

μq(2
√

2)2

abd

N∑
mnp=1

sin
(

nπX ′

a

)
cos
(

mπY ′

b

)
sin
(

pπz′

d

)
sin
(

nπX

a

)
cos
(

mπY

b

)
sin
(pπz

d

)
(

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

)
(28)

and

L
(2)
Y (r|r′) =

q(2
√

2)2

εabd

N∑
mnp=1

(−mπ

b

)
sin
(

nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)
sin
(

nπX

a

)
cos
(

mπY

b

)
sin
(pπz

d

)
(

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

)
(29)

Finally

Ez(r, ω) = jω

∫
L(1)

z (r|r′)vzf1[ω, r,v]d3r′d3v +
∫

L(2)
z (r|r′)f1[ω, r,v]d3r′d3v (30)

where

L(1)
z (r|r′) =

μq(2
√

2)2

abd

N∑
mnp=1

sin
(

nπX ′

a

)
sin
(

mπY ′

b

)
cos
(

pπz′

d

)
sin
(

nπX

a

)
sin
(

mπY

b

)
cos
(pπz

d

)
(

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

)
(31)

and

L(2)
z (r|r′) =

q(2
√

2)2

εabd

N∑
mnp=1

(−pπ

d

)
sin
(

nπX ′

a

)
sin
(

mπY ′

b

)
sin
(

pπz′

d

)
sin
(

nπX

a

)
sin
(

mπY

b

)
cos
(pπz

d

)
(

k2 −
(

n2

a2
+

m2

b2
+

p2

d2

)
π2

)
(32)

So our first order Boltzmann equation becomes

jωf1(r, ω,v) + (v,∇r)f1(r, ω,v) − βq(E(r, ω),v)f0(r, ω) +
f1(r, ω,v)

τ
= 0 (33)

where

(E(r, ω),v) = jω
3∑

k=1

vk

∫
L

(1)
K (r|r′)v′kf1[ω, r,v′]d3r′d3v′ +

3∑
k=1

vk

∫
L

(2)
K (r|r′)f1[ω, r,v′]d3r′d3v′

= jω

∫
L(1)(r,v|r′,v′)f1[ω, r′,v′]d3r′d3v′ +

∫
L(2)(r,v|r′,v′)f1[ω, r′,v′]d3r′d3v′ (34)

where

L(1)(r,v|r′,v′) =
3∑

k=1

vkv
′
kL

(1)
K (r|r′) (35)

and

L(2)(r,v|r′,v′) =
3∑

k=1

vkv
′
kL

(2)
K (r|r′) (36)
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Then [
jω + (v,∇r) − βq(jωβL(1) + βL(2)) +

1
τ

]
f1 = 0 (37)

from which after discretization the eigenfrequencies can be determined as from the root of

det

[
jω + (v,∇r) − βq(jωβL(1) + βL(2)) +

1
τ

]
= 0 (38)

4. RESULTS AND DISCUSSION

In multilinear algebra tensor decomposition is accomplished by projecting the space to lower dimensional
representations. A tensor subspace is translated by a multilinear projection that maps the input data
from a high-dimensional space to a low-dimensional space. Multilinear projection from a tensor space
to a vector space is known as the tensor-to-vector projection (TVP). As a vector can be considered as
multiple scalars, the projection from a tensor to a vector can be regarded as multiple projections, each
of which projects a tensor to a scalar.

Discretization of Equation (37) is done as follows. Let us consider
k =

√
μεω2; T = 300 kelvin; τ = 2.5 × 10−9 sec; β = 1

T×1.38×10−23 ;
N = 2; a = 0.02 m; b = 0.01 m; d = 0.005 m;
ne = 10−16; q = ne ∗ 1.6 × 10−19 ∗ a ∗ b ∗ d coul;
Δx = a

N , Δy = b
N , Δz = d

N ; vx(max) = 400; vy(max) = 400; vz(max) = 400;
δx =

vx(max)

N , δy =
vy(max)

N , δz =
vz(max)

N ;
X = nxΔx; Y = nyΔy; z = nzΔz; X́ = ńxΔx, Ý = ńyΔy, ź = ńzΔz;
vx = mxδx, vy = myδy, vz = mzδz; v́x = ḿxδx, v́y = ḿyδy, v́z = ḿzδz;
and 1 ≤ (mx,my,mz, nx, ny, nz) ≤ N .

