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Diffraction Radiation Generated by a Density-Modulated Electron

Beam Flying over the Periodic Boundary of the Medium Section.
II. Impact of True Eigen Waves

Yuriy Sirenko1, 2, Seil Sautbekov3, *, Nataliya Yashina1, and Kostyantyn Sirenko1

Abstract—This paper is the continuation and development of the discussion started in our previous
work with the same title. For the first time, eigen waves of the plane boundary separating vacuum and
an artificial plasma-like medium are considered in reasonably substantiated way and in a sufficiently
extensive and profound volume. The possibility of extending the results obtained for a plane boundary
to the case of a weakly profiled periodically uneven boundary is shown. This paper demonstrates the
potential and urge to use the analytical results in the studies of the resonant transformation of the field
of a plane, density modulated electron beam flying over a periodically uneven boundary of a natural or
artificial medium in the field of bulk outgoing waves.

1. INTRODUCTION

In [1] it was shown that calculation of the key energy characteristics
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n (k) = |Rn|2 ReΓ+

n∣∣Γ+
0

∣∣ , W−
n (k) = ε−1 (k) |Tn|2 ReΓ−

n∣∣Γ+
0

∣∣ (1)

of diffraction radiation (Vavilov-Cherenkov radiation [2] or Smith-Purcell radiation [3]), which is
generated by a plane density-modulated electron beam flying over a periodically uneven boundary Σε,μ

x

(see Fig. 1 in [1]) separating vacuum (ε = μ = 1.0) and a dispersive medium with material parameters
ε(k), μ(k), is reduced to solving the boundary value problem⎧⎪⎪⎪⎨
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U {∂z U} (y, l, k) = exp (2πiζ)U {∂z U} (y, 0, k) for − h ≤ y ≤ 0
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Here, U(g, k) is Hx-component of complete H-polarized (Ex = Hy = Hz = 0, ∂x = 0) electromagnetic
field {E(g, k),H(g, k)}, g = {y, z} in the ‘beam-boundary’ system; V0(g, k) is Hx-component of a beam
own field; W+

n (k) and W−
n (k) are functions determining the efficiency of diffraction radiation at spatial

harmonics U+
n (g, k) and U−

n (g, k), which are outgoing upward (in half-space occupied by vacuum)
and downward (in half-space occupied by a dispersive medium) from the boundary, respectively;
Γ+

n =
√

k2 − Φ2
n, ReΓ+

n ≥ 0, ImΓ+
n ≥ 0 and Γ−

n =
√

k2ε(k)μ(k) − Φ2
n, ε−1(k)ReΓ−

n ≥ 0, ImΓ−
n ≥ 0

are vertical propagation constants of these harmonics; Φn = (n + ζ)2π/l, ζ2π/l = Φ0 = k/β (with this
value of Φ0, ReΓ+

0 = 0 and ImΓ+
0 > 0, V0(g, k) is an inhomogeneous plane wave component); k and

0 < β < 1 are modulation frequency and relative beam velocity; k = 2π/λ is the frequency parameter,
which is set by the modulation frequency; λ is the wavelength of the radiation field in free space, l and
h are the period and height of the boundary Σε,μ

x = {g : y = f(z), −h ≤ f(z) ≤ 0}. A more detailed
description of the problem (2) is given in [1]. The choice of branches of the two-valued functions Γ±

n (k, ζ)
has been made and justified ibid.

In present work, we focus on the normal (or eigen) modes of the periodic interface between the
media [1, 4, 5] (non-trivial solutions of the problem (2) for V0(g, k) ≡ 0), which are supposed to be
responsible for the anomalously high levels of coherent diffraction radiation generated by a density-
modulated electron beam moving over a periodic boundary separating an ordinary and artificial medium
with a specific frequency dispersion of permittivity and permeability. It was observed in a number of
computational experiments.

