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Radiation from a Dipole Antenna Located outside a Cylindrical
Density Depletion in a Magnetoplasma under Resonance

Scattering Conditions

Alexander V. Kudrin*, Alexander V. Ivoninsky, and Oleg M. Ostafiychuk

Abstract—Resonance interaction between the electromagnetic radiation from a dipole antenna and a
cylindrical density depletion aligned with an external static magnetic field in a magnetoplasma is studied
in the case where the antenna is located outside such a density irregularity. A distinctive feature of the
presented analysis is using a realistic distribution of the antenna current instead of the assumed one. It
is shown that such an antenna can excite plasmon resonances of the density depletion, along with the
resonance at the plasma frequency of the outer region. In addition, previously unrevealed resonances
of the total field, which are related to excitation of complex modes of the cylindrical density depletion,
are discussed. The results obtained can be helpful in understanding the basic properties of resonance
interaction of the antenna fields with cylindrical density irregularities in a magnetoplasma and planning
the related experiments in the ionospheric and laboratory plasmas.

1. INTRODUCTION

The features of interaction of electromagnetic fields with magnetic-field-aligned plasma density
irregularities have been the subject of numerous studies, and there exists a vast literature on various
aspects of radiation, propagation, and scattering of waves in the presence of such plasma structures
in space and the laboratory [1–17]. An especially strong interest in this problem has been motivated
by resonant and guiding properties of a bounded cylindrical plasma in some frequency ranges. Such
properties can be used for wave diagnostics of plasma media [18], controlling characteristics of the
electromagnetic radiation [19], modification of the wave propagation conditions [20], etc.

The resonance response of an isotropic plasma column in free space to the incidence of a
plane electromagnetic wave has since long been known [21, 22], and much work has been done to
analyze the corresponding scattering-spectrum maxima known as Tonks-Dattner resonances. These
include, in particular, the fundamental quasistatic dipole resonance and weaker temperature-dependent
resonances [23–25]. The presence of a static magnetic field superimposed on the plasma column is
known to cause significant changes in its resonance response [26–28]. For example, each multipole
resonance observed for an isotropic plasma column [23] splits into two resonances under the influence
of the external magnetic field [27, 29, 30]. Moreover, additional resonance peaks can be observed near
electron cyclotron harmonics in a warm bounded magnetoplasma due to the excitation of Buchsbaum-
Hasegawa modes [31, 32]. As a rule, the resonance scattering of the electromagnetic radiation incident
from free space on a single axially magnetized plasma column or a set of such columns is characterized
by many intriguing behaviors of not only the near- and far-zone fields but also the energy-flow field
lines [33–35].
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Of no less interest is the problem of electromagnetic wave scattering from field-aligned density
irregularities located in a magnetoplasma [1, 6, 12]. First of all, this interest is stimulated by the fact
that a wide range of plasma density irregularities, which have the transverse dimensions from several
meters to a few kilometers, can spontaneously or artificially be created in the ionosphere and the
magnetosphere. For example, artificial field-aligned plasma structures are often observed in heating
ionospheric [20, 36–44] and laboratory [2–5, 45–48] experiments. Despite significant progress in the
studies of scattering characteristics of density irregularities in a magnetoplasma [12–15, 49], little is
known about the features of resonance scattering from such plasma structures in the situation where
the incident radiation is excited by antennas located near the scattering objects. In this case, the far-field
approximation allowing one to replace the incident radiation by a plane wave is no longer applicable,
and an exact solution to the problem of scattering of the source-excited electromagnetic waves by the
density irregularity is needed. In addition, the possible role of eigenmodes supported by field-aligned
plasma density irregularities [17, 19, 47] requires more attention because such modes may be important
for understanding some features of resonance scattering.

It should be noted that the problem of excitation of cylindrical plasma structures by given
electromagnetic sources has in principle been discussed in the literature. In particular, this problem has
been considered in application to determining the excited field in the presence of guiding magnetized
plasma structures such as radio-frequency helicon discharges [50–52], magnetic-field-aligned density
ducts in space and laboratory plasmas [19, 46, 53–57], and very low-frequency plasma-waveguide antenna
systems [58, 59]. However, in all the above-mentioned applications, the electromagnetic sources are
usually located inside or on the boundary of a cylindrical plasma object. The case where the
electromagnetic source is immersed in the background magnetoplasma surrounding the cylindrical
density irregularity has not been considered in sufficient detail, although such a situation may frequently
be encountered when dealing with satellite-based antennas. Moreover, the authors are unaware of any
major prior study of such a problem for the actual self-consistent distribution of the antenna current
driven by an external voltage. Instead, in all works known to us, the current distributions of wire
antennas operated in the presence of a cylindrical magnetoplasma are assumed given. However, such
an assumption may turn out to be inadequate in some cases requiring knowledge of the realistic current
distribution.

It is the purpose of the present work to study the resonance interaction between the field due to
a dipole antenna and the cylindrical density depletion embedded in the background magnetoplasma.
Assuming that the antenna with a realistic current distribution is located outside the density depletion,
the emphasis will be placed on the case where the antenna-current frequency lies in the range containing
plasmon resonances of the density depletion.

Our work is organized as follows. In Section 2, we formulate the studied problem. Section 3
presents the general solution for the field excited by a dipole antenna located in the background
magnetoplasma parallel to the cylindrical density irregularity. In Section 4, we present numerical results
for the characteristics of the excited field under resonance scattering conditions. Our conclusions are
summarized in Section 5. Some auxiliary mathematical derivations are given in an appendix.

2. FORMULATION OF THE PROBLEM

We consider an infinitely long, cylindrical density irregularity of radius a in a cold magnetoplasma. It
is assumed that this plasma structure is aligned with an external static magnetic field B0, which is
parallel to the z axis of a cylindrical coordinate system (ρ, φ, z). The plasma (electron number) density
takes the values Ñ = const and N = const for ρ < a and ρ > a, respectively, such that Ñ < N . Choice
of density depletion instead of enhancement is driven by the requirement that plasmon resonances of
the density irregularity exist in this case [49].

