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Improving Effectiveness of the Double Layer Method for Modeling of
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Dmitriy M. Filippov1, *, Alexandr A. Shuyskyy1, Gennadiy P. Kozik1,
Dmitry V. Samokhvalov2, and Anatoliy N. Kazak1

Abstract—When solving the boundary integral equation with respect to the density of a double layer
of fictitious magnetic charges in the case of using a piecewise constant approximation of double layer
density, the interface conditions for the field vectors are not fulfilled at any point of the interface between
ferromagnetic media. The article shows that these interface conditions are satisfied not discretely but
integrally. Based on the proposed integral relations, which are derived from the Ampere’s Circuital Law,
a new system of linear equations is derived. The system of linear equations is obtained with respect to
the piecewise constant approximation coefficients of double layer magnetic charge density. The resulting
system of equations does not contain the scalar magnetic potential of free sources. Consequently, this
numerical model can be directly applied to the analysis of magnetic field in any multiply connected
domains without introducing impenetrable partitions or solving an additional boundary value problem
for finding scalar magnetic potential.

1. INTRODUCTION

The method of integral equations is known in the scientific literature as boundary element method
(BEM) [1–3]. There are two different widespread formulations of BEM: “Direct boundary element
method formulation” and “Indirect boundary element method formulation” [4].

The direct formulation of BEM is based on the direct application of Green’s theorem to obtain the
integral equation [4]. The indirect formulation is based on solving boundary integral equations for the
densities of secondary sources (surface charge densities) [4]. In this article, the indirect formulation is
called the secondary sources method, since such a name reflects the physical meaning of this method.
Surface secondary sources can be: a single layer of charges [5–7], a double layer of charges [8–13], a single
layer of currents [14], and a double layer of currents [13]. Some of the types of secondary sources are
equivalent to real field sources that can be observed experimentally. For example, such real secondary
sources include a single layer of electric charges, a double layer of electric charges (or a layer of electric
dipoles), a single layer of magnetization currents (or a layer of microcurrents), and a double layer of
currents (or a layer of magnetic moments). Some types of secondary sources have no natural equivalents
and are mathematical abstractions. Such secondary sources are usually called fictitious ones. These
include, for example, a single layer of fictitious magnetic charges and a double layer of fictitious magnetic
charges. In addition to surface secondary sources, there are also volume secondary sources, for example,
the volume density of eddy currents [15].

All types of secondary sources can be divided into scalar (their distribution is described by
scalar functions) and vector (their distribution is described by vector functions). If the problem of
calculating the field is formulated in the case of a three-dimensional formulation, and the geometry of

Received 11 November 2020, Accepted 11 December 2020, Scheduled 22 December 2020
* Corresponding author: Dmitriy M. Filippov (filippov.dm@cfuv.ru).
1 V.I. Vernadsky Crimean Federal University, Simferopol 295007, Russia. 2 Saint Petersburg Electrotechnical University “LETI”,
Saint Petersburg 197376, Russia.



196 Filippov et al.

the computational domain is rather complicated, then one should use scalar secondary sources. Such
sources include a single layer of charges and a double layer of charges. Generally speaking, a single layer
of charges has some disadvantages compared to a double layer of charges. First, a single layer of charges
almost always (it depends on the geometry of the computational domain) is a function containing a
finite number of essential discontinuity points in its domain. Usually, this property is the reason for
the low computational effectiveness of the calculation method, which is based on the use of a single
layer of charges as secondary sources. However, in [15], using a single layer of electric charges as an
example, it is shown how this problem can be solved, and the computational effectiveness of the method
can be increased. The method proposed in [15] is applicable to a single layer of fictitious magnetic
charges. Secondly, when calculating the electromagnetic field, if it becomes necessary to calculate the
vector potential of the magnetic field, a single layer of fictitious charges is of little use. This is because
calculating the vector potential as a function of density of a magnetic charge single layer turns into an
unnecessarily difficult mathematical problem. At the same time, there is a simple expression for the
vector potential created by a double layer of fictitious magnetic charges. In addition, the surface density
of the double layer of charges (both electric and magnetic) never has essential discontinuity points, no
matter how complex the geometry of the computational domain is.