2. PLANE BOUNDARY. VAVILOV-CHERENKOV RADIATION

Obviously, in the case of a plane (non-transforming) boundary y = f(z) ≡ 0, the homogeneous
problem (2) (problem (2) with V0(g, k) ≡ 0) is reduced to an infinite set of independent homogeneous
systems of linear algebraic equations{

Rn = Tn

RnΓ+
n (ζ) = −TnΓ−

n (ζ) ε−1 (k)
; n = 0,±1,±2, . . . (3)

with respect to unknown complex amplitudes Rn and Tn.
The equations of systems in Eq. (3) are obtained by ‘sewing’, in the plane y = 0, the tangential

components of the field {E(g, k),H(g, k)}, it is Hx-component equal to U(g, k), and Ez-component,
which is connected with U(g, k) by the relation (2) from [1].

Non-trivial solutions of the systems (3) for each fixed value k > 0 determine an infinite set of
practically identical eigen waves of a ‘periodic’ structure:
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(4)

Here,

ζ̄±n = −n ± k
l

2π

√
ε (k) (μ (k) − ε (k))

1 − ε2 (k)
(5)

are propagation constants ζ̄ of the eigen waves in Eq. (4). The nature of these waves determines both
the specific value of complex, in the general case, ζ̄, and its position on the four-sheet surface Fn of a
pair of two-valued functions {Γ+

n (ζ),Γ−
n (ζ)} (see details in [4]). On the real axis Reζ of the first, physical

sheet of the surface Fn, values ReΓ+
n (ζ), ImΓ+

n (ζ), ε−1(k)ReΓ−
n (ζ) and ImΓ−

n (ζ) are non-negative [1, 4].
Analyzing the physics of diffraction radiation processes, it is extremely important to know whether the
propagation constant ζ̄, corresponding to eigen wave of a specified boundary Σε,μ

x of a medium with
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specified constitutive parameters ε(k) and μ(k), is located on the first, physical sheet of the infinite-
sheeted Riemann surface F, uniting all four-sheet surfaces Fn (see Section 3 in [1]). Here we will only
note that in solving this problem, the equality

Γ+
n

(
ζ̄±n

)
= −Γ−

n

(
ζ̄±n

)
ε−1 (k) , (6)

will be useful for us. It follows from Eq. (3) and establishes a connection between the signs of real
and imaginary parts of complex, in the general case, propagation constants Γ+

n (ζ̄±n ) and Γ−
n (ζ̄±n ) of the

spatial harmonics U+
n (g, ζ̄±n ) and U−

n (g, ζ̄±n ).
Suppose now that in the problem (2), the constitutive parameters of the medium filling the half-

space y < f(z) are given by the relations

ε (k) = 1 − k2
ε

/
k2 and μ (k) = 1 − k2

μ

/
k2. (7)

Such a medium can be called ‘plasma-like medium’, and the real valued numbers kε > 0 and kμ > 0 are
its characteristic frequencies.

From Eqs. (4) and (5), for medium of this kind, we have

Φn

(
ζ̄±n

)
= ± k

kε

√
(k2

ε − k2)
(
k2

ε − k2
μ

)
k2

ε − 2k2
, (8)

and for kε = kμ, Φn(ζ̄±n ) = 0, if only k �= √
0.5kε; and Φn(ζ̄±n ) = ±0.5kε, in the case of k =

√
0.5kε.

And in the first and second cases ImΓ+
n (ζ̄±n ) = 0, ImΓ−

n (ζ̄±n ) = 0. It follows from Eq. (6) that the values
ReΓ+

n (ζ̄±n ) and ε−1(k)ReΓ−
n (ζ̄±n ) differ in signs, and therefore: (a) the propagation constant ζ̄±n cannot

belong to a physical sheet of the surface Fn; (b) the real eigen wave U(g, ζ̄±n ) only for convenience may
be called ‘something like leaky wave’. Its partial components U+

n (g, ζ̄±n ) and U−
n (g, ζ̄±n ) above and below

the interface transfer energy in the same direction; if one of these waves arrives onto the boundary y = 0,
then the second one leaves this boundary. The property (b) of the eigen wave U(g, ζ̄±n ), projected on
the first sheet of Fn, allows to define sets of parameters at which the boundary is completely (without
reflection) transparent for a homogeneous plane wave arriving onto it from above or below [4, 6, 7].