Let the electromagnetic field be excited by a linear dipole antenna located parallel to the density
depletion at distance ρ0 from its axis in the background magnetoplasma, as shown in Fig. 1. The current
density of such a source, with exp(iωt) time dependence dropped, is given by

J(r) = z0I(z)δ(r⊥ − r⊥0)[U(z + L) − U(z − L)], (1)
where I(z) is a function describing the distribution of the current along the antenna; L is its half-length;
δ is the Dirac function; U is the Heaviside function; z0 is the unit vector of the z axis; r is the radius
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Figure 1. Geometry of the problem.

vector; r⊥ is its transverse part with respect to B0; and r⊥0 is the transverse part of the radius vector
specifying the position of the antenna. It is evident that

δ(r⊥ − r⊥0) = ρ−1δ(ρ − ρ0)δ(φ − φ0),

where φ0 is the azimuthal coordinate of the antenna.
In the case of a cold magnetoplasma, the complex amplitudes E(r) and B(r) of the electromagnetic

field excited by the antenna current J(r) satisfy the Maxwell equations [60, 61]

∇× E(r) = −iωB(r), μ−1
0 ∇× B(r) = iωε · E(r) + J(r). (2)

Here, μ0 is the permeability of free space, and ε is the cold-plasma dielectric tensor which has the
form [22, 60]

ε = ε0

⎛
⎝ ε −ig 0

ig ε 0
0 0 η

⎞
⎠ , (3)

where ε0 is the permittivity of free space. Recall that the elements of the dielectric tensor in Eq. (3) for
a cold magnetoplasma are independent of the wave vector and depend only on the frequency ω and the
plasma parameters. This fact allows one to use Eqs. (2) and (3) not only for plane waves but also for
the antenna-excited field, which can always be expanded in terms of such waves employing the Fourier
transform technique [61].

Assuming that the angular frequency ω of an electromagnetic field is much higher than the lower
hybrid resonance frequency, one can write the elements ε, g, and η of the plasma dielectric tensor as [60]

ε = 1 − ω2
p(ω − iν)[

(ω − iν)2 − ω2
c

]
ω

, g =
ω2

pωc[
(ω − iν)2 − ω2

c

]
ω

, η = 1 − ω2
p

(ω − iν)ω
, (4)

where ωp and ωc are the plasma frequency and the cyclotron frequency of electrons, respectively, and
ν is the effective electron collision frequency in the plasma. In what follows, we will also assume that
the angular frequency is much higher than the electron collision frequency. In the limiting case of a
collisionless magnetoplasma, the quantity ε can be represented as ε = (ω2 − ω2

UH)/(ω2 − ω2
c ), where

ωUH = (ω2
p + ω2

c )
1/2 is the upper hybrid resonance frequency.

Throughout this work, we will use the notations ε, g, and η only for the background magnetoplasma
(ρ > a), while the corresponding quantities for the plasma inside the density depletion (ρ < a) will be
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denoted as ε̃, g̃, and η̃, respectively. Accordingly, the characteristic frequencies of the magnetoplasma
will be denoted as ωUH, ωp, and ν for ρ > a, and as ω̃UH, ω̃p, and ν̃ for ρ < a.

To solve the Maxwell equations (2), we should specify the distribution of the antenna current over
the z axis. The current distribution function I(z) of a thin wire antenna is given by antenna theory.
For an infinitesimally thin antenna of half-length L excited by the delta-gap voltage generator at z = 0,
it is known that the function I(z) in the interval |z| ≤ L is described to a good approximation by the
formula

I(z) = I0
sin h(L − |z|)

sin hL
, (5)

where h = k0ε
1/2 is the current distribution constant [62–66]. Here, k0 = ω/c is the free-space wave

number, with c being the speed of light in free space. The quantity I0 = I(0) in Eq. (5) is the current at
the antenna input. It is important that Eq. (5) for the current distribution of a dipole antenna parallel
to B0 remains valid in all frequency ranges of a magnetoplasma. As is evident from expressions (4),
the quantity ε is generally complex-valued such that ε = ε′ − iε′′. Allowing for the relation ε′′ � |ε′|
and assuming that |h|Lε′′/|ε′| � 1, which is usually satisfied for reasonable antenna lengths under
ionospheric and laboratory conditions, we can put ε = ε′ when calculating h in Eq. (5).

Since our main interest here is in resonance scattering phenomena that can occur in the response
of the cylindrical density depletion to the antenna field, we will focus on the case where plasmon
resonances can exist and contribute to the scattered field. Such a depletion is known to have surface
plasmon resonances in the frequency interval

ω̃UH < ω < ωUH (6)
and volume plasmon resonances at the frequencies below ω̃UH [49]. Bearing in mind that the volume
plasmon resonances are fairly sufficiently suppressed in the case of even small collision frequencies, we
limit ourselves to consideration of the frequency range in Eq. (6). In this range, ε′ < 0 and, hence, the
quantity h turns out to be imaginary such that h = −i|h| = −ik0|ε′|1/2 if ε′′ is neglected. As a result,
Eq. (5) becomes

I(z) = I0
sinh |h|(L − |z|)

sinh |h|L . (7)

It follows from Eq. (7) that the current distribution takes the “triangular” form I(z) = I0(1−|z|/L) for
an electrically short antenna when |h|L � 1. In the opposite case of an electrically long antenna where
|h|L � 1, provided that the condition |h|Lε′′/|ε′| � 1 is preserved, the current distribution function
reduces to the form I(z) = I0 exp(−|hz|), which satisfactorily approximates the current shape along
the long dipole antenna, except for the very narrow regions near its ends. This implies that no matter
how long the antenna wire might be physically, the current described by Eq. (7) is localized near the
antenna input on the length scale of order |h|−1 if |h|L � 1. Because of this fact, one cannot specify
the antenna current arbitrarily and should use its distribution predicted by antenna theory.

To avoid misunderstanding, it should also be noted that although the above statements for the
antenna current follow from rigorous approaches for the electric dipole in an unbounded magnetoplasma,
they remain valid in the presence of a density irregularity unless the distance between the antenna and
the depletion boundary becomes of the order of or smaller than the cross-sectional size of the dipole.
In the case considered here, this distance is assumed to be much longer, which allows us to use the
above-described model for the antenna current.

Thus, the problem becomes one of determining the electromagnetic field due to an electric dipole
antenna with the current distribution of Eq. (7) and revealing resonance peaks of the field components
as functions of frequency in the presence of a density depletion.

