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Multiband Below-Cutoff Propagation in Rectangular Waveguides
Filled with Multilayer Left-/Right-Handed Metamaterials

Qianru Weng1, Qian Lin2, *, and Haifeng Wu3

Abstract—An accurate rigorous modal theory has been applied to investigate the propagation
characteristics in a rectangular waveguide filled with multilayer left-handed and right-handed
metamaterials. It is shown that such a waveguide supports different passbands below the waveguide’s
cutoff frequency, and the number of passbands is related to the corresponding layers of different left-
handed metamaterials (LHMs) filled in the waveguide. The rigorous modal analysis of this structure
reveals in detail how the waveguide geometry and left-handed metamaterial parameters may be selected
to design rectangular waveguides supporting double or triple below-cutoff passbands. The efficient power
transmissions in these below-cutoff passbands are validated by using the full-wave simulation software
HFSS. These structures supporting multiple below-cutoff passbands could find applications in waveguide
components requiring miniaturization and multiband properties, such as miniaturized multifunctional
antennas and filters.

1. INTRODUCTION

As 5G research is maturing and continues to support global standardization, researchers have already
been engaged in mapping the development tendency of 6G. Thus, mobile terminal devices are required
to support multiple networks of 3G and 4G, even 5G and 6G soon [1]. As the critical components in
these devices, antennas and filters with multiple operation frequency bands are desired. Moreover, small
size and light weight are the key considerations in the design of mobile devices. Therefore, miniaturized
multiband components are in great need.

Rectangular waveguides have been used as essential guiding structures in microwaves
communications, radars, and antenna technology for almost six decades. Even though planar guiding
structures have surpassed rectangular waveguides in many applications and led to miniaturization and
integration of microwave systems, rectangular waveguides are still indispensable in the applications
requiring high power-handling capability and in the feeding networks for large antenna array [2]. Besides,
since the substrate integrated waveguides (SIWs) have been proposed to realize rectangular waveguides
on planar structures in the past decade [3], various components based on the rectangular waveguides
have come back into the public view.

Electromagnetic waves guided by left-handed metamaterials (LHMs) can exhibit new properties
that are not available in natural materials because the permittivity and permeability of LHM are
both negative [4]. Filling rectangular waveguides with LHM has been a novel area of research.
Counterintuitive propagation characteristics are achieved through filling LHMs in hollow or conventional
dielectric filled waveguides. It has been found that a backward wave passband well below the
waveguide’s cutoff frequency could be created through fully filling LHM in a rectangular waveguide [5].
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The transversal width of this waveguide can be in principle arbitrarily small. Similar below-cutoff
propagation could also be observed in a rectangular waveguide partially filled with LHM. The rest of
the waveguide is empty or filled with ordinary material (i.e., right-handed material, RHM) [6–8]. Fully
or partially filling the waveguides with LHM can significantly reduce the waveguides’ dimensions. Thus,
these structures can be used to design miniaturized waveguide components [9, 10].

Creating passbands in a rectangular waveguide below its cutoff frequency is an important way to
realize multiband properties. Most of the previous techniques are based on the creation of artificial
boundary conditions on the waveguide walls [11]. Filling LHM in the waveguides provides a new way
towards this aim. In addition to LHM (i.e., double negative metamaterial, DNG), filling single negative
metamaterial (SNG) can also achieve below-cutoff passband in the waveguides [12]. Inspired by this
idea, rectangular waveguides supporting double or triple below-cutoff passbands are created by filling
two or three LHM layers, respectively [13]. Each LHM layer possesses different dielectric properties.
By adjusting LHM properties, the below-cutoff passbands can be targeted at the desired frequencies.
However, these papers mainly focus on the physical implementation and application of these multiband
structures, without giving the accurate quantitative modal analysis or detailed design process. In
this paper, a rigorous modal theory is proposed to accurately determine the cutoff frequency and the
dispersion curve of each passband supported by the waveguide. Conversely, to design a rectangular
waveguide supporting below-cutoff passbands with targeted cutoff frequencies, the waveguide dimensions
and the required LHM properties could be obtained by using the proposed modal theory.