If kε > kμ then, as it follows from Eq. (8):

• For 0 < k <
√

0.5kε, ε(k) < 0 and Φn(ζ̄±n ) = ± k
kε

√
(k2

ε−k2)(k2
ε−k2

μ)

k2
ε−2k2 . In the range k <

kεkμ√
k2

μ+k2
ε

,

ImΓ+
n (ζ̄±n ) = 0, ImΓ−

n (ζ̄±n ) = 0, which means that the real eigen wave U(g, ζ̄±n ) is ‘something
like leaky wave’. In the range k >

kεkμ√
k2

μ+k2
ε

, ReΓ+
n (ζ̄±n ) = 0 and ReΓ−

n (ζ̄±n ) = 0, and magnitudes

ImΓ+
n (ζ̄±n ) and ImΓ−

n (ζ̄±n ) have the same sign. This means that the propagation constant ζ̄±n can
fall both on a physical sheet of the surface Fn (here ImΓ+

n (ζ̄±n ) > 0, ImΓ−
n (ζ̄±n ) > 0, and then

U(g, ζ̄±n ) is the real surface eigen wave (or ‘true eigen wave’), which propagates near and along the
media boundary without attenuation), and on one of non-physical sheets Fn (here ImΓ+

n (ζ̄±n ) < 0,
ImΓ−

n (ζ̄±n ) < 0, and then U(g, ζ̄±n ) is the real eigen wave, whose partial components U+
n (g, ζ̄±n ) and

U−
n (g, ζ̄±n ) grow exponentially with the distance from the interface).

In the range k < kε, ε(k) < 0 holds, and partial components U+
n (g, ζ̄±n ), U−

n (g, ζ̄±n ) of the true eigen
waves U(g, ζ̄±n ) transfer the energy in opposite along the axis z directions when the directionality
Φn(ζ̄±n )z of their phase velocities coincides (see relation (7) in [1]). Let’s call these waves ‘unusual
true eigen waves’ in contrast to the usual ‘true eigen waves’ U(g, ζ̄±n ), whose region of existence is
limited by the frequencies k > kε for which ε(k) > 0.

• For k → √
0.5kε (left limit), Φn(ζ̄±n ) → ±∞ and ReΓ+

n (ζ̄±n ) = 0, ReΓ−
n (ζ̄±n ) = 0, |ImΓ±

n (ζ̄±n )| → ∞.
The propagation constant ζ̄±n can be located on both physical and non-physical sheets of the
surface Fn. The exotic characteristics of the respective real eigen wave U(g, ζ̄±n ) hardly deserve to
be discussed, but we note that for ζ̄±n from the first sheet of Fn, U(g, ζ̄±n ) is a wave, whose field
occupies practically zero volume (plane y = 0), and whose phase velocity is practically zero.

• For
√

0.5kε < k < kε, Φn(ζ̄±n ) = ±i k
kε

√
(k2

ε−k2)(k2
ε−k2

μ)

2k2−k2
ε

and ImΓ+
n (ζ̄±n ) = 0, ImΓ−

n (ζ̄±n ) = 0,

which means that the imaginary eigen wave U(g, ζ̄±n ) is ‘something like leaky wave’, but now
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this property is not connected with the condition of complete transparency of the boundary y = 0
for homogeneous plane waves which was discussed above.

• For k = kε, ε(k) = 0 and Φn(ζ̄±n ) = 0, ImΓ+
n (ζ̄±n ) = 0, Γ−

n (ζ̄±n ) = 0. Exotic configuration of the real
eigen wave U(g, ζ̄±n ) with the propagation constant ζ̄±n from the first sheet of the surface Fn (here
ReΓ+

n (ζ̄±n ) = k) and from another sheet (here ReΓ+
n (ζ̄±n ) = −k) can be easily depicted using the

representation (4).