Substituting the above values in Equations (21), (22), (28), (29), (31), and (32), then we will
compute Equations (35) and (36). Let us consider discrete function f1 to be

f1 =
e(n)∑
n,m

f1(n,m) (e(n) ⊗ e(m))

We used matlab programming tool, in which we assume A = eye(N) and e(nx) = A(:, nx)
⊗ denotes the outer product.

f1 =
e(n)∑
n,m

f1(n,m)e(nx) ⊗ e(ny) ⊗ e(nz) ⊗ e(mx) ⊗ e(my) ⊗ e(mz) (39)

Then e(nx) ⊗ e(ny) = A(:, nx) ∗ transpose(A(:, ny))

f1(n,m) = [e(nx)T ⊗ e(ny)T ⊗ e(nz)T ⊗ e(mx)T ⊗ e(my)T ⊗ e(mz)T ]f1 (40)

The second term of Equation (38) is given by

v,∇r =
e(n)∑
n,m

(
mxδx

Δx

((
e(nx + 1)T − e(nx)T

)⊗ e(ny)T ⊗ e(nz)T ⊗ e(m)T
)

+
myδy

Δy

(
e(nx)T ⊗ (e(ny + 1)T − e(ny)T

)⊗ e(nz)T ⊗ e(m)T
)

+
mzδz

Δz

(
e(nx)T ⊗ e(ny)T ⊗ (e(nz + 1)T − e(nz)T

)⊗ e(m)T
))

Eventually, we are able to evaluate the determinant of Equation (38). We can view determinant as
a function in which input is a square matrix, and its output is a number. In present situation, the
determinant of Equation (38) signifies the volume scaling factor of an n dimensional cube spanned by
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its row and column vectors. This means that the matrix on the left side of equality in Equation (38)
maps the unit n-cube to the n-dimensional space defined by the vectors. Hypercube or n-cube is a
higher dimension analogous extension of a cube.

For a continuous function, there are infinite number of Green’s functions and eigenfunctions,
which after discretization necessarily limits the eigenfunction and leads to gauging the values of
eigenfrequencies by a suitable mathematical numerical method. As in continuous function, it is not
feasible to represent all possible solutions in computer due to the finite nature of calculation method.
Discretization provides a reasonable number of base functions within the simulation domain to acquire
an approximate solution.

For the convenience of representation, let us assume the determinant of Equation (38) as A. Now
turn tensor A into a matrix A. Through well established matrix computations, we discover things about
A and draw conclusions about tensor A based on what is learned about matrix A. Tensor unfoldings of
A ∈ 	N×N×N×N×N×N are carried out. There are many ways to assemble derived tensor A entries into
a matrix A that could be a block matrix whose entries are A-slices. A slice of a tensor A is a matrix
obtained by fixing all but two of A’s indices. We adopt the convention that the first unfixed index in
the tensor is the row index of the slice, and the second unfixed index in the tensor is the column index
of the slice. A fiber of a tensor is a column vector defined by fixing all but one index and varying the
rest. A mode-k unfolding of a tensor is obtained by assembling all the mode-k fibers into a matrix. The
matlab tensor toolbar function “tenmat” can be used to produce modal unfoldings.

If A ∈ 	n1×...×nd , N = n1 . . . nd B = tenmat(A, k) gives the mode-k unfolding, then B is the matrix
A(k) ∈ 	nk×(N/nk) with

A(k)(ik, col(ĩk, ñ)) = A(i)
where

ĩk = [i1, . . . , ik−1, ik+1, . . . , id]
ñ = [n1, . . . , nk−1, nk+1, . . . , nd]

Here col function maps multi-indices to integers. This precisely shows the order in which fibers are
assembled.

For the present case, we need to solve the determinant, hence we flatten the tensor into a
block matrix to get a square matrix. Block matrix is a matrix whose entries are matrices. Here
A ∈ 	n1×n2×n3×n4×n5×n6, tenmat(A, [3 4 5 6], [1 2]) sets up⎡

⎣ A(:, :, 1, 1, 1, 1) A(:, :, 1, 1, 2, 1) . . . A(:, :, 1, 1, n5, n6)
...

...
. . .