The above reasoning is a convincing argument in favor of choosing a method based on the use of a
double layer of fictitious magnetic charges as a method for calculating the three-dimensional magnetic
field of electromagnetic systems. Consider this method in more details.

2. CLASSICAL INTEGRAL EQUATION WITH RESPECT TO A DOUBLE LAYER
OF MAGNETIC CHARGES

2.1. Features of the Integral Equation with Respect to a Double Layer of Magnetic
Charges

In [11], the integral equation for the density of a double layer of magnetic charges is obtained. This
equation is derived from the interface condition for the magnetic field vector taking into account the
continuity property of the double layer potential. We represent this equation in the following form:

ν (Q) +
λ

2π

∮
S

ν (P )
(nP , rPQ)

r3
PQ

dSP = −2λϕ0 (Q) + C, (1)

where ν(Q) is the density of the double layer at points Q ∈ S; S is the boundary of the region occupied
by a ferromagnetic with magnetic permeability μ; λ = (μ − μ0)/(μ + μ0); nP is the external normal to
the point P ∈ S; rPQ is a radius-vector drawn from point P ∈ S to point Q ∈ S; ϕ0(Q) is the scalar
magnetic potential of the primary field sources at a point Q ∈ S; C is a constant.

The scalar magnetic potential is introduced by the expression:

B = −gradϕ, (2)

where B is the magnetic flux density.
After solving Equation (1) regarding the density of the double layer ν(Q) a magnetic field can be

calculated at any point in space created by primary and secondary sources according to the following
expression:

B (M) =
1
4π

∮
S

ν (P )
3 (rPQ,nP ) rPQ − r2

pQnP

r5
pQ

dSP + B0 (M) , (3)

where M is an arbitrary point in space; B0(M) is the magnetic flux density of the primary field sources.
Equation (1) has one significant drawback: on the right-hand side they contain a scalar magnetic

potential. In a multiply connected area, this function is not single-valued. For the correct calculation
of the magnetic scalar potential, it is necessary to introduce conditional impermeable partitions. We
show this with a simple example (Figure 1).
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Figure 1. Current coil and impermeable partition.

The points P and P ′ are infinitely close to each other; therefore, the integration path L differs
infinitely little from a closed loop PP ′P . Therefore, we can write the following ratio:

ϕ0 (P ) − ϕ0

(
P ′) =

∮
PP ′P

B0dl = μ0I, (4)

where B0 is the magnetic flux density of free sources.
It can be seen from the considered example that the result of calculating the scalar magnetic

potential depends on the integration path. To avoid using a multi-valued function, conditional
impermeable partitions are introduced (in Figure 1, such a partition is shown by hatching). Then
it is possible to carry out integration over any circuit if it does not cross the partition. This technique
allows you to get simply connected from a multiply connected area.

The procedure for introducing conditional impermeable partitions is very difficult to automate. In
some problems, when the computational domain contains many current loops, the planes of which can
overlap, the task of introducing conditional partitions can be unacceptably time-consuming.

In this regard, in the present work, it is proposed to modify the double layer method of magnetic
charges. Namely, new equations are proposed. The solution of these equations does not require the
calculation of a scalar magnetic potential.

2.2. Fulfillment of the Interface Conditions for a Piecewise Constant Approximation of
Density of a Magnetic Charge Double Layer

Integral Equation (1) is derived from the following interface condition:

ϕ
(
Q+

)/
μ = ϕ

(
Q−)/

μ0, (5)

where ϕ is the scalar magnetic potential created by primary and secondary field sources; Q+ is the
boundary limit point inside the region with magnetic permeability μ; Q− is the boundary limit point
inside the region with magnetic permeability μ0 (Figure 2).

Consider a piecewise constant approximation of the density of a magnetic charge double layer. To
do this, we divide, in some way, the surface S of a ferromagnetic into N elements. Within the limits of
each such element of the partition, we impose the condition that ν(Q) = νk = const (k = 1, 2, . . . , N).

Figure 2. The boundary between the regions filled with ferromagnetic and air.
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Introduce a vector τQ at a point Q, which is tangential to the surface (and is orthogonal to a
normal vector nQ in Figure 2). Then, under the condition of a piecewise constant approximation of the
double layer density, it is easy to obtain the equality:

∂ϕ
(
Q+

)/
∂τ = ∂ϕ

(
Q−)/

∂τ.