• For k > kε, ε(k) > 0 and Φn(ζ̄±n ) = ± k
kε

√
(k2−k2

ε)(k2
ε−k2

μ)

2k2−k2
ε

. ImΓ+
n (ζ̄±n ) = 0 and ImΓ−

n (ζ̄±n ) = 0, and

the signs ReΓ+
n (ζ̄±n ) and ε−1(k)ReΓ−

n (ζ̄±n ) are opposite: the propagation constant ζ̄±n cannot belong
to a physical sheet of the surface Fn. Real eigen wave U(g, ζ̄±n ) is ‘something like leaky wave’, which
means that its partial components U+

n (g, ζ̄±n ) and U−
n (g, ζ̄±n ) transfer energy in the same direction

above and below the boundary. Namely, if one of these waves arrives onto the boundary y = 0,
then the second one leaves this boundary.

If kε < kμ then, as it follows from Eq. (8):

• For 0 < k <
√

0.5kε, ε(k) < 0 and Φn(ζ̄±n ) = ±i k
kε

√
(k2

ε−k2)(k2
μ−k2

ε)

k2
ε−2k2 , ImΓ+

n (ζ̄±n ) = 0, ImΓ−
n (ζ̄±n ) = 0,

which means that the imaginary eigen wave U(g, ζ̄±n ) is ‘something like leaky wave’, but now this
property has nothing to do with the condition of complete transparency of the boundary y = 0 for
homogeneous plane waves which was discussed above.

• For k → √
0.5kε (left limit), Φn(ζ̄±n ) → ±i∞ and ImΓ+

n (ζ̄±n ) = 0, ImΓ−
n (ζ̄±n ) = 0, |ReΓ±

n (ζ̄±n )| → ∞.
It is possible to somehow imagine an eigen wave existing here only with the corresponding limiting
passage and considering the wave U(g, ζ̄±n ) from the previous point.

• For
√

0.5kε < k < kε, ε(k) < 0 and Φn(ζ̄±n ) = ± k
kε

√
(k2

ε−k2)(k2
μ−k2

ε)

2k2−k2
ε

. In the range k <
kεkμ√
k2

μ+k2
ε

,

ReΓ+
n (ζ̄±n ) = 0, ReΓ−

n (ζ̄±n ) = 0, ImΓ+
n (ζ̄±n ) and ImΓ−

n (ζ̄±n ) have the same sign. This means that the
propagation constant ζ̄±n can lie both on a physical sheet of the surface Fn (here ImΓ+

n (ζ̄±n ) > 0,
ImΓ−

n (ζ̄±n ) > 0, and U(g, ζ̄±n ) is the real surface eigen wave (or ‘true eigen wave’, more precisely, it
is ‘unusual true eigen wave’), which propagates near and along the medium boundary without
attenuation), and on one of non-physical sheets Fn (here ImΓ+

n (ζ̄±n ) < 0, ImΓ−
n (ζ̄±n ) < 0,

and U(g, ζ̄±n ) is the real eigen wave, whose partial components U+
n (g, ζ̄±n ) and U−

n (g, ζ̄±n ) grow
exponentially with the distance from the boundary). In the range k >

kεkμ√
k2

μ+k2
ε

, ImΓ+
n (ζ̄±n ) = 0 and

ImΓ−
n (ζ̄±n ) = 0, and ReΓ+

n (ζ̄±n ) and ε−1(k)ReΓ−
n (ζ̄±n ) have different signs, which means that the real

eigen wave U(g, ζ̄±n ) is ‘something like leaky wave’.
• For k = kε, ε(k) = 0 and Φn(ζ̄±n ) = 0, ImΓ+

n (ζ̄±n ) = 0, Γ−
n (ζ̄±n ) = 0. Exotic configuration of the real

eigen wave U(g, ζ̄±n ) for the propagation constant ζ̄±n from the first sheet of the surface Fn (here
ReΓ+

n (ζ̄±n ) = k) and from another sheet (here ReΓ+
n (ζ̄±n ) = −k) can be easily depicted using the

representation (4).