3. SOLUTION FOR THE EXCITED FIELD

To find the electromagnetic field excited by the dipole antenna in the presence of a cylindrical density
irregularity, we apply the Fourier transform technique. According to it, any function f(r) and its spatial
Fourier transform f(r⊥, p) with respect to the z coordinate are related as

f(r) =
k0

2π

∫ ∞

−∞
f(r⊥, p) exp(−ik0pz)dp,



Progress In Electromagnetics Research B, Vol. 90, 2021 113

where p has the meaning of the normalized (to k0) longitudinal wave number.
It can be shown from the Maxwell equations that in the region ρ > a, the transverse components

E⊥(r⊥, p) and B⊥(r⊥, p) of the Fourier-transformed electric and magnetic fields are expressed via the
longitudinal components Ez(r⊥, p) and Bz(r⊥, p) as [19]

E⊥ =
1

k0W

{
ip(ε − p2)∇⊥Ez + cg∇⊥Bz + pg(z0 ×∇⊥Ez) − ic(ε − p2)(z0 ×∇⊥Bz)

}
, (8)

B⊥ =
1

ωW

{
−p2g∇⊥Ez + icp(ε − p2)∇⊥Bz − i

[
g2 − ε(ε − p2)

]
(z0 ×∇⊥Ez) + cpg(z0 ×∇⊥Bz)

}
,(9)

where W = g2 − (ε− p2)2 and ∇⊥ is the transverse (with respect to the z axis) part of the del operator.
In turn, the quantities Ez(r⊥, p) and Bz(r⊥, p) satisfy the following equations in the background
magnetoplasma:

∇2
⊥Ez + k2

0

η

ε
(ε − p2)Ez + ik2

0

g

ε
pcBz = ik0

ε − p2

ε
Z0J (p)δ(r⊥ − r⊥0), (10)

∇2
⊥Bz + k2

0

(
ε − p2 − g2

ε

)
Bz − ik2

0

g

ε
ηpc−1Ez = k0

g

ε
pμ0J (p)δ(r⊥ − r⊥0), (11)

where
J (p) =

2I0|h|
(k0p)2 + |h|2

cosh |h|L − cos (k0pL)
sinh |h|L (12)

is the Fourier transform of the function I(z) given by Eq. (7) and Z0 = (μ0/ε0)1/2 is the impedance of
free space. Note that the source term (12), which stands on the right-hand sides of Eqs. (10) and (11),
does not enter Eqs. (8) and (9) because the antenna current is assumed to have only the z component.
It is also worth mentioning that the total field in the outer region ρ > a comprises the field of the dipole
antenna in the background magnetoplasma and the scattered field, which is determined by a solution
of Eqs. (10) and (11) with zero right-hand sides.

The field in the inner region ρ < a of the density irregularity is described by equations which are
obtained from Eqs. (8)–(11) by putting J = 0 and making the replacements

ε → ε̃, g → g̃, η → η̃. (13)
The desired electromagnetic field should be regular on the z axis as well as satisfy the boundary

conditions at ρ = a and the radiation condition at infinity. Note that the boundary conditions consist in
continuity of the tangential, i.e., azimuthal and longitudinal, components of the electric and magnetic
fields at the surface ρ = a, whereas the radiation condition requires that the energy transport, not the
phase progress of the waves in the background magnetoplasma, is outgoing at infinity [19].

In the absence of a cylindrical density irregularity, the solution of Eqs. (10) and (11) in a
homogeneous plasma with the background parameters can be found as described in Appendix A and
has the form

Ez(r⊥, p) = iη−1
2∑

k=1

CknkqkH
(2)
0 (k0qkR⊥),

Bz(r⊥, p) = −c−1
2∑

k=1

CkqkH
(2)
0 (k0qkR⊥).

(14)

Hereafter, H
(2)
m denotes the Hankel function of the second kind of order m and R⊥ = |r⊥ − r⊥0|. Other

notations in Eq. (14) are defined as

Ck = (−1)kZ0
ik0pgqk

4ε(q2
1 − q2

2)
J (p), k = 1, 2,

nk = −ε

(
q2
k + p2 +

g2

ε
− ε

)
(pg)−1,

qk =
{
[ε2 − g2 + εη − (ε + η)p2 + (−1)kR(p)]/(2ε)

}1/2
,

(15)
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where
R(p) =

{
(ε − η)2p4 + 2

[
g2(ε + η) − ε(ε − η)2

]
p2 + (ε2 − g2 − εη)2

}1/2
. (16)

It may be noted that q1 and q2 are the normalized (to k0) transverse wave numbers corresponding to
two normal waves (ordinary and extraordinary) of a magnetoplasma. The branches of the quantities
q1 and q2 as functions of p are chosen so as to satisfy the inequality Im qk < 0, at least in the limit of
vanishing losses in the plasma, which ensures the fulfillment of the radiation condition at infinity. For
definiteness, the function R(p) in Eq. (16) is defined in this case so that Re [R(p)] > 0.

The longitudinal components of the antenna field in the absence of a density irregularity are
obtained from their Fourier transforms (14) as follows:[

Ez(r)
Bz(r)

]
=

k0

2π

∫ ∞

−∞

[
Ez(r⊥, p)
Bz(r⊥, p)

]
exp(−ik0pz)dp. (17)

The transverse components of the antenna field are obtained from E⊥(r⊥, p) and B⊥(r⊥, p) in a similar
way. As is known [61], the integral field representation in the form of Eq. (17) yields the exact solution
for the total antenna field, including its radiative and reactive parts. The radiative part is given by
integration over the intervals of p for which the transverse wave numbers qk are real. Integration over
the remaining intervals of p gives the evanescent-wave and reactive contributions to the field of the
antenna.

To facilitate the further analysis, it is convenient to represent the field in the cylindrical coordinate
system whose axis coincides with the irregularity axis. Such a representation for the Fourier transforms
Ez(r⊥, p) and Bz(r⊥, p) of the longitudinal field components takes the form[

Ez(r⊥, p)
Bz(r⊥, p)

]
=

∞∑
m=−∞

[
Ez,m(ρ, p)
Bz,m(ρ, p)

]
exp(−imφ), (18)

where m is the azimuthal index (m = 1,±1,±2, . . .), and the terms under the summation sign are the
azimuthal harmonics of Ez(r⊥, p) and Bz(r⊥, p). In what follows, the notations Ez,m and Bz,m will be
used only for the azimuthal harmonics corresponding to the total field. In order to avoid confusion,
we will use the superscripts (r) and (i) to denote the azimuthal harmonics referring to the antenna
field which is outward radiated to the region ρ > ρ0 and the field excited by the antenna in the
region a < ρ0 < ρ, respectively. The latter field can be considered incident on the density irregularity.
Correspondingly, the superscripts (t) and (s) will be used for the azimuthal harmonics referring to the
field transmitted to the inner region of the density irregularity and the field scattered by it to the
background magnetoplasma, respectively.