Based on this rigorous modal theory, an arbitrary number of below-cutoff passbands could be
generated in principle by filling the corresponding number of different LHM layers in the waveguides
without considering the coupling effect between LHM layers. Although in this paper, the property of
the fundamental LSE10 mode is mainly discussed, this theory can be used to analyse any longitudinal-
section electric (LSE) modes or longitudinal-section magnetic (LSM) modes. Moreover, this theory
could be easily extended to other closed metallic waveguides such as cylindrical waveguides [14], elliptical
waveguides, or regular polygonal waveguides [15]. The closed-form analytical expressions of the modal
fields and eigenequations for LSE and LSM modes are derived in Section 2. Section 3 offers detailed
design processes for rectangular waveguides filled with LHM layers supporting single or double below-
cutoff passbands. Section 4 presents the dispersion diagrams of these waveguides. The full-wave
transmission simulations show good consistency with the theoretical results and validate efficient power
transmission in these below-cutoff passbands. Section 5 extends the modal theory to design a rectangular
waveguide supporting triple below-cutoff passbands. Section 6 is the conclusion.

2. RIGOROUS MODAL THEORY

Figure 1 shows the cross-section of a rectangular waveguide consisting of three regions. Region#1
and Region#3 are filled with LHMs, and Region#2 is filled with ordinary RHM. These regions are
characterized by the thickness dt, permittivity εt = εrtε0, and permeability μt = μrtμ0 (t = 1, 2, 3). The
modes in this rectangular waveguide are classified as the longitudinal section electric (LSE) and the

Figure 1. The cross-section of a three-region rectangular waveguide filled with LHM in Region#1 and
Region#3.
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longitudinal section magnetic (LSM) modes [16]. The closed-form eigenequations of LSEmn and LSMmn

modes are derived analytically by applying appropriate boundary conditions to Maxwell equations. This
structure is assumed to be uniform along the z-direction, and z is chosen as the direction of the wave
propagation. Hence the z variation has the form e−γz (the time-harmonic variation ejωt is assumed
throughout).

For LSEmn modes (Ex = 0), the analytical electric- and magnetic-field expressions in Region#t
(t = 1, 2, 3) are written as:
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where At and Bt (t = 1, 2, 3) are the amplitude coefficients; k2
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2 is the free space wavenumber; γ = jβ is the axial propagation
constant. According to the boundary conditions, Ez and Hy need to be continuous at the interface xt

and then eliminating all the amplitude coefficients At and Bt. The closed-form eigenequations of the
LSEmn mode could be obtained:∑3
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For LSMmn modes (Hx = 0), the analytical electric- and magnetic-field expressions in Region#t
(t = 1, 2, 3) have the following forms:
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Then eliminating the amplitude coefficients At and Bt, the dispersion relation of the LSMmn mode
could be obtained: ∑3
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The propagation constant γ of the LSEmn or LSMmn modes is obtained by solving the
transcendental closed-form eigenequations (4) or (8). At the cutoff wavenumber, the propagation
constant γ has to approach zero, and the cutoff wavenumber results in k2

ci = εriμrik
2
0 − (nπ/b)2.

The relationships of different characteristics (cutoff frequency and dispersion diagram) versus
various LHM dielectric and geometric parameters could be accurately obtained since the eigenequations
are in functions of these parameters. One practical application of this rigorous theory are to accurately
investigate the temperature influence on the propagation characteristics of rectangular waveguides filled
with temperature-sensitive metamaterials, since the temperature model versus metamaterials’ geometric
and dielectric parameters has been established [17, 18].

3. DESIGN PROCESS

In order to extend the results for general use, the solution data in this paper are normalized for all
length scales. Therefore, to study the multiband phenomena in such a rectangular waveguide, one may
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scale a system from microwave to the optical wave. Since the fundamental mode is the most widely
used in various applications, this paper focuses on the characteristics of the LSE10 mode.