But then it is obvious:
(1/μ) ∂ϕ

(
Q+

)/
∂τ �= (1/μ0) ∂ϕ

(
Q−)/

∂τ. (6)

From Eq. (6) the inequality follows:(
H

(
Q+

)
, τQ

) �= (
H

(
Q−)

, τQ

)
(the expression in brackets means the dot product of the magnetic field strength vector by the vector
tangent to the boundary at the observation point). In other words, the interface condition for the vector
of the magnetic field strength is not fulfilled at any point of the boundary in the case of a piecewise
constant approximation of double layer density.

Show that when using a piecewise constant approximation of double layer density, the interface
condition for the vector of magnetic field strength is fulfilled integrally.

Since the integral Equation (1) is derived from the interface condition in Eq. (5), in the case of a
piecewise constant approximation of the double layer density, the following equations must be fulfilled:
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(
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(
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)/
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(
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From Eq. (7) the following equalities follow:[
ϕ

(
Q+

k+1

) − ϕ
(
Q+

k

)]/
μ =

[
ϕ

(
Q−

k+1

) − ϕ
(
Q−

k

)]/
μ0, k = 1, 2, . . . , N. (8)

Taking into account Eqs. (2) and (8), we obtain:

1
μ

Q+
k+1∫

Q+
k

B+τQdl =
1
μ0

Q−
k+1∫

Q−
k

B−τQdl, k = 1, 2, . . . , N

or
Q+

k+1∫

Q+
k

H+τQdl =

Q−
k+1∫

Q−
k

H−τQdl, k = 1, 2, . . . , N. (9)

Expression (9) is the law Ampere’s Circuital Law in integral form for a path that is infinitely close
to a boundary and passes through the points Qk and Qk+1. These points lie inside any two neighboring
elements of the mesh. These points can, for example, be located at the geometric centers of the specified
elements.

Show that expressions (9) can be used as interface conditions for obtaining new equations with
respect to the density of a magnetic charge double layer. Moreover, these equations are free of the
disadvantages that are inherent in Equation (1).

3. NEW EQUATIONS FOR THE METHOD OF MAGNETIC CHARGE DOUBLE
LAYER

Consider a ferromagnetic sample with its volume V that is covered by surface S and is filled with
substance which has magnetic permeability μ. A ferromagnetic sample is placed in an external magnetic
field of free sources B0(x, y, z). Impose that a surface of a ferromagnetic sample is meshed into N
triangular elements (Figure 3).

Figure 3 shows a triangular element of a mesh containing a point Qk (we call it the k-th element).
This element is surrounded by three more triangles, the numbers of which are i1, i2 and i3. On the right
in Figure 3, a fragment of the sample surface is shown on an enlarged scale. A closed contour is drawn
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Figure 3. Ferromagnetic sample in an external
magnetic field.

Figure 4. Section of a ferromagnetic sample
along a segment ΔlIk.

through points Qk and Qi1 . A part of this contour is located in the “−” area, and a part is located in
the “+” area (Figure 3). Draw, for example, along the segment ΔlIk, indicated in Figure 3, section of a
ferromagnetic sample (Figure 4).

Figure 4 shows a fragment of a double layer located within the k-th element of a mesh. It is
presented in the form of two oppositely charged single layers, which are located symmetrically relative
to the boundary at a small distance d from each other.

An open path consists of three lines: ΔlI+
k , d, and ΔlI−k . An open contour that covers the element of

a mesh i1 is constructed in a similar way. Contours ΔlI+
k ∪d∪ΔlI−k and ΔlII−

k ∪d∪ΔlII+
k are connected

at the border between elements and form a closed contour ΔlII+
k ∪ ΔlI+

k ∪ d ∪ ΔlI−k ∪ ΔlII−
k ∪ d.

Present the derivation of new equations for a double layer of magnetic charges.