The azimuthal harmonics of the Fourier-transformed antenna field can be obtained from Eq. (14)
using Graf’s addition theorem for cylindrical functions [67] and are written in the region ρ > ρ0 as
follows:

E(r)
z,m(ρ, p) = iη−1

2∑
k=1

C
(r)
m,knkqkH

(2)
m (k0qkρ),

B(r)
z,m(ρ, p) = −c−1

2∑
k=1

C
(r)
m,kqkH

(2)
m (k0qkρ).

(19)

Here, C
(r)
m,k = CkJm(k0qkρ0) exp(imφ0), where Jm is the Bessel function of the first kind of order m.

The azimuthal harmonics E
(i)
z,m(ρ, p) and B

(i)
z,m(ρ, p), which describe the antenna field incident on the

density irregularity, are obtained from Eq. (14) in a similar way, but using Graf’s addition theorem
under the condition a < ρ < ρ0. The result is

E(i)
z,m(ρ, p) = iη−1

2∑
k=1

C
(i)
m,knkqkJm(k0qkρ),

B(i)
z,m(ρ, p) = −c−1

2∑
k=1

C
(i)
m,kqkJm(k0qkρ),

(20)
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where C
(i)
m,k = CkH

(2)
m (k0qkρ0) exp(imφ0).

The azimuthal harmonics describing the Fourier-transformed field transmitted to the inner region
ρ < a of the irregularity are given by

E(t)
z,m(ρ, p) = iη̃−1

2∑
k=1

Am,kñkq̃kJm(k0q̃kρ),

B(t)
z,m(ρ, p) = −c−1

2∑
k=1

Am,k q̃kJm(k0q̃kρ),

(21)

where Am,k is the amplitude coefficient corresponding to the indices m and k, and the quantities ñk

and q̃k are obtained by making the replacements of Eq. (13) in the above expressions (15) for nk and qk,
respectively. Note that the quantities of Eq. (21) fully determine the total field inside the irregularity
irradiated by the incident field in Eq. (20).

The azimuthal harmonics of the Fourier-transformed scattered field in the region ρ > a can be
written as

E(s)
z,m(ρ, p) = iη−1

2∑
k=1

Dm,knkqkH
(2)
m (k0qkρ),

B(s)
z,m(ρ, p) = −c−1

2∑
k=1

Dm,kqkH
(2)
m (k0qkρ),

(22)

where Dm,k is the scattering coefficient for the corresponding indices. Then the azimuthal harmonics of
the total field for ρ > ρ0 or a < ρ < ρ0 are given by summing the antenna-field harmonics of Eqs. (19)
or (20), respectively, and the scattered-field harmonics of Eq. (22). It is worth noting that the total field
in the region a < ρ < ρ0 is then determined by a linear combination of the first-kind Bessel functions
Jm(k0qkρ) and the second-kind Hankel functions H

(2)
m (k0qkρ) which, in turn, can be represented in terms

of Jm(k0qkρ) and the second-kind Bessel functions Ym(k0qkρ) if required.
The unknown coefficients Am,k and Dm,k in Eqs. (21) and (22) are determined from the conditions

of continuity for the azimuthal and longitudinal field components at the surface ρ = a:

E
(t)
φ,z;m(a, p) = E

(s)
φ,z;m(a, p) + E

(i)
φ,z;m(a, p),

B
(t)
φ,z;m(a, p) = B

(s)
φ,z;m(a, p) + B

(i)
φ,z;m(a, p).

(23)

Solving this system of equations with respect to the desired coefficients Am,1, Am,2, Dm,1, and Dm,2, one
can obtain them for each m. In the interests of brevity, cumbersome expressions for these coefficients,
which ensure the fulfillment of the boundary conditions at ρ = a, are not given here. For the same reason,
we do not present the radial and azimuthal field components, which can be obtained by substituting
the longitudinal field components into Eqs. (8) and (9) with the corresponding tensor elements.

It is to be emphasized that although the results of this section are applicable to density irregularities
with both decreased and enhanced plasma density, the forthcoming numerical results will refer to the
irregularities with decreased density because of their ability to respond resonantly to the radiation from
the antenna in the frequency range of Eq. (6).

4. NUMERICAL RESULTS

To perform numerical calculations of the scattering properties of the cylindrical density depletion, we
chose parameters typical of such field-aligned irregularities under ionospheric conditions. It is assumed
that the external static magnetic field B0 = 0.5 G and the plasma densities in the inner and outer regions
of the cylindrical irregularity amount to Ñ = 4.5× 105 cm−3 and N = 5× 105 cm−3, respectively. With
these values, the plasma has the characteristic frequencies ωc = 8.79 × 106 s−1, ω̃p = 3.78 × 107 s−1,
ωp = 3.99× 107 s−1, ω̃UH = 3.88× 107 s−1, and ωUH = 4.08× 107 s−1. The effective collision frequencies
ν̃ and ν, which are determined by the contributions of electron-neutral and electron-ion collisions,
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are generally not identical. However, for simplicity, we will be considering the identical values of the
effective electron collision frequencies inside and outside the density irregularity. Such a simplification is
applicable in the case of a sufficiently small relative plasma density drop-off (N−Ñ)/N at ρ = a. For the
numerical results presented below, the collision frequencies have been taken equal to ν̃ = ν = 600 s−1,
which is typical of the lower ionosphere with the assumed background plasma parameters.

For all calculations, we used the source parameters L = 20 m, ρ0 = 15 m, and φ0 = 0, assuming
that the radius of the density irregularity satisfies the condition a ≤ 10 m.