3.1. Symmetric Waveguide Structure

A symmetric waveguide structure shown in Fig. 2 is under investigation. In order to reduce the coupling
effect between the dielectric slabs, thin dielectric slabs are chosen in this paper, d1/a = d3/a = 0.05.
Region#1 and Region#3 are filled with the identical dielectrics possessing εr1 = εr3 and μr1 = μr3.
Region#2 is filled with ordinary RHM possessing εr2 = μr2 = 1. In Fig. 2, the relationship between
the normalized cutoff wavenumber of the LSE10 mode (kca) and the relative permittivity εr1 is shown.
The cutoff relations are obtained by using the closed-form eigenequation (4) through applying the cutoff
condition γ = 0.

Figure 2. The normalized cutoff wavenumbers kca for LSE10 mode versus the permittivity εr1 (red
dash line for εr1 > 0, and black dash-dot line for εr1 < 0). The waveguide’s dimensions are a = 1,
b = 0.5, and d1/a = d3/a = 0.05. The frequency response of the LHM εr1(ω) (solid green circle) is
described by the normalized Drude model parameters ωpe = ωpm = 3.749 and Γe = Γm = 0.

On the right side of Fig. 2, εr1 > (μr1 > 0) indicates that the materials filled in Region#1 and
Region#3 are the ordinary RHMs. The cutoff wavenumber’s dependence on the positive permittivity
(εr1) values as shown in Fig. 2 (black dash-dot line) is consistent with the well-known results: filling
a rectangular waveguide by RHM slabs with permittivity larger than unity lowers the waveguide’s
cutoff wavenumber [16]. However, the cutoff frequency increases significantly when the values of
positive permittivity are smaller than unity [14, 19]. On the left side of Fig. 2, εr1 < (μr1 < 0)
indicates that Region#1 and Region#3 are filled with LHMs. The cutoff wavenumber’s dependence on
negative permittivity values (red dashed line in Fig. 2) is different from that of positive permittivity:
negative permittivity with larger than unity produces decreased cutoff wavenumbers [20]. If the negative
permittivity value of LHM slabs is smaller than unity, the cutoff wavenumbers of the LSE10 mode is
dramatically lowered [14, 21]. In Fig. 2, there is an implicit premise that the metamaterial’s permittivity
(εr1) could be achieved at the desired cutoff frequency.

It is well known that the frequency-dependence (dispersion) is a crucial and nonnegligible
characteristic of LHM [20], and several frequency response modals for LHM have been proposed. In
this paper, the frequency response of LHM must be considered in the modal analysis. The permittivity
and permeability of LHM could be described by the Drude model:
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μr (ω) =
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in which ωpe and ωpm are the plasma frequencies, and Γe and Γm are the damping constants representing
LHM’s tangent losses. The Drude model can yield a negative real part of the permittivity and
permeability over a wide frequency range (ω <

√
ω2

p − Γ2) [20]. This model accurately approximates
the dispersion response of LHM over the investigated frequency range.

For this symmetric rectangular waveguide, the waveguide dimensions are chosen as a = 1, b = 0.5.
In Fig. 2, an LHM permittivity of εr1 = −2 will lead to a reduced normalized cutoff wavenumber of kca =
2.199. To achieve this cutoff wavenumber, the dispersive permeability εr1 and dispersive permittivity
μr1 of LHM are enforced to have the same frequency-dependent response, and the normalized Drude
model parameters for the LHM are set to ωpe = ωpm = 3.749 and Γe = Γm = 0. Superposing the
LHM’s dispersive permittivity curve (solid green circle) on the cutoff-wavenumber relation curve in
Fig. 2, two intersections are obtained: the lower intersection P1(εr1, kca) = (−2, 2.199) corresponds to
the left-handed resonance point, which is also the desired LSE10-mode cutoff wavenumber; the higher
intersection P2(εr1, kca) = (0.203, 4.25) corresponds to the right-handed resonance point. These two
intersections refer to two cutoff wavenumbers of the fundamental LSE10 mode. Thus, this waveguide
supports dual-band operation. One passband is below the waveguide’s cutoff wavenumber, and the
other passband is above the cutoff wavenumber. The bandgap between these two intersections is 2.051.
The dispersion diagram and full-wave simulation of this structure are presented in Section 4.