3.1. Derivation of a New System of Equations for a Piecewise Constant Approximation
of the Density of a Magnetic Charge Double Layer

Write down the Ampere’s Circuital Law in integral form for the path passing through the points Qk

and Qi1 similar to expression (9). Using the denotations in Figure 3 and Figure 4, we obtain:∫

ΔlII+
k

H+τQdlQ +
∫

ΔlI+
k

H+τQdlQ =
∫

ΔlI−k

H−τQdlQ +
∫

ΔlII−
k+1

H−τQdlQ. (10)

Equation (10) can be rewritten as follows:

1
μ

∫
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k

(
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νQ

)
τQdlQ +

1
μ

∫

ΔlI+
k

(
B0 + Bν + B+

νQ

)
τQdlQ

=
1
μ0

∫

ΔlI−k

(
B0 + Bν + B−

νQ

)
τQdlQ +

1
μ0

∫

ΔlII−
k

(
B0 + Bν + B−

νQ

)
τQdlQ. (11)

where B0 is the magnetic flux density of free sources (Figure 3); BνQ
is the magnetic flux density at

points of the integration contour due to the double layer of the mesh element that is covered by this
integration contour; Bν is the magnetic flux density due to the double layer of magnetic charges of all
other elements of a mesh.
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It is obvious that∫

ΔlII+
k

B0τQdlQ +
∫

ΔlI+
k

B0τQdlQ =
∫

ΔlI−k

B0τQdlQ +
∫

ΔlII−
k

B0τQdlQ, (12)

∫

ΔlII+
k

BντQdlQ +
∫

ΔlI+
k

BντQdlQ =
∫

ΔlI−k

BντQdlQ +
∫

ΔlII−
k

BντQdlQ. (13)

We denote the integrals in Eqs. (12) and (13), respectively:∫

ΔlII
k +ΔlIk

B0τQdlQ and
∫

ΔlII
k +ΔlIk

BντQdlQ.

Taking this into account, expression (11) takes the form:(
1
μ
− 1

μ0

) ∫

ΔlII
k +ΔlIk

B0τQdlQ +
(

1
μ
− 1

μ0

) ∫

ΔlII
k +ΔlIk

BντQdlQ

+
1
μ

∫

ΔlII+
k +ΔlI+

k

B+
νQ

τQdlQ − 1
μ0

∫

ΔlI−k +ΔlII−
k

B−
νQ

τQdlQ = 0. (14)

Take into account that a double layer of magnetic charges is two oppositely charged single layers
located close to each other. The distance between the layers is indicated by d. This is illustrated in
Figure 4. The figure shows a layer of positive charges and a layer of negative charges in a certain local
area of a surface. We denote the density of a single layer by σ. Then the relation between the double
and a single layer of magnetic charges is given by the following expression: ν = σd.

Then, in accordance with the Ampere’s Circuital Law for a vector B, we can write the expression:∫

ΔlII+
k +ΔlI+

k

B+
νQ

τQdlQ −
∫

ΔlI−k +ΔlII−
k

B−
νQ

τQdlQ − νk + νi1 = 0. (15)

Symmetry implies:

−
∫

ΔlI−k +ΔlII−
k

B−
νQ

τQdlQ =
∫

ΔlII+
k +ΔlI+

k

B+
νQ

τQdlQ.

Therefore, from Eq. (15) the expression follows:∫

ΔlII
k +ΔlIk

BνQ
τQdlQ =

νk

2
− νi1

2
. (16)

Finally, consider the integral in Eq. (14) which contains the function BντQ. We represent this
integral as a sum of integrals:

∫

ΔlII
k +ΔlIk

BντQdlQ =
N∑

m=1
m�=k

νm

∫

ΔlIk

τQ

∫
ΔSm

3 (rPQ,nP ) rPQ − r2
pQnP

r5
pQ

dSP dlQ

+
N∑

m=1
m�=i2

νm

∫

ΔlII
k

τQ

∫
ΔSm

3 (rPQ,nP ) rPQ − r2
pQnP

r5
pQ

dSP dlQ. (17)

Here, expression (3) is applied, namely the term for calculating the magnetic flux density, which is
created by a double layer of magnetic charges.
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If we substitute Eqs. (17) and (16) into Eq. (14), then we get the equation written for a closed loop
passing through the points Qk and Qi1 . However, we write this equation in a generalized form (for this
we introduce new superscripts and a subscript). Then we get the required system of equations:

νi − νk − λ

2π

⎧⎪⎨
⎪⎩

N∑
m=1
m�=k

νm

∫

ΔlJk

τQ

∫
ΔSm

K (P,Q) dSP dlQ +
N∑

m=1
m�=i

νm

∫

ΔlUk

τQ

∫
ΔSm

K (P,Q) dSP dlQ

⎫⎪⎬
⎪⎭

= 2λ
∫

ΔlJk +ΔlUk

B0τQdlQ, (18)

where K (P,Q) = [3 (rPQ,nP ) rPQ − r2
pQnP ]/r5

pQ; λ = (μ − μ0) / (μ + μ0); i = i1, i2, i3; J = I, III, V ;
U = II, IV, V I; k = 1, 2, . . . , N .