To reveal the resonance features in the response of the density depletion to the antenna field,
we apply the Fourier inversion to the quantities E

(s)
z,m(ρ, p) and B

(s)
z,m(ρ, p) and obtain the azimuthal

harmonics E
(s)
z,m(ρ, z) and B

(s)
z,m(ρ, z) of the longitudinal components of the scattered field:[

E
(s)
z,m(ρ, z)

B
(s)
z,m(ρ, z)

]
=

k0

2π

∫ ∞

−∞

[
E

(s)
z,m(ρ, p)

B
(s)
z,m(ρ, p)

]
exp(−ik0pz)dp. (24)

Since there are a number of parameters, presenting full numerical results for even a few values of
each would take up much space. Therefore, we limit ourselves to discussing the behavior of E

(s)
z,m(ρ, z)

and B
(s)
z,m(ρ, z) for several values of ρ at z = 0 and z = a, respectively. The nonzero value of z

for B
(s)
z,m(ρ, z) is chosen in view of the fact that B

(s)
z,m(ρ, 0) = 0, which is evident from the symmetry

of the problem and easily verified straightforwardly. When plotting the frequency dependences of
azimuthal harmonics of the electric and magnetic fields, it is convenient to normalize them to Z0|I0|/a
and Z0|I0|/ca, respectively, which makes it possible to present these field quantities in dimensionless
form. In what follows, we will also normalize all frequencies to ωc, so that the lower and upper bounds
of the frequency range (6) correspond to ω̃UH/ωc = 4.419 and ωUH/ωc = 4.646. Note that this range
contains the quantity ωp/ωc = 4.537.

The behavior of the field quantities E
(s)
z,m(ρ, z) and B

(s)
z,m(ρ, z) as functions of ω at the density

depletion surface ρ = a for the chosen values of z is illustrated by Fig. 2 for a = 5m. The resonance
peaks of various heights are well pronounced in Fig. 2 for |m| ≤ 3. The higher-order resonances with
|m| > 3 are much weaker than those shown in the figure and, therefore, are not depicted here.

It is evident that the peak of E
(s)
z,m(ρ, z) for m = 0 at the frequency ω = ωp is related to the resonance
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Figure 2. Absolute values of the scattered-field azimuthal harmonics (a) E
(s)
z,m(ρ, z) and (b) B

(s)
z,m(ρ, z)

at the density depletion surface ρ = a as functions of frequency for z = 0 and z = a, respectively, in the
case where a = 5m, Ñ = 4.5 × 105 cm−3, N = 5 × 105 cm−3, and B0 = 0.5 G. The dashed line shows
the position of the plasma frequency ωp normalized to ωc.
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interaction of the longitudinal electric field with the electrons of the background plasma. Such a peak is
expectedly absent in the frequency dependence of B

(s)
z,m(ρ, z) for m = 0. At the same time, four high-Q

resonances with the indices m = 0, m = ±1, and m = 2 are observed simultaneously for E
(s)
z,m(ρ, z)

and B
(s)
z,m(ρ, z) at the frequencies ω < ωp in Fig. 2. These peaks, in contrast to other resonances in

Fig. 2, cannot be attributed to surface plasmons of a density depletion [49]. This is especially clear for
the resonance with m = 0 below the plasma frequency ωp, since no m = 0 surface plasmon resonance
can exist in the response of a cylindrical density irregularity to the incident radiation. Next, these
unusual peaks, which are much narrower than those of the surface plasmon resonances with m = −2
and m = ±3, are not at exactly the surface-plasmon resonant frequencies. Calculating the Q-factor of
each resonance as the ratio of the resonant frequency to the full width at half-maximum of the resonance
line of the squared field magnitude, one can find that the Q-factors of the narrow-peak resonances are
about an order of magnitude greater than those of the plasmon resonances. For example, the Q-factors
of the m = −1 narrow-peak resonance and the m = −2 plasmon resonance in Fig. 2(b) amount to
4.5 × 104 and 1.6 × 103, respectively. Moreover, the number of the unusual high-Q resonances at the
frequencies ω < ωp even increases with increasing irregularity radius a. This is evidenced by Fig. 3,
which was plotted for a = 10 m. In addition to the above-mentioned high-Q resonances, one can see
new unusual resonances with the indices m = −2 and m = ±3 below the plasma frequency ωp in Fig. 3.
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Figure 3. Same as in Fig. 2 but for a = 10 m.

In order to attempt to clarify what is responsible for appearance for these high-Q resonances, we
have analyzed the frequency dependences of the azimuthal harmonics of the field incident on the density
depletion. Note that the incident-field harmonics are calculated from their Fourier transforms using a
relation that can formally be obtained from Eq. (24) if one replaces the superscript (s) by (i). The
frequency dependences of the harmonics E

(i)
z,m(ρ, z) with the indices |m| ≤ 2 are shown in Fig. 4. The

higher-order harmonics of the incident field are very weak and almost do not affect this field at the
surface of the density irregularity. It is seen in Fig. 4 that the azimuthal harmonics of the longitudinal
electric-field component are peaked only at the plasma frequency ωp, which is related to the frequency
dependence of the term η−1 in the expression for this field component in Eq. (14). Thus, the curves of
Fig. 4 do not enable us to explain the appearance of the high-Q resonances below the frequency ωp in
Figs. 2 and 3.

At the same time, we arrive at frequency dependences corresponding to the surface plasmon
resonances with increasing distance between the density depletion and the observation point. In this
case, the azimuthal harmonics of the scattered field at ω > ωp are much greater in magnitude than
those at ω < ωp. In view of this, we present the harmonics E

(s)
z,m(ρ, z) below and above ωp in separate
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z,m(ρ, z) of the incident field at the density

depletion surface ρ = a as functions of frequency for z = 0, a = 5 m, and the same plasma parameters
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Figure 5. Absolute values of the azimuthal harmonics E
(s)
z,m(ρ, z) of the scattered field at z = 0 and

distance ρ = 50a from the density depletion axis as functions of frequency in the range ω̃UH < ω < ωp

for (a) a = 5m and (b) a = 10 m. Same plasma parameters as in Fig. 2.

figures with different scales. The corresponding frequency dependences are shown in Figs. 5 and 6 at
ρ = 50a and z = 0, in which we excluded the region near the frequency ωp in order not to show the
narrow peak of E

(s)
z,m(ρ, z) for m = 0 at this frequency. We also do not plot the quantities B

(s)
z,m(ρ, z)

at distance ρ = 50a as functions of frequency, because they have the same resonances as in Figs. 5
and 6. It is evident that there are no resonances with m = 0 at the frequencies ω �= ωp in Figs. 5
and 6. The presented resonance curves, especially those in Fig. 5, demonstrate behavior typical of the
surface plasmons [49]. This is confirmed by an increase in the radiation loss and, hence, a pronounced
smoothing of the resonance curves of the low-m surface plasmons with increasing a. An increase in the
resonance-peak heights and then their decrease with increasing |m|, which are related in this case to a
decrease in the radiation loss of the discussed plasmons and a simultaneous increase in the ohmic-loss
influence on them, are also well seen for most curves in these figures. We also observe the notable
differences in the shapes of the resonance curves for ω < ωp and ω > ωp.
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Figure 6. Same as in Fig. 5 but in the range ωp < ω < ωUH.
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Figure 7. Refractive index surfaces of normal waves in a collisionless magnetoplasma in the frequency
ranges (a) ω̃UH < ω < ωp, (b) ωp < ω < ω̄, and (c) ω̄ < ω < ωUH, which are introduced in Eqs. (25),
(26), and (27), respectively.