3.2. Asymmetric Waveguide Structure

An asymmetric waveguide structure as shown in Fig. 3 is investigated. Region#1 and Region#3 are
filled with different dielectrics having εr1 = κεr3 (κ > 0 and κ is real) and μr1 = μr3. Region#2 is filled
with an ordinary RHM having εr2 = μr2 = 1. The waveguide’s dimensions are still chosen as a = 1,
b = 0.5, and d1/a = d3/a = 0.05. Letting κ = 0.5, the relationship between kca of the LSE10 mode

Figure 3. The normalized cutoff wavenumber
kca of LSE10 mode versus the permittivity εr1 in
Region#1, κ = 0.5 (red dash line for εr1 > 0, and
black dash-dot line for εr1 < 0). The waveguide’s
dimensions are a = 1, b = 0.5, and d1/a = d3/a =
0.05. The normalized Drude model parameters
for εr1(ω) are ωpe = ωpm = 4.15 and Γe = Γm = 0
(solid green circle).

Figure 4. The normalized cutoff wavenumber
kca of LSE10 mode versus the permittivity εr3

in Region#3 (red dash line for εr3 > 0, and
black dash-dot line for εr3 < 0), εr1 = −2. The
normalized Drude model parameters for εr3(ω)
are ωpe = ωpm = 3.635 and Γe = Γm = 0.
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and the relative permittivity εr1 is shown in Fig. 3, which is also calculated from the eigenequation (4)
(γ = 0). It can be observed from Fig. 3 that εr1 = −2 of the LHM permittivity in Region#1 corresponds
to a reduced cutoff wavenumber of kca = 2.382. Similarly, to achieve this desired cutoff wavenumber,
enforcing the permeability and permittivity of the LHM possessing the same dispersion response, the
normalized Drude model parameters for the LHM in Region#1 are set to ωpe = ωpm = 4.15 and
Γe = Γm = 0. Superposing the LHM’s dispersive response (solid green circle) on the cutoff-wavenumber
curve as shown in Fig. 3, two intersections are observed: the lower left-handed resonance intersection
P1(εr1, kca) = (−2, 2.382) corresponding to the designed LSE10-mode cutoff; the higher right-handed
resonance intersection P2(εr1, kca) = (0.205, 4.448).

Then, since the permittivity in Region#1 is set to εr1 = −2, the relationship between the normalized
cutoff wavenumber kca for LSE10 mode and the relative permittivity εr3 in Region#3 is shown in Fig. 4.
To obtain the Drude modal parameters, the cutoff wavenumber of the right-handed resonance point is
fixed to kca = 4.448. From the relationship between kca and εr3 in Fig. 4, kca = 4.448 will result
in a relative permittivity εr3 = 0.32. Thus, the normalized Drude model parameters could be set to
ωpe = ωpm = 3.635 and Γe = Γm = 0. Superposing the Drude model curve of the relative dispersive
permittivity εr3 (solid green circle) on the cutoff-wavenumber curve, as shown in Fig. 4, two intersections
are observed: the higher intersection P3(εr3, kca) = (0.32, 4.48) corresponds to the fixed right-handed
resonance point, and the lower intersection P4(εr3, kca) = (−2.12, 2.071).

Since each of intersections corresponds to a cutoff frequency, this asymmetric waveguide supports
three passbands: two passbands below the waveguide’s cutoff wavenumber which is located at
kca

P1 = 2.382 and kca
P4 = 2.071, and one passband above the waveguide’s cutoff wavenumber because

kca
P2 = kca

P3 = 4.448. The dispersion diagram of this waveguide structure is presented in Section 4.
In this section, the detailed design procedure for rectangular waveguides supporting single or double

below-cutoff passbands is proposed. The design process can be concluded as a general manner, which
could be applied to design waveguide supporting arbitrary number of below-cutoff passbands. Firstly,
the accurate relationships between the cutoff frequency and the permittivity are obtained by using the
rigorous modal theory. Secondly, the required waveguide dimension and permittivity for a targeted
cutoff frequency is determined according to the cutoff relationships. Thirdly, various parameters of the
dispersion modal for the filled dielectric could be determined. Finally, superposing the dispersion curve
of the dielectrics on the cutoff relationships, the cutoff frequencies of the passbands could be obtained.
In Section 5, this design process has been extended to design a rectangular waveguide supporting triple
below-cutoff passbands.