It is denoted in Eq. (18): i is the subscript of one of the three elements that share a common border
with the k-th element; J is the superscript at the segment ΔlJk , which denotes the number of one of the
three segments belonging to the k-th element (only one of these three segments is denoted in Figure 3
(in the fragment on the right), namely ΔlIk, it is green; segment ΔlIII

k is red; segment ΔlVk is blue); U

is the superscript at the segment ΔlUk , which denotes the number of the segment belonging to either
the element with the subscript i1 (segment ΔlII

k that is green in Figure 3), or the element with the
subscript i2 (segment ΔlIV

k that is red in Figure 3), or the element with the subscript i3 (segment ΔlV I
k

that is blue in Figure 3).
The system of equations in accordance with Eq. (18) is composed as follows: for the selected

element number k, the numbers of neighboring triangles are determined, which are i1, i2, i3 (for each
k these numbers are different, and in general they are not in any sequence). Then the equation for k
and i = i1, J = I, U = II is written (the corresponding intervals of integration are determined). The
next line is the equation for k and i = i2, J = III, U = IV (the corresponding intervals of integration
are determined). The next line is the equation for k and i = i3, J = V , U = V I (the corresponding
intervals of integration are determined).

The system of linear Equation (18) is overdetermined and always has a rectangular matrix. Such
a system can be reduced by known methods to a system with a square matrix, and its pseudo-solution
can be sought.

However, it is much easier and more rational to act in a different way. Namely, after the
corresponding three equations of the form (18) are obtained for each k-th element, it is enough to
add together their left-hand and right-hand sides. Thus, one equation is obtained for each element of
a mesh, and the system of equations has a square matrix. This approach is quite reasonable, since
equations of the form (18) follow from the Ampere’s Circuital Law, which is fulfilled for each of the
three contours connecting the centers of two neighboring elements.

Note that in general an element of a mesh can have more than three neighboring elements, for
example, if the elements are not triangular. Alternatively, if the elements are triangular, but a mesh is
not adaptive. For these cases, the method is also applicable, and for each element, as many equations
of the form (18) are written as it has neighbors. However, in the opinion of the authors, the easiest way
is to use an adaptive mesh, for which each element has only three neighboring elements.

Note also that when implementing this method, the authors placed points Qk in the geometric
centers of the triangular elements of a mesh, and the segments of integration, such as ΔlIk connecting
the points Qk with the midpoints of the corresponding edges of the triangle.

Draw some important conclusions on the properties of the resulting system of Equation (18).

1) The system of Equation (18) does not contain the scalar magnetic potential of free sources and,
therefore, can be directly applied to the calculation of the magnetic field in any multiply connected
domains without introducing impenetrable partitions or solving an additional boundary value
problem for finding the scalar magnetic potential.

2) The solution to the system of Equation (18) leads to fulfillment of interface conditions in Eq. (9)
written in integral form.
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Note that an equation that is equivalent to Eq. (18) was obtained in [16] for the case of two-
dimensional magnetic field.

3.2. Calculation of Coefficients of the Linear System (18)

Consider the calculation of the following integral included in coefficients of the system of linear
Equation (18):

K =
∫

ΔSm

∫

ΔlJk

3 (rPQ,nP ) rPQ − r2
pQnP

r5
pQ

τQdlQdSP . (19)

Integration area ΔSm in Eq. (19) is a triangular element on the surface of a ferromagnetic sample.
Integration area ΔlJk is a segment lying on the surface of some k-th triangular element (Figure 3).
These triangular elements are specified in the original global coordinate system by the radius vectors
of the vertices and vectors of the outer normals. Figure 3 shows several arbitrary triangles located on
the surface of a ferromagnetic sample. For concreteness, the triangle with the normal nP on it (it is
denoted in Figure 3) has the subscript m, and the triangle with the subscript k is shown in the same
Figure 3. Also, for concreteness, we suppose that J = I, that is, consider the case when ΔlJk = ΔlIk
(Figure 3).