• For k > kε, ε(k) > 0 and Φn(ζ̄±n ) = ±i k
kε

√
(k2−k2

ε)(k2
μ−k2

ε)

2k2−k2
ε

. ImΓ+
n (ζ̄±n ) = 0, ImΓ−

n (ζ̄±n ) = 0, which

means that the imaginary eigen wave U(g, ζ̄±n ) is ‘something like leaky wave’, but there is no
connection between this property and the condition of complete transparency of the boundary
y = 0 for homogeneous plane waves which was discussed above

The analysis shows that the point k =
√

0.5kε = ksing is singular when the propagation constants
ζ̄(k) of the eigen waves U(g, ζ̄(k)) are defined in it: infinite limits of the functions Φn(ζ̄±n (k)) at k do not
coincide when tending to ksing from left and right. In addition, in the case of kε > kμ and k approaching
to ksing from the left, and in the case of kε < kμ and k approaching to ksing from the right, we are
increasingly faced with the real propagation constants ζ̄±n (k) of ‘unusual true eigen waves’ U(g, ζ̄±n )
(see, for example, Fig. 1); and ksing is such point of accumulation of singularities that, as shown by
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Figure 1. Propagation constants of real eigen waves U(g, ζ̄±n ) (1− ζ̄+
0 , 2− ζ̄−−1, 3− ζ̄+

−1, 4− ζ̄−−2, 5− ζ̄+
−2,

6 − ζ̄−−3) and value of ζ = kl/2πβ (7) for l = 2π, kε = 0.5, kμ = 0.4, β = 0.3.

computational experiments in [8], significantly affect the electrodynamic characteristics of a periodically
uneven interface.

A plane interface between the media (boundary y = 0) is not transforming. This means that an
electron beam flying over a plane interface between the media (we associate its own field with the field
of wave V0 (g, k)) generates in half-spaces y > 0 (vacuum) and y < 0 (dispersive medium) only the
basic spatial harmonics U±

0 (g, k) of the secondary field. ReΓ+
0 (ζ) = 0 (V0 (g, k) is inhomogeneous plane

wave), and therefore, diffraction radiation does not occur in the upper half-space. Vavilov-Cherenkov
radiation (radiation into the lower half-space at the only harmonic U−

0 (g, k) arising here) is possible
only if (see Eq. (1))

ImΓ−
0 (k) = Im

√
k2ε (k) μ (k) − Φ2

0 = Im
√

k2ε (k) μ (k) − k2
/
β2 = 0. (9)

It is true only in the case of binegative (ε(k) < 0 and μ(k) < 0) or bipositive (conventional) medium.
From Eq. (9), for the dispersion law in Eq. (7), we obtain the following restriction on the frequencies
at which the propagating in the half-space y < 0 plane wave U−

0 (g, k) is able to take away some part of
the electron beam energy:

k2 <
−β2

(
k2

ε + k2
μ

)
+

√
β4

(
k2

ε + k2
μ

)2 + 4 (1 − β2) k2
εk

2
μβ2

2 (1 − β2)
. (10)

Figures 2 and 3 present the results which allow to estimate the efficiency of this taking away or,
in other words, the intensity of diffraction radiation (Vavilov-Cherenkov radiation) into a plasma-like
medium. The curves G−

0 = {k, β} : β = [ε (k)μ (k)]−1/2 limit the ranges of parameter values where
W−

0 (. . . , . . .) is nonzero. In the case kε < kμ, to achieve high radiation intensity, the parameters k
and β should be 0.3 < β < 0.6 and k < 0.25 (Fig. 2(a)), and in the case kε > kμ (Fig. 2(b)), it is
shifted towards large β. In these regions, the radiation intensity at a constant velocity of the beam is
practically independent of its modulation frequency.

The lines W−
0 (kε, kμ) = const presented in Fig. 3 give a fairly complete picture of the influence of

constitutive parameters of a dispersive medium with plane boundary on the energy characteristics of
radiation. Interestingly, in the case of large k and β (Fig. 3(b)), the lines W−

0 (kε, kμ) = const intersect
with a straight line (diagonal dashed line) at an angle close to the right one (which means a rapid change
in the radiation intensity), while for smaller k and β (Fig. 3(a)) and kε > 0.8, movement along the line
kε = kμ does not lead to any noticeable change in the radiation intensity.