...
A(:, :, n3, n4, 1, 1) . . . . . . A(:, :, n3, n4, n5, n6)

⎤
⎦

Table 1. Oscillation frequency of plasma filled rectangular cavity resonator.

Iteration
(N)

Oscillation frequency (Hz)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

N = 2 4.3288 × 109 2.6020 × 1010 9.7166 × 1011 1.1068 × 1012 6.95 × 1012 2.4010 × 1014

N = 3 4.3601 × 109 2.7313 × 1010 9.8050 × 1011 1.1109 × 1012 6.97 × 1012 2.5202 × 1014

N = 4 4.501 × 109 2.7316 × 1010 9.8100 × 1011 1.1109 × 1012 7.00 × 1012 2.5211 × 1014

Table 1 shows the calculated frequency of oscillation. As we increase the number of iterations (N),
oscillation frequency for that particular mode (m,n, p) approaches a fixed value. Fig. 1 indicates the
graphical representation of resonant frequencies for (N = 4) for possible values of eigenmode, i.e., the
value of (m,n, p).

4.1. Plasma Parameters

Plasma frequency is tuned by changing the plasma density and plasma conductivity such that it is
possible for the same plasma antenna to resonate at different frequencies. Electronically, a smart plasma
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Figure 1. Oscillation frequencies for designated rectangular dielectric plasma filled cavity resonator.

antenna can steer the radiation pattern in different directions as in array antennas. Hence for these
advantages, plasma antenna becomes an interesting and commendable research topic. Most of the work
in literature on plasma antennas lacks the discussion about the dependency of resonance frequency and
radiation pattern on antenna dimension and mainly deals with experimental approach. All the antenna
parameters of the plasma antenna using High Frequency Structure Simulator (HFSS) are studied to
understand the relation between resonance frequencies antenna dimension and plasma properties.

We can add parameters to DC generated plasma as we know voltage across plasma and current
flowing through the plasma. However, it is difficult to add parameters for microwave generated plasma
as the extent of ionization of gas is dependent on the operating microwave frequencies of microwave
source. Parameters in HFSS could be added only if the ionization curves are known for plasma at
different microwave frequencies.

Plasma conductivity with the collision frequency higher than the wave frequency (νm 
 ω) for the
weakly ionized plasma can be calculated by the formula written below

σ =
e2ne

meνm

Here e is the electronic charge, ne the electron density, me the mass of electron, and νm the collision
frequency.

Plasma is a material with electromagnetic properties as a nonhomogeneous, nonlinear, and
dispersive medium, which makes plasma a special medium in which permeability (μ), conductivity
(σ), and permittivity (ε) are a function of frequency and other parameters. For weakly ionized plasma,
the external force on electron is assumed to be small, so that electron non-equilibrium distribution
state is only slightly perturbed from its equilibrium position. The distribution function of electron is
assumed to be inhomogeneous and anisotropic while distribution function of neutral particles of plasma
is assumed as homogeneous and isotropic. A specific response results from any particular frequency of
the excitation of electromagnetic wave and any particular density of ionization. Plasma partially absorbs
radiated electromagnetic waves. Some EM waves are scattered, and some pass through the plasma. By
appropriate selection of the basic parameters of plasma such as electron density and collision frequency,
we can regulate the amount of EM wave to absorb, scatter, or pass through the plasma medium. The
relative permittivity of plasma is calculated by the formula

εr = ε′r − jε′′r = 1 − ω2
p

ω(ω − jνm)
where ωp is the plasma frequency, ω the operating frequency, and νm the collision frequency. Plasma
frequency depends on the amount of ionization in the plasma and is characterized by the minimum
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frequency of electromagnetic wave which can travel through that plasma specimen without attenuation.
Plasma frequency is distinguished by the operating frequency of the plasma antenna, where operating
frequency is equivalent to the operating frequency of a metal antenna of same dimension. Plasma
frequency is equal to

ωp =

√
4πnee2

me

4.2. Simulations

We first define plasma material to design a plasma antenna on HFSS which requires to define plasma
conductivity, permittivity, and plasma density. They are calculated theoretically. For present plasma
antenna model, the electron density is taken to be ne ∼ 10−16 m−3 and the collision frequency picked as
νm ∼ 4× 108 Hz. However, it is assumed that collision between particles does not affect plasma density
and hence its distribution function. If this condition is met, we can apply collisionless Boltzmann
equation for plasma. The plasma conductivity turns out to be σ = 22 simens/m3, and the plasma
frequency is calculated to ωp = 30 × 106 Hz.