Further, the case of Cartesian coordinates is considered.
Figure 5 shows a line segment located at random in the Cartesian coordinate system associated

with the triangular element that is numbered m.

Figure 5. The segment of integration in the Cartesian coordinate system.

Surface integral over the area ΔSm in Eq. (19) is calculated by numerical methods. To perform
this, it is enough to triangulate this area and apply the midpoint rule to calculate the integral. Linear
integral on the line ΔlIk is calculated analytically if you make a transformation to the local coordinate
system associated with the k-th triangle.

Denote the normal to the k-th triangle by nk (Figure 5). The coordinates of ends of the integration
segment are set by radius vectors R1 and R2. Present an algorithm that allows transforming an arbitrary
vector from a global coordinate system to a local one.

Construct a local coordinate system associated with the k-th triangular element as follows: the
unit vector of the Z ′-axis matches the unit normal vector nk; the unit vector of the Y ′-axis is directed
in the same way as the vector R2 − R1; the unit vector of the X ′-axis is directed in such a way as to
form the right-handed coordinate system X ′Y ′Z ′. The origin of the local coordinate system lies in the
geometric center of the integration segment ΔlIk.

Transform coordinates using an arbitrary vector vg as an example.
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Calculate:

α′′′ = arctg
(

R1z − R2z

R2y − R1y

)
. (20)

Further, if the vector vg is the radius vector of some point in space, then we carry out a shift along
the coordinate axes:

ṽg = vg − (R1 + R2)/2. (21)

Otherwise, no shift along the coordinate axes is performed (for example, if vg is the normal vector,
or the difference of two radius vectors), then ṽg = vg.

Introduce the first rotation matrix:

A′′′ =

⎛
⎝ 1 0 0

0 cos α′′′ − sin α′′′

0 sin α′′′ cos α′′′

⎞
⎠ . (22)

Next, we multiply the matrix by the vectors:

v′′′
g = A′′′ṽg; R′′′

1 = A′′′R1; R′′′
2 = A′′′R2; n′′′

k = A′′′nk.

Next, we calculate:

α′′ = arctg
(

R2x − R1x

R2y − R1y

)
;

A′′ =

⎛
⎝ cos α′′ − sinα′′ 0

sin α′′ cos α′′ 0
0 0 1

⎞
⎠ ;

v′′
g = A′′v′′′

g ; n′′
k = A′′n′′′

k (23)

Next, we calculate:

α′ =
{ − |arccos (ez,nk)| , if cy ≤ 0;

|arccos (ez,nk)| , if cy > 0.
,

where c = [ez,nk] is an auxiliary vector needed to determine the rotation of the angle α′; ez is the unit
vector along the Z-axis.

We calculate the last rotation matrix and determine the required vector in the local coordinate
system:

A′′ =

⎛
⎝ cos α′ 0 − sin α′

0 1 0
sin α′ 0 cos α′

⎞
⎠ ; (24)

v′
g = vg. (25)

The inverse transformation from the local coordinate system to the global coordinate system is
carried out in the same way. To perform this, three rotations must be performed in inverse order
changing the signs of all three rotation angles to the opposite ones. It is also necessary to change the
sign in the expression of shift along the coordinate axes.

In the local coordinate system, the linear integral included in Eq. (19) takes the following form:

Kl (P ) =

L/2∫
−L/2

3
(
n′

P , r′PQ

)
r′PQ − r

′2
PQn′

P

r
′5
PQ

e′ydy′Q. (26)

Integral in Eq. (26) is calculated analytically using tables of integrals.
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4. EXAMPLE OF MODELING AND ANALYSIS OF COMPUTATIONAL
EFFICIENCY OF THE METHOD

As an example of application of the developed computational model, consider the modeling of the
magnetic field, which is created by the magnetic system of an axial flux electric machine with a coreless
stator (Figure 6) [17–19].