To explain the results obtained, we now analyze the refractive index surfaces of normal waves of
the background magnetoplasma in the frequency interval of Eq. (6) assuming that ωp > ωc, which takes
place in the case considered here. The refractive index surfaces at the frequencies in Eq. (6) are shown
in Fig. 7. To simplify matters, we present the refractive index surfaces in the case of a collisionless
magnetoplasma since allowance for the small collision frequency affects the refractive index of each
normal wave only slightly. It is seen in Fig. 7 that the refractive index surfaces have different forms [61]
in the following ranges of the frequency interval of Eq. (6):

ω̃UH < ω < ωp, (25)
ωp < ω < ω̄, (26)
ω̄ < ω < ωUH, (27)

where ω̄ = [(ω4
p + ω4

c/4)
1/2 + ω2

c/2]
1/2. In Fig. 7, P = (ε + g)1/2, qe = [(ε2 − g2)/ε]1/2, qo = η1/2, and

the blue and red lines are given by the relations q2 = q2
1(p) and q2 = q2

2(p), respectively. The quantity
p = Pb, which is shown in Fig. 7(a), is the root of the equation R(p) = 0. The other root p = Pc of
this equation is located above Pb on the p axis in the frequency range of Eq. (25) but not shown in
Fig. 7(a). The dashed lines in Figs. 7(b) and 7(c) are given by the relation εq2+ηp2 = 0, which describes
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quasielectrostatic waves corresponding to the unbounded branches of the refractive index surfaces in
ranges of Eqs. (26) and (27). Thus, in the frequency range of Eq. (25), the background plasma is
transparent only for the extraordinary wave, also known as the Z mode. It is worth mentioning that
the extraordinary wave with the refractive index surface shown in Fig. 7(a) continues to be propagating
at frequencies that are lower than ω̃UH [61], but such frequencies are not considered in this work. In
ranges of Eqs. (26) and (27), the background plasma is also transparent for the ordinary wave.

It is evident that the curves in Fig. 5 are very close to those observed in the case of incidence of the
extraordinary plane wave on the density depletion from the background magnetoplasma [49]. This is
explained by the fact that the scattered waves in the frequency range of Eq. (25) have a limited spatial
spectrum determined by the condition −Pb < p < Pb, as well as by a relatively weak dependence of the
surface-plasmon resonant frequency on the propagation direction of the incident wave in this range.

The different behaviors of the curves in Fig. 6 are explained by the unbounded spatial spectrum of
the extraordinary wave in ranges of Eqs. (26) and (27). Although both normal waves are propagating
at these frequencies and contribute to the scattered field, the latter is predominantly determined by
the unbounded branches of the refractive index surface of the extraordinary wave. Interference of the
quasielectrostatic waves corresponding to these branches is responsible for the oscillatory structure of
the frequency dependences in Fig. 6, which are notably wider than those in Fig. 5. Note that the
efficient excitation of quasielectrostatic waves by multipoles, which are induced on the scatterer and
correspond to surface plasmons, explains much greater values of the scattered field at the frequencies
ω > ωp compared with those at the lower frequencies of the range in Eq. (25).

Interestingly, an infinite range of the p values in the frequency intervals of Eqs. (26) and (27) is also
responsible for interference phenomena observed as minor maxima or minima in the source field unless
the dipole size L becomes so large that the source spectrum in Eq. (12) ceases to depend on L. These
minor features of the source field are observed at frequencies somewhat lower than the upper bound in
Fig. 4 and can be discerned in Figs. 2(a) and 3(a).

One may pose a question on whether it is possible to ensure narrower surface-plasmon resonances at
the frequencies ω > ωp, i.e., make them closer to those observed in the case where the density depletion
is irradiated by a plane wave [49]. This could evidently be ensured only if the spatial spectrum of
waves excited by the source at such frequencies were much narrower than that in the case of a dipole
antenna considered here. However, one cannot make this spatial spectrum arbitrarily narrow for an
actual antenna. Although the spectrum width decreases with increasing antenna size L, it cannot be
narrower than that for L → ∞. But even in this limiting case, the spectrum width is determined
by the frequency-dependent scale |h|−1 of current decay along the antenna wire and has a finite value
which does not allow the resonance curves of the surface plasmons to be narrower than they are at
ω > ωp in Fig. 6. This means that use of given sources with arbitrary currents can be inadequate, and
consideration of the realistic current distributions given by antenna theory is required.

It remains to explain the origin of the unusual high-Q resonances in Figs. 2 and 3. A careful
examination shows that the corresponding resonance peaks exponentially decay and eventually disappear
with increasing distance ρ from the density depletion axis. In fact, the high-Q resonances mask the
surface plasmon resonances, so that the latter become observable only at sufficiently large distances
from the cylindrical density depletion. This circumstance as well as the fact that the high-Q resonances
exist only in the frequency range of Eq. (25) allow us to suppose that such resonance features should
be related to the excitation of the transversely localized eigenmodes of the depletion at the frequencies
ω < ωp. Indeed, as is evident from Fig. 7, the density depletion cannot support localized eigenmodes
at the frequencies lying in ranges of Eqs. (26) and (27) because for any real longitudinal wave number
p there exists at least one real transverse wave number, which does not make it possible to ensure
localization of the field across the irregularity in the background plasma. Thus, within the cold-plasma
model, the eigenmodes can be expected to exist only in the range of Eq. (25).