From the above design procedure, only the cutoff frequency of each passband is obtained. To
clearly possess the propagation characteristics in each passband, the dispersion diagrams of waveguides
supporting single and double below-cutoff passbands are calculated from the rigorous modal theory in
Section 4. The full-wave simulation validation of these passbands is also presented in the following
section.

4. DISPERSION DIAGRAMS AND FULL-WAVE SIMULATION VALIDATION

Figure 5 presents the normalized LSE10-mode dispersion diagram of a rectangular waveguide
symmetrically filled with the identical LHM in Region#1 and Region#3. The cutoff wavenumber of
each passband is determined from Fig. 2. As suggested from the two intersections (P1, P2) in Fig. 2, such
a waveguide supports two propagating bands: a passband above the waveguide’s cutoff wavenumber
and a frequency-reduced passband below its cutoff frequency. In Fig. 5, the above-cutoff dispersion
curve (green solid line) exhibits positive group velocity (∂ω/∂β > 0), suggesting that forward wave
propagates in this passband. The below-cutoff dispersion curve (blue solid triangle) shows negative
group velocity (∂ω/∂β < 0), indicating the backward wave propagation. Backward wave propagation
in the below-cutoff passband has been experimentally verified in [5, 14].

As shown for comparison, the fundamental TE10-mode dispersion diagram of a hollow rectangular
waveguide with same dimensions is also presented in Fig. 5 (solid grey circles). The normalized cutoff
wavenumber of this hollow waveguide is k0a = 3.14, which is higher than that of below-cutoff passband.
Besides, the group velocities of the above-cutoff and below-cutoff propagation modes (almost constant,
∂ω/∂β ∼ constant) are much lower than that of TE10 mode in the hollow waveguide. This interesting
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Figure 5. Dispersion diagram for LSE10 mode in
a rectangular waveguide symmetrically filled the
identical LHM in Region#1 and Region#3.

Figure 6. Dispersion diagram for LSE10 mode in
an asymmetric rectangular waveguide filled with
different LHMs in Region#1 and Region#3.

phenomenon indicates that a waveguide filled with LHM may support slow wave propagation. However,
the slow wave propagation needs further verification, which will be conducted in the future investigation.

Figure 6 presents the LSE10-mode dispersion diagram of a rectangular waveguide asymmetrically
filled with different LHMs in Region#1 and Region#3, and the cutoff wavenumbers are determined
from Fig. 3 and Fig. 4. As suggested from three intersections in Fig. 3 and Fig. 4, such a waveguide
supports two passbands well below its cutoff frequency and one above-cutoff passband. In Fig. 6, the
two below-cutoff dispersion curves show negative group velocity (∂ω/∂β < 0), indicating the backward
wave propagation. These two curves are very close to each other, and the slopes of these curves are
steep, indicating that these two below-cutoff passbands have narrow bandwidths.