The rotor of such a machine consists of two ferromagnetic disks with permanent magnets (Figure 7).
The stator is a set of copper coils connected to each other in a three-phase electrical circuit and filled
with epoxy compound (Figure 8).

An electric machine with a rated power of 2 kW was manufactured. This machine was tested on
the stand (Figure 9).

Figure 10 shows the performance characteristics of the machine, which were obtained on the stand
at a rotor speed of 375 rpm (this speed corresponds to a current frequency of 50 Hz).

Figure 6. Axial flux electric machine with a coreless stator.

Figure 7. Axial flux machine rotor. Figure 8. Axial flux machine stator.
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Figure 9. The stand for testing electrical machines (from left to right: traction motor; multiplier
gearbox, Magtrol TM-311 torque sensor, axial flux machine; a digital multimeter is located on the
middle shelf).

Figure 10. The performance characteristics of the tested electric machine.

Using the developed numerical model in Eq. (18), the magnetic field of the axial flux machine was
simulated. Figure 11 shows the triangulation mesh, which was applied when discretizing the surface of
disks containing permanent magnets (Figure 7). The total number of triangulation elements for two
ferromagnetic disks was 9752. Maximum memory size used in the calculations was 928 Mb. The field of
permanent magnets was calculated using a current model according to which each magnet was replaced
by a coil with a current i = Jh, where J is the magnetization of the permanent magnet, and h is its
thickness.
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Figure 11. Triangulation of the disk surface.

(a) (b)

Figure 12. (a) Characteristic of the no-load axial flux electric machine and (b) dependence of the
torque on the current in the winding.

Below is a comparison of simulation results with experiment. Figure 12 shows the characteristic of
the no-load electric machine, as well as the dependence of the torque on the current in the winding. The
dots mark the values obtained experimentally on the stand, and solid lines show the values obtained by
simulation.

To determine the back EMF of an electric machine, the magnetic flux through the coils was
computed after which the value of the EMF was determined using numerical differentiation. Figure 12(a)
shows the rms voltage of the electrical machine between phases.

Figure 13 shows the EMF of an electric machine at the speed of 180 rpm obtained using a 4-channel
digital oscilloscope. Figure 14 shows the dependence of the EMF on time obtained by simulation.

The shape of the EMF curve is explained by the fact that there are rather large gaps between
the permanent magnets on the rotor (Figure 7). This magnet geometry is not optimal. However, in
the future, it is planned to place interpole magnets in the gaps between the magnets to improve the
characteristics of the electric machine.

Using a Gauss meter, the magnetic field was measured in the non-magnetic gap of the axial flux
electric machine (Figure 15).

Figure 16 shows field plots plotted for points located at the center of the gap above the center
line of the magnet in the radial direction. Here, the solid line is the magnetic flux density obtained by
simulation, and the dots show the values of the magnetic flux density measured by the device.
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Figure 13. Oscillograms of the generator EMF. Figure 14. EMF on time (simulation).

Figure 15. Measurement of the magnetic field in
the non-magnetic gap of an electric machine.

Figure 16. Distribution of the magnetic field in
the machine gap.

It can be seen from the data presented that the proposed numerical model in Eq. (18) quite
adequately describes the distribution of the three-dimensional magnetic field created by the magnetic
system of the axial flux machine. Integral characteristics such as the root mean square value RMS of
the EMF or the average value of the torque (Figure 12) differ from the experimentally measured values
by no more than 3.1%.

We also note that the developed numerical model in Eq. (18) gives an absolute match of the results
to the well-known conventional method, which is based on solving the boundary integral equation with
respect to a single layer of fictitious magnetic charges. Simulation by the method of a single layer of
fictitious magnetic charges was carried out for the same electric machine in [20].

Note that this article should not be taken as a study of electric machines. The main goal of
the article is to develop a numerical simulation method using an improved model of a double layer of
fictitious magnetic charges. The main problem of this subsection is to compare the simulation results
with the measurement results at a real technical object, and in this case, this object is an axial flux
machine.

Using the mathematical model developed in this article, a new structure of an axial flux machine
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Figure 17. Vehicle in-wheel motor with the coreless axial flux electric machine.

was designed. A feature of this structure is a nonuniform non-magnetic gap along the radius. This
solution made it possible to ensure the densest filling of the stator with copper, and also significantly
(by more than 10%) increase the magnetic flux in the gap of the electric machine. The proposed design
of an axial flux machine can be used in electric transport as a traction motor built into a vehicle wheel
(Figure 17).