It turns out that such eigenmodes supported by the density depletion actually exist and contribute
to the field near the cylindrical density depletion in the considered case. Recall that the fields of
eigenmodes should be sought in the form coinciding with Eqs. (21) or (22) for ρ < a and ρ > a,
respectively [19]. With these field representations, the boundary conditions for the tangential field
components at ρ = a can be satisfied only for some discrete longitudinal wave numbers, which are
the propagation constants of the eigenmodes. Localization of their fields in the transverse direction is
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ensured by that the propagation constants of the eigenmodes are greater than Pb in magnitude. Then
the quantities q1 and q2, which correspond to such propagation constants, are either imaginary for
p > Pc or complex such that q1 = −q∗2 for Pb < p < Pc, where the asterisk denotes complex conjugation.

Numerical analysis confirms that in the frequency range of Eq. (25), the density depletion supports
propagation of the forward and backward eigenmodes for fixed values of m. As an example, Fig. 8
shows the propagation constants of axisymmetric eigenmodes with m = 0 as functions of frequency for
two values a1 and a2 of the depletion radius, assuming for simplicity that ν̃ = ν = 0. It is seen in this
figure that dispersion curves of the forward eigenmode and the backward eigenmode, which are shown
by the lower and upper red lines, respectively, tend to each other with increasing frequency. Eventually,
the two curves coalesce at a certain frequency, at which they give rise to two modal solutions known as
complex modes [68]. For a density depletion with radius a = 5 m, this frequency, indicated by the black
dot in Fig. 8, is equal to ω = 4.524ωc, at which Pb < p < Pc. Above this frequency, the propagation
constants of the two modes become complex, i.e., p = ±p′ − ip′′. The quantity p′′ as a function of
frequency is shown by the blue line in Fig. 8.
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Figure 8. Dispersion curves of eigenmodes of a density depletion for two values of its radius, namely,
a1 = 5m and a2 = 10 m, ν̃ = ν = 0, and the previous values of other plasma parameters. The
red and blue curves show the frequency dependences of the real and imaginary parts of the complex
propagation constants of modes, respectively. The dashed line denotes the position of the plasma
frequency ωp normalized to ωc, and the dash-dot lines indicate the frequencies at which the dispersion
curves of the forward and backward guided modes coalesce to give rise to the dispersion curves of the
complex modes.

As known [68, 69], the complex modes are always excited in pairs, thereby forming the standing-
wave resonance structures. The condition for the most efficient excitation of such a wave structure
is ensured at the frequency at which the dispersion curves of the forward and backward eigenmodes
coalesce. It turns out that all the high-Q resonances in Figs. 2 and 3 are observed exactly at the
frequencies at which formation of the complex modes with the indicated indices m occurs from the
forward and backward eigenmodes. As far as the authors are aware, this resonance feature was not
noted in the previous works dealing with the excitation of such modes by sources located in the outer
region of the density depletion. In view of the above, the corresponding peaks in Figs. 2 and 3 may
be called the modal resonances. The frequency at which the complex mode appears decreases with
increasing radius a. For example, as follows from Fig. 8, this frequency amounts to ω = 4.501ωc when
m = 0 and a = 10 m. Such behavior takes place for all m and can be elucidated in the shift of the peaks
with variation in a, which is illustrated by the curves for the modal resonances with |m| ≤ 3 in Fig. 3.
Note that the presence of a small collisional loss in the plasma does not affect the above explanation.
This loss, however, should be taken into account in the calculations since it determines the Q-factors of
the modal resonances.
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corresponding to the black point in Fig. 8. Other parameters are the same as in Fig. 8.

It is evident that the contribution of modal resonances to the field in the background magnetoplasma
decreases with increasing transverse coordinate ρ because complex modes are localized. In particular,
the transverse decay length of such modes can amount to a few radii of the density depletion. It is
confirmed by Fig. 9 illustrating the modal field structure at a frequency of formation of the m = 0
complex modes. Note that the discontinuity of the Eρ component in Fig. 9 is explained by the used
model of a sharp-walled density depletion. It follows from Fig. 9 that there exists another way to
suppress the contribution of the modal resonances to the total field. This can be ensured by increasing
distance ρ0 from the source to the density irregularity up to values notably greater than the transverse
decay scale of the fields of eigenmodes.

Thus, we can state that different sets of resonances and the related resonance structures of the field
can be observed in the near and far zones of the plasma density irregularities. The most interesting
field patterns are observed in the case where the antenna frequency ω is rather close to the modal and
surface-plasmon resonant frequencies simultaneously. This condition can readily be ensured because
all the resonant frequencies are densely located. As an example, Fig. 10 shows snapshots of the Ez

component of the total field at z = 0 when ω is equal to the almost coinciding frequencies of the m = 0
modal resonance and the m = 3 surface plasmon resonance of a density depletion with radius a = 10 m
for the previously used plasma parameters. The presented Ez component is yielded by summing the
azimuthal harmonics Ez,m(ρ, z) of the total field over m. Since the field absolute values near and far
from the depletion are significantly different, the Ez component of the total field cannot be shown on
a single plot using the same scale. Therefore, we present the snapshots for ρ < 4a and ρ > 5a on two
separate plots. Note that in Fig. 10(a), we do not show the Ez values in the near vicinity of the dipole
antenna, where the field is too strong to be presented in the scale adopted for this figure. This region
is shown by a white circle in Fig. 10(a). For the same reason, Fig. 10(b) does not show the Ez values
in the region ρ < 5a, in which the field is much stronger than that at greater values of ρ.

It should be emphasized that the total field in Fig. 10(a) is almost entirely determined by the
contribution of the m = 0 modal resonance, except for the narrow region near the depletion surface,
where the contribution of the m = 3 surface plasmon is discernable, and the near-antenna region in
which the axisymmetric field structure is perturbed by the field of the dipole antenna. For ρ > 5a
[see Fig. 10(b)], the field is already determined by the resonance scattering which corresponds to the
m = 3 surface plasmon. As a result, the total-field pattern at the chosen frequency demonstrates switch
over from one resonance structure to the other with distance from the density depletion. It is evident
that allowance for such behavior can be of essential importance if antennas used for diagnosing density
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Figure 10. Snapshots of the Ez component of the total field, normalized to Z0I0/a, in the regions
(a) ρ < 4a and (b) ρ > 5a for z = 0 at the frequency ω = 4.501ωc, which corresponds to the maxima
of the peaks of the m = 0 modal resonance and the m = 3 surface plasmon resonance for a density
depletion with radius a = 10 m. Same plasma parameters as in Fig. 2.

irregularities are located at moderately small distances from the studied plasma objects with resonance
scattering properties.