The dispersion diagrams of waveguides supporting single or double below-cutoff passbands show
the propagation characteristics in these structures. However, only dispersion diagram is insufficient to
verify the effective power transmission in the below-cutoff passbands. Moreover, it is necessary to verify
the theoretic results obtained by the rigorous modal theory by using the full-wave simulation software.
Therefore, a transmission analysis is conducted by using the finite element simulator ANSYS HFSS on
the simulation model shown as Fig. 7(a). In this structure setup, the TE10-mode’s cutoff frequency
of two-larger hollow rectangular waveguides with identical geometry dimensions a1 = 70 mm and
b1 = 35 mm is 2.142 GHz. These two-larger waveguides are connected by a smaller hollow rectangular
waveguide. The geometry dimensions of smaller waveguides are a2 = 35 mm and b2 = 17.5 mm,
possessing a fundamental TE10 mode with cutoff frequency of 4.284 GHz. Wave ports are placed at
each end of the larger waveguides. The dashed black curve in Fig. 7(b) shows the insertion loss of this
structure setup. The insertion loss is higher than −10 dB above 4.284 GHz, and the power transmits
efficiently in this region. The insertion loss below 4.284 GHz decreases rapidly. It is verified that the
intermediate smaller waveguide only supports one passband above its cutoff frequency 4.284 GHz.

Then, two identical LHM slabs of thicknesses t1 = 3.5 mm are filled next to the walls in the hollow
small rectangular waveguide, possessing the dispersive Drude model parameters εr1(ω) determined by
the design process in Section 3. At the junctions between the larger rectangular waveguides and the
small rectangular waveguide, square dielectric rings possessing the same dielectric properties as LHM
are placed to enhance the coupling of the electromagnetic modes between the different sizes rectangular
waveguides [14, 21].

According to the rigorous modal theory presented in Section 3, for the proposed rectangular
waveguide filled with two identical LHM slabs, transmission should occur below 3.001 GHz for a single
below-cutoff passband and above 5.798 GHz for a above-cutoff passband. The insertion loss of this
structure is presented as the solid red curve in Fig. 7(b). There are two passbands: a passband
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(a)

(b)

Figure 7. (a) HFSS simulation geometry setup for the transmission validation; (b) insertion losses for
the hollow smaller structure (dashed black curve), and for LHM-filled smaller rectangular waveguide
(solid red curve).

below 3.001 GHz, which follows the theoretical result of the below-cutoff passband; a passband above
5.798 GHz, which follows the theoretical result of the above-cutoff passband. Thus, the cutoff frequencies
of the multiple passbands predicted by the rigorous modal theory are in accordance with the HFSS
simulation results. The insertion losses in the below-cutoff passband and the above-cutoff passband are
both higher than −15 dB, indicating that both passbands can transmit power efficiently.

5. TRIPLE BELOW-CUTOFF PASSBANDS REALIZATION

According to the general design process described in Section 3, a triple-passband configuration could
be realized by adding a middle LHM slab in the previous asymmetric structure. As shown in
Fig. 8, Region#1, Region#3, and Region#5 are filled with dielectrics possessing different permittivities
εr1 = κ1εr3 = κ2εr5 (κ1, κ2 > 0, κ1 and κ2 are real) and μr1 = μr3 = μr5, and Region#2 and Region#4
are filled with RHM with εr2 = εr4 = μr2 = μr4 = 1. The waveguide’s dimensions are a = 1, b = 0.5,
and d1/a = d3/a = d5/a = 0.05.

Figure 8. The cross-section of a five-region rectangular waveguide filled with two different LHM slabs
on each wall and a middle LHM slab.



124 Weng, Lin, and Wu

(a)

(b) (c)

Figure 9. (a) The normalized cutoff wavenumber kca of LSE10 mode versus the permittivity εr1 in
Region#1, κ1 = 2/3 and κ2 = 1/2; (b) the normalized cutoff wavenumber kca of LSE10 mode versus
the permittivity εr3 in Region#3, εr1 = −2, and κ2 = 1/2; (c) the normalized cutoff wavenumber kca
of LSE10 mode versus the permittivity εr5 in Region#5, εr1 = −2 and εr3 = −3.

Assuming κ1 = 2/3 and κ2 = 1/2, the relationship between the normalized LSE10 mode cutoff
wavenumber kca and the relative permittivity εr1 is shown in Fig. 9(a), where red dashed line is for
εr1 > 0 and black dash-dot line for εr1 < 0. It can be observed from Fig. 9(a) that an LHM permittivity
εr1 = −2 will result in a reduced cutoff wavenumber of kca = 2.621. Thus, the normalized Drude model
parameters for the LHM are set to ωpe = ωpm = 4.520 and Γe = Γm = 0. Superposing the dispersive
permittivity εr1(ω) (solid green circle) on the cutoff curve in Fig. 9(a), two intersections are obtained:
the lower intersection P1(εr1, kca) = (−2, 2.621) corresponds to the left-handed resonance point; the
higher intersection P2(εr1, kca) = (0.227, 4.881) corresponds to the right-handed resonance point.