Generally, in the case of a plane interface between the media, the energy characteristics of diffraction
radiation change very smoothly when moving from the limiting boundary G−

0 (beyond which this
radiation is possible) and within a not very large interval. This is because at the given frequency
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Figure 2. Lines W−
0 (k, β) = const, character-

izing the intensity of diffraction radiation into
the half-space y < 0: a − kε = 0.5, kμ = 1.0;
b − kε = 1.0, kμ = 0.5.
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Figure 3. Lines W−
0 (kε, kμ) = const: a−k = 0.3,

β = 0.3; b − k = 0.6, β = 0.6.

k, the electron beam can excite only one eigen wave, U(g, ζ̄±0 ). And the excitation of this wave can
lead to a rather sharp and strong rise in the field amplitude U(g, k) only at frequencies k close to ksing,
for which the values of ζ = kl/2πβ and ζ̄+

0 (k) practically coincide (see, for example, Fig. 1, the area of
intersection of the curves 1 and 7). But these frequencies, obviously, lie outside the range of k, where
Vavilov-Cherenkov radiation (VChR) is possible. There, ReΓ−

0 (k, ζ) = ReΓ−
0 (k, ζ̄+

0 ) = 0, U−
0 (g, k) is an

inhomogeneous plane wave, and the wave U(g, ζ̄+
0 ) is ‘unusual true eigen wave’.

3. PERIODIC INTERFACE. SMITH-PURCELL RADIATION

The electrodynamic characteristics of a periodically uneven boundary and a plane boundary differ
fundamentally. In particular, all the spectrum of eigen waves is excited in the case h > 0, and
thus continues (with certain distortions) eigen waves U(g, ζ̄±n ), n = 0,±1,±2, . . ., which correspond
to h = 0. For small values of h > 0 and sufficiently smooth functions f(z), the spectral characteristics
of periodically uneven and plane interfaces differ insignificantly [4]. We keep the same designations
for them as in the case h = 0. With growing h, the magnitudes of ζ̄±n deform significantly, but their
behavior and the behavior of the corresponding eigen waves obey common regularities for periodic
structures established in [4, 5, 9]. An important fact is that with smooth variations of any parameter τ
of the problem (2), the existing propagation constants ζ̄(τ) of eigen waves U(g, ζ̄(τ)), which move along
the sheets of the surface F, cannot disappear anywhere in their finite part [4, 10].

It is very important in the study of diffraction radiation to determine correctly the limits
of parameters variation which allow implementation of the given regime of electron beam field
transformation into the field of waves outgoing infinitely far from the periodic interface between the
media. The regime identifier {N+, N−} is set by N+ and N− which are the numbers of harmonics
propagating without attenuation in the reflection (y > 0) and transmission (y < −h) zones of the
periodic structure. The limits of the domains corresponding to this regime in the plane of the variables
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Figure 4. Configuration of limiting curves G−
n for l = 2π, kε = 0.5 and kμ = 1.0.

k and β are determined by the curves G±
n = {k, β} : Γ±

n (k, β) = 0 (see, for example, Fig. 4). Obviously,
for Φ0 = k/β, only harmonics with negative indexes n can propagate without attenuation in the domain
y > 0.

In [1], we have already noted the impact of the propagation constants ζ̄, which are located near
the real axis of the first, physical sheet of the surface F, onto the formation of resonant response of the
periodic boundary Σε,μ

x when it is excited by a homogeneous or inhomogeneous plane wave V0(g, k).
Now we shall briefly illustrate this thesis by calculating the efficiency of Smith-Purcell radiation (SPR)
in one particular case. This result, by the way, can be considered as a prelude to a detailed analysis
of anomalously high levels of coherent diffraction radiation generated by a density-modulated electron
beam moving over a periodic boundary separating an ordinary medium and an artificial medium with
specific frequency dispersion of permittivity and permeability. We are going to focus on this analysis in
our next works.