Table 1 shows the main parameters of the manufactured coreless axial flux electric machine for an
electric scooter in-wheel motor.

Table 1. Parameters of the new coreless axial flux electric machine for an in-wheel motor.

Parameter Unit Value
Reduction ratio — 5

Rated/Peak torque input of the gearbox N × m 1.2/2.5
Rated/Peak torque output of the gearbox N × m 6/12.5

Rated rotational speed input of the gearbox rpm 3150
Rated rotational speed output of the gearbox rpm 630

Outer diameter of coreless stator, mm 106
Mechanical air gap mm 0.6
Number of poles — 8

Voltage DC V 9
Current DC A 47
Motor power W 425
Magnet type — NdFeB, N50

Weight of permanent magnets kg 0.425
Weight of magnetic system kg 2

It can be seen from the table that the rotor speed of the new electric machine is over 3000 rpm. In
general, the magnetic system was designed for a speed of 10000 rpm. However, such a speed requires
the use of a planetary gearbox with an increased gear ratio (8 or 10) so that the gearbox output speed
does not exceed 1000 rpm. The prototype shown in Figure 17 used a gearbox with a gear ratio of 5. In
the future, it is planned to design and manufacture a gearbox with a gear ratio at least 10.

The new coreless axial flux electric machine is designed to operate in fairly high-speed modes. Since
the winding of coreless axial flux electric machine is completely penetrated by the time-varying magnetic
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flux of the rotating rotor, eddy currents are induced in the winding wire. Since the rotor speed of this
machine is quite high, it is necessary to estimate the eddy current losses in the conductors of the stator
coils.

This will be the subject of our further research.

5. CONCLUSION

The secondary sources method for analysis of a stationary magnetic field based on the use of a double
layer of fictitious magnetic charges is more preferable in comparison with other types of boundary
secondary sources. However, the conventional implementation of the method, which is based on
numerical solution of the boundary integral Equation (1), requires calculating the scalar magnetic
potential, which is usually a multi-valued function.

It is shown, for the first time, that when solving the integral Equation (1) numerically by
introduction of a piecewise constant approximation of double layer density, the interface conditions
of the field are not fulfilled at any point of the interface. However, the interface conditions are fulfilled
integrally.

Based on the application of integral relations following from the Ampere’s Circuital Law, which is
written with respect to the vector of the magnetic field strength and then with respect to the vector of
the magnetic flux density, a new system of linear equations is obtained with respect to the coefficients
of piecewise constant approximation of double layer density.

The total current law is written with respect to contours that are infinitely close to the interface.
The article discusses the most rational way to define these contours. A method of calculating the
integrals included in the coefficients of the obtained system of equations is proposed. This method is
developed for a fairly general case because the triangulation of a surface of ferromagnetic samples is
considered.

The resulting system of Equation (18) does not contain the scalar magnetic potential of free sources
and, therefore, can be directly applied to the analysis of magnetic field in any multiply connected
domains without introducing impenetrable partitions or solving an additional boundary value problem
for finding the scalar magnetic potential. The new method is as economical as the classical double layer
method of fictitious magnetic charges which is based on the solution of integral Equation (1).

The resulting system of Equation (18) is not directly derived from the boundary integral
Equation (1). The kernel of the integral included in Eq. (18) differs from the kernel of the integral
Equation (1). The mathematical derivation of the system of Equation (18) differs from the derivation
of the boundary integral Equation (1). From this, we conclude that the method proposed in the article
is an independent method, which is alternative to the classical method of integral equations.

On the basis of the developed method, the simulation of the magnetic field generated by the axial
flux electric machine was carried out. It is shown that the simulation results are significantly consistent
with experimental data.

A new promising design of an axial flux machine with an increased stator fill factor is proposed.
In further research, the new method of a double layer of fictitious magnetic charges developed in the
article will allow performing an accurate estimation of eddy current losses in the stator winding of a
new electric machine. This will optimize the design of the new electric machine in terms of minimizing
the total copper losses (Joule losses and eddy current losses).
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