4.3. Design of Antenna

A model based on (high frequency simulation software) HFSS of plasma antenna can be simulated with
mentioned values. Fig. 2 indicates schematic of a plasma antenna under consideration. Fig. 3 shows
its side view. The configuration of designed plasma antenna consists of a glass box of dimension with
length×width× height as a = 20 mm, b = 10 mm, d = 5 mm, respectively, having 0.1 mm thickness. A
plasma volume is grown inside the box.

Figure 2. Dimension of designed rectangular dielectric resonator antenna.

For the present simulation of plasma antenna model, we assume the plasma density to be uniform.
a copper plate of 100mm × 100mm in x-y plane and a thickness of 0.1 mm is considered as ground
plane. An air volume box is designated as a radiation boundary to set up for the far field pattern of
the antenna. Between the plasma volume and copper ground plane coaxial waveport is assigned with
the help of a small gap. For odd mode excitation, an integration line of wave port is taken between
two conductors. For even mode excitation, a waveport integration line is taken between a conductor
and ground plane. Fig. 4 is the model of plasma antenna with assigned parameters designed on HFSS
software. For the present case of simulation purpose we assume (m,n, p) = (1, 1, 1) and at center
frequency at 3GHz with a frequency sweep between 1 GHz and 10 GHz.

Ionized gas in glass box behaves like plasma. At assumed operating frequency 3GHz, permittivity
is calculated. In the present case, the real part of permittivity is approximately equal to one, and
imaginary part of permittivity is much less than one, which results in dielectric loss tangent around
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Figure 3. Side view of designed rectangular dielectric resonator antenna.

Figure 4. Simulated design of plasma filled rectangular dielectric resonator antenna.

Figure 5. Return loss (S11) parameter of simulated model of plasma filled rectangular dielectric
resonator antenna.

zero. For different operating permittivity changes, plasma material is assigned by setting described
parameter in HFSS. Fig. 5 shows the return loss (S11) parameter of simulated model of the plasma
filled rectangular dielectric resonator antenna. The more negative the value of return loss is, the higher
the antenna gain is. As can be noticed in Fig. 5, return loss is −46 dB, at 4.5 GHz, which signifies that
the designed model works very efficiently as an antenna (transmitter or receiver) at 4.5 GHz.
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5. CONCLUSION

A generalized mathematical analysis for the computation of oscillation frequency for a plasma filled
cavity resonator is accomplished. We employ a numerical perturbation method for solving governing
Maxwell equation which resorts to appropriate boundary condition for rectangular cavity. We compare
the results calculated by matlab and HFSS simulation for a specific configuration of designed plasma
antenna. Resulting oscillation frequencies by the two simulation methods match reasonably well, which
substantiate the exercise of perturbation method for estimating resonant frequency for a plasma filled
cavity resonator.
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APPENDIX A. MULTILINEAR SUBSPACE ALGEBRA

The dth order tensor resides in the tensor space 	I1 ⊗	I2 ⊗ . . .⊗	Id, where 	Id is the nth vector space.
Let A be a dth order tensor, which can be decomposed as follows.

A = S ⊗ u1 ⊗ u2 ⊗ . . . ⊗ ud (A1)

where ⊗ stands for outer product (tensor product). The outer product operation is a way of combining
an order-d1 tensor and an order-d2 tensor to obtain an order-(d1 + d2) tensor. S is the core matrix,
whose outer product is taken with d = 1 . . . N matrices. ud is the Id×Id matrix with orthogonal column
vector.

To find the projection of tensor A defined in a tensor space 	I1 ⊗	I2 ⊗ . . . ⊗	Id to another lower
dimensional tensor space defined by matrix S is given by

S = A⊗ uT
1 ⊗ uT

2 ⊗ . . . ⊗ uT
d (A2)

We can also write decomposition as

A =
id∑
i1

S(i1, i2 . . . id) ⊗ u1 ⊗ u2 ⊗ . . . ⊗ ud

which indicates that any tensor, for example A, can be expressed as a linear combination of rank one
tensors.

Πd=1
N Id

A Tucker product representation where the inverse factor matrices are the left singular vector matrices
for the unfoldings A(1), . . . ,A(d).
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