Letting that εr1 = −2 and κ2 = 1/2, the relationship between the normalized cutoff wavenumber of
the LSE10 mode kca and the relative permittivity εr3 is shown in Fig. 9(b), where red dashed line is for
εr3 > 0 and black dash-dot line for εr3 < 0. The right-handed resonance point is fixed to kca = 4.881. It
can be observed from Fig. 9(b) that kca = 4.881 will result in a permittivity εr3 = 0.387. The normalized
Drude model parameters are set to ωpe = ωpm = 3.821 and Γe = Γm = 0. Superposing the dispersive
curve εr3(ω) (solid green circle) on the cutoff curve in Fig. 9(b), two intersections are observed: the
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Figure 10. Dispersion diagram for LSE10 mode in a rectangular waveguide supporting triple below-
cutoff passbands.

higher intersection P3(εr3, kca) = (0.387, 4.881); the lower intersection P4(εr3, kca) = (−1.47, 2.39).
Finally, assuming εr1 = −2 and εr3 = −3, the relationship between the normalized cutoff

wavenumber of the LSE10 mode kca and the relative permittivity εr5 is shown in Fig. 9(c), where
red dashed line is for εr5 > 0 and black dash-dot line for εr5 < 0. The right-handed resonance point
is also fixed to kca = 4.881. It can be observed from Fig. 9(c) that kca = 4.881 will result in a
permittivity εr5 = 301. Thus, the normalized Drude model parameters are set to ωpe = ωpm = 4.081 and
Γe = Γm = 0. Superposing the dispersive curve (solid green circle) on the cutoff curve in Fig. 9(c), two
intersections are observed: the higher intersection P5(εr5, kca) = (0.301, 4.881); the lower intersection
P6(εr5, kca) = (−2.67, 2.13).

Since each of these intersections corresponds to a cutoff frequency for one of the passbands, there
are three different below-cutoff passbands located at kca

P1= 2.621, kca
P4= 2.39, and kca

P6= 2.13. This
structure also supports a above-cutoff passband because kca

P2 = kca
P3 = kca

P5 = 4.881. The dispersion
diagram of this triple below-cutoff passbands structure is presented in Fig. 10. The dispersion curves
of the three below-cutoff propagation modes exhibit negative group velocity (∂ω/∂β < 0), indicating
the backward wave propagation. These three dispersion curves are very close to each other, and the
slopes of these curves are steep, showing that the bandwidths of three below-cutoff passbands are narrow.
Compared with the dispersion curves of the fundamental TE10-mode in a hollow rectangular waveguide,
the group velocity (∂ω/∂β) in this waveguide supporting triple below-cutoff passbands changes very
slowly, indicating that such a structure might support slow-wave propagation.

6. CONCLUSION

In this paper, a rigorous modal theory combining with the dispersion nature of the LHM has been used
to accurately determine the cutoff and propagation characteristics in a rectangular waveguide filled
with multilayer left-handed metamaterials (or composite left-handed and right-handed metamaterials).
It has been shown that such a waveguide supports multiple passbands well below the waveguide’s cutoff
frequency. A general design process based on the rigorous modal theory for multiband waveguides
has been concluded, and an arbitrary number of below-cutoff bands could be generated in principle
by filling corresponding number of different LHMs in the waveguides. Waveguides supporting single,
double, and triple below-cutoff passbands are designed as examples. Full-wave simulation results of the
transmission properties show that the power transmits efficiently in these below-cutoff passbands. The
presented structures can be advantageously used in many applications requiring miniaturization and
multiband waveguides, such as miniaturized multifunction antennas and filters.
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