5. CONCLUSION

In this work, we have studied the scattering of the electric-dipole radiation by a cylindrical density
depletion aligned with an external static magnetic field in the magnetoplasma. It is shown that along
with the plasmon resonances and the resonance response at the plasma frequency of the outer region
of the density irregularity, the modal resonances can be observed in the total field. These resonances,
which were not revealed in the previous works, turn out to be most pronounced in the near zone of
the density depletion at the frequencies at which its complex modes appear, provided the antenna is
located not too far from the depletion. Although the modal resonances may mask the surface plasmon
resonances in the near zone of the density irregularity, the resonance features of the field far from the
depletion are determined by the contribution of the surface plasmons. It can also be inferred from
the reported results that the surface plasmon resonances observed below the plasma frequency of the
background medium seem to be of greater diagnostic value as they are much more pronounced compared
with those above this frequency.

Another important implication of the performed analysis is that the resonance scattering
characteristics of cylindrical plasma objects are rather sensitive to the features of the spatial spectrum
of waves excited by an antenna. Therefore, for correct prediction of these characteristics, use of the
actual current distribution given by antenna theory is crucial.

Since the resonance phenomena discussed in this work have been shown to exist under conditions
typical of the heating experiments in the Earth’s ionosphere, the results obtained can be useful
in interpreting data of experiments on wave diagnostics of natural and artificial cylindrical density
irregularities in the ionospheric plasma. Account of the revealed phenomena can be of essential
importance if an antenna used for diagnostic purposes is placed at moderately small distances from the
plasma density irregularity. For example, this may be the case where such an antenna is mounted on a
miniaturized satellite flying around the density irregularity or on board a spacecraft whose trajectory
turns out to be close to such an irregularity. An analogous situation can also be encountered when
studying the corresponding effects under conditions of laboratory experiments.
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APPENDIX A. DERIVATION OF THE FIELD OF A DIPOLE ANTENNA IN A
HOMOGENEOUS MAGNETOPLASMA

We present here the salient steps of the derivation of a solution in Eq. (14) for the Fourier-
transformed field components Ez(r⊥, p) and Bz(r⊥, p) of a dipole antenna in an unbounded homogeneous
magnetoplasma.

To obtain this solution, we apply the two-dimensional Fourier transform to the system of Eqs. (10)
and (11) with respect to the transverse spatial coordinates. For the Dirac function on the right-hand
sides of Eqs. (10) and (11), we then have the representation

δ(r⊥ − r0⊥) =
k2
0

(2π)2

∫
exp[−ik0n⊥ · (r⊥ − r⊥0)]dn⊥, (A1)

where n⊥ = nxx0 +nyy0 is the orthogonal (to B0) projection of the wave normals of the plane waves in
terms of which functions of the transverse coordinates are expanded by such a Fourier transform. The
solution of Eqs. (10) and (11) is sought in a similar form as[

Ez(r⊥, p)
Bz(r⊥, p)

]
=

k2
0

(2π)2

∫ [
Ez(n⊥, p)
Bz(n⊥, p)

]
exp[−ik0n⊥ · (r⊥ − r⊥0)]dn⊥. (A2)

Note that the integration in Eqs. (A1) and (A2) is performed over the entire (nx, ny) plane. Substituting
representations (A1) and (A2) into Eqs. (10) and (11) yields a system of algebraic equations for Ez(n⊥, p)
and Bz(n⊥, p). Upon solving this system, we obtain

Ez(n⊥, p) = − iZ0J (p)
k0D

[
(ε − p2)q2 − (ε − p2)2 + g2

]
,

Bz(n⊥, p) = −μ0J (p)
k0D

pgq2,

(A3)

where q = |n⊥| = (n2
x + n2

y)1/2 and the quantity D is given by the formula

D = εq4 +
[
g2 − (ε + η)(ε − p2)

]
q2 − η

[
g2 − (ε − p2)2

]
. (A4)

Recall that putting D equal to zero yields the Booker quartic [19], whose solutions q2 = q2
1(p) and

q2 = q2
2(p) are defined in Eq. (15). Hence, Eq. (A4) can be rewritten as

D = ε(q2 − q2
1)(q

2 − q2
2). (A5)

We substitute Eq. (A3) into Eq. (A2) and make use of Eq. (A5) along with the decomposition
formulas

1
(q2 − q2

1)(q2 − q2
2)

=
1

q2
1 − q2

2

(
1

q2 − q2
1

− 1
q2 − q2

2

)
,

q2

(q2 − q2
1)(q2 − q2

2)
=

1
q2
1 − q2

2

(
q2
1

q2 − q2
1

− q2
2

q2 − q2
2

)
.

Then it follows that determination of the quantities Ez(r⊥, p) and Bz(r⊥, p) according to Eq. (A2) is
reduced to evaluating the integral∫

exp [−ik0n⊥ · (r⊥ − r⊥0)]
q2 − q2

k

dn⊥ = 2π
∫ ∞

0

qJ0(k0qR⊥)
q2 − q2

k

dq = 2πK0(ik0qkR⊥), (A6)

where K0 is the modified Bessel function of the second kind of order zero. Note that in deriving
Eq. (A6), we passed to new integration variables q and χ in accordance with the relations nx = q cos χ
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and ny = q sin χ. Afterwards, we performed integration over χ from zero to 2π and over q from
zero to infinity, using integrals that can be found in tables [67]. It should be emphasized that the
integral over q in Eq. (A6) turns out to be convergent under the condition Im qk < 0, which is assumed
throughout and ensures the fulfillment of the radiation condition at infinity. Making use of the fact that
K0(ik0qkR⊥) = −i(π/2)H(2)

0 (k0qkR⊥) [67], we get

Ez(r⊥, p) =
k0Z0J (p)
4ε(q2

1 − q2
2)

2∑
k=1

(−1)k
[
(ε − p2)q2

k − (ε − p2)2 + g2
]
H

(2)
0 (k0qkR⊥),

Bz(r⊥, p) = − ik0μ0pgJ (p)
4ε(q2

1 − q2
2)

2∑
k=1

(−1)kq2
kH

(2)
0 (k0qkR⊥).

(A7)

Finally, using the notations of Eq. (15) and the identity

(ε − p2)q2
k − (ε − p2)2 + g2 = −pgnkq

2
k/η,

which can be verified by straightforward manipulation, we arrive from Eq. (A7) at the solution of
Eq. (14) for the field of a dipole antenna in a homogeneous unbounded magnetoplasma.
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