VChR is radiation at the spatial harmonic U−
0 (g, k) of the periodic boundary into an optically

denser medium occupying the half-space y < f(z) [2, 11–13]. Radiation at harmonics U±
n (g, k), n �= 0,

which propagate without attenuation in the domains y > 0 and y < −h, is already Smith-Purcell
radiation (SPR) [3, 4, 14, 15]. The result below is about SPR.

Let us plot, on the frequency interval 0.01 ≤ k ≤ 1.0 (with the sampling step of 0.001), the solution
to the problem (2) for the values ζ(k) = kl/2πβ, l = 2π, f(z) = 0.5h(cos z − 1), h = 0.01, 0.05, 0.1,
β = 0.3, kε = 0.5, kμ = 0.4; and let us use the data presented in Fig. 2 for its analyzing. The equality
ζ̄±n (k) ≈ ζ(k) required for the realization of resonant scattering modes is fulfilled at the points: (i)
k ≈ 0.246 (here ζ̄−−1(k) ≈ ζ(k) and, in the field U(g, k), the harmonics U±

−1(g, k) are propagating as
ImΓ±

−1 = 0); (ii) ksing − 0.05 < k < ksing (here ζ(k) ≈ ζ̄+
0 (k) ≈ ζ̄−−2(k) ≈ . . . and ImΓ±

−1 = 0); (iii)
k ≈ 0.559 (here ζ̄−−2(k) ≈ ζ(k) and ImΓ±

−2 = ImΓ+
−3 = 0); (iv) k ≈ 0.665 (here ζ̄+

−2 ≈ ζ(k) and
ImΓ±

−2 = ImΓ+
−3 = 0); (v) k ≈ 0.81 (here ζ̄−−3 ≈ ζ(k) and ImΓ+

−2 = ImΓ±
−3 = 0). But only in case (ii),

when U(g, ζ̄±n ) are ‘unusual true eigen waves’, the propagating harmonics of the field U(g, k) (amplitudes
of these harmonics determine the intensity of SPR) respond in an expected manner to the fulfillment of
resonance conditions (Fig. 5). When they are fulfilled, we obtain very high values of W±

−1(k) against the
background of completely insignificant values W±

−1(k) in all other points of the ranges where harmonics
propagate without attenuation in the half-spaces y > 0 and y < −h.

It is worth to point out the practical significance of results associated with the detection and detailed
analysis of such effects. They can serve as a basis for development of fundamentally new, accurate
measuring schemes, e.g., diagnostic schemes and determination of intrinsic parameters of plasma-like
media and charged particle beams.

In cases (i), (iii)–(v), where U(g, ζ̄±n ) are real eigen ’something like leaky waves’, the propagating
harmonics of the field U(g, k) do not react in any way to the fulfillment of resonance conditions. The
functions W±

n (k) change insignificantly for all points of the ranges, where the corresponding harmonics
are propagating and remain here at a level not exceeding 10−1. The reason behind this huge difference
between case (ii) and cases (i), (iii)–(v) is practically obvious — the propagation constants ζ̄ of the
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Figure 5. SPR intensity in resonant wave scattering modes. Frequency bands k where spatial harmonics
U±
−1(g, k) propagate without attenuation are covered.

normal modes U(g, ζ̄±n ) in cases (i), (iii)–(v) fall on higher, non-physical sheets of the surface F, and only
in case (ii) the relevant propagation constant turns out to be really close to the parameter ζ = kl/2πβ
of the excitation wave, which is measured on the axis Reζ of the first, physical sheet of F.

4. CONCLUSION

In this work, we dwelt in detail on the problem of eigen waves of a plane boundary separating vacuum
and an artificial plasma-like medium. The propagation constants ζ̄±n of the normal modes U(g, ζ̄±n ) are
determined, and they are located both on the first and higher sheets of the Riemann surface, which is
the natural region of variation of the spectral parameter ζ. The characteristic features of eigen waves are
described, and analytical results for a plane boundary y = 0 are extended to the case of a periodically
uneven boundary Σε,μ

x with a small profiling depth h. The results of numerical experiments, indicating
the direction of further development of these problems, are presented.
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