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Diffraction Radiation Generated by a Density-Modulated Electron
Beam Flying over the Periodic Boundary of the Medium Section.

I. Analytical Basis

Yuriy Sirenko1, 2, Seil Sautbekov3, *, Nataliya Yashina1, and Kostyantyn Sirenko1

Abstract—The paper is focused on reliable modeling of the effects associated with the resonant
transformation of the field of a plane, density modulated electron beam, flying over the periodically
uneven boundary of a natural or artificial medium, in the field of volume outgoing waves. Here, the
general information (analytical basis) is presented on the peculiarities and principal characteristics of
electromagnetic fields arising in the situations under consideration, on the procedures for regularization
of model boundary value problems describing these situations, and on possible eigen modes of periodic
structures. Without relying on this information, it is impossible to advance considerably effectively
in solving numerous urgent physical problems (establishing the conditions providing anomalously high
levels of Vavilov-Cherenkov and/or Smith-Purcell radiation; diagnostics of beams of charged particles,
artificial materials and media) and in practical implementation of new knowledge about the effects
of diffraction radiation and their wave analogues in new devices and instruments of optoelectronics,
high-power electronics, antenna, and accelerator technology.

1. INTRODUCTION

Vavilov-Cherenkov radiation (VChR) [1] and Smith-Purcell radiation (SPR) [2] are among the most
significant physical phenomena discovered in the 20th century. Classical works [3–6] are devoted to the
theory of these phenomena and their practical use. The surge of interest to them in modern science (see,
for example, [7–18]) is mainly due to: (a) a significant progress of computational physics, which allows
to formulate and solve rather complex problems that are adequate to the situations under study; (b) the
invention and fabrication of new artificial materials and media with unique properties not previously
considered; (c) a growing list of relevant physical and applied problems, whose solution is facilitated or
could be facilitated by new knowledge about the processes of diffraction radiation (VChR or SPR).

We address this topic because, in a number of computational experiments, based on reliable
mathematical models and corresponding computational schemes, rather interesting results had been
obtained (see, for example, [18]). These results proved the existence of anomalously high levels of
coherent diffraction radiation when a density modulated electron beam flies over the periodic boundary
separating the ordinary and artificial medium, characterized by a specific frequency dispersion of
permittivity and permeability. The recorded radiation levels were much higher than those we noted as
anomalously high in [15], where the classical metal-dielectric diffraction gratings conventionally used in
millimeter and submillimeter-wave techniques were considered as a periodic scatterer. The high levels
of diffraction radiation achieved in [15] got a fairly convincing explanation, based on the previously
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obtained results of the electrodynamic theory of gratings, describing the space-frequency and space-
time transformations of electromagnetic waves by open periodic resonators [19–21]. In the case of a
periodic interface between media, the analysis of this phenomenon is more complicated. It requires a
partial revision of previously used models, an extensional work related to the study of possible ‘eigen’
modes of the corresponding periodic structures, and their influence on the formation of response of
these structures to any external excitation. This case also requires revision of formulation and accurate
physical reading of the results of many problem-oriented computational experiments.

We plan to present the results of the extensive study of the problem in several papers. The present
one (and the first of this series) is devoted to the description of general electromagnetic model, providing
the investigation (in the approximation of a given current) of all the physical features and regularities
in the processes of diffraction radiation generated by a density-modulated electron beam moving over a
periodically uneven interface between media with different constitutive parameters.

The time dependence t for harmonic processes considered in the work is determined by the factor
exp(−iωt) omitted everywhere, and ω is a circular frequency. The dimensions of the SI system of all
mentioned physical quantities are also omitted.

2. BASIC ELECTROMAGNETIC MODEL

Consider the boundary Σε,μ = Σε,μ
x × (−∞ < x <∞) separating ordinary (ε = μ = 1) and dispersive

(ε = ε(k), μ = μ(k)) media (see Fig. 1). It is periodic along coordinate z and homogeneous along
coordinate x. When being exited by H-polarized (Ei

x = H i
y = H i

z = 0) wave V0(g, k) = H i
x(g, k) =

exp(−iΓ+
0 y)ϕ0(z), this boundary forms the total field {E(g, k),H(g, k)}, g = {y, z}, ∂x = 0, which is

defined by the solution U(g, k) = Hx(g, k) to the following boundary value problem [19–21] within the
Floquet channel R = {g = {y, z} ∈ R2 : 0 < z < l}:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[
∂2

y + ∂2
z + ε (g, k)μ (g, k) k2

]
U (g, k) = 0; g = {y, z} ∈ Ωint

Etg (q, k) , Htg (q, k) are continuous when crossing Σε,μ

and virtual boundaries y = 0, y = −h; q = {x, y, z}
U {∂z U} (y, l, k) = exp (2πiζ)U {∂z U} (y, 0, k) for − h ≤ y ≤ 0

, (1a)

U (g, k) = V0 (g, k) + U+ (g, k) = V0 (g, k) +
∞∑

n=−∞
U+

n (g, k)

= exp
(−iΓ+

0 y
)
ϕ0 (z) +

∞∑
n=−∞

Rn (k) exp
(
iΓ+

n y
)
ϕn (z); g ∈ A, (1b)

U (g, k) = U− (g, k) =
∞∑

n=−∞
U−

n (g, k) =
∞∑

n=−∞
Tn (k) exp

(−iΓ−
n (y + h)

)
ϕn (z); g ∈ B. (1c)
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Figure 1. Periodic boundary between two media: upper half-space filled with vacuum and lower
half-space filled with dispersive material.
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Here, Ḡ is the closure of the domain G; Ωint = {g ∈ R : −h < y < 0}, A = {g ∈ R : y > 0} and
B = {g ∈ R : y < −h}; E(g, k) = {Ex, Ey, Ez} and H(g, k) = {Hx,Hy,Hz} are the electric and
magnetic field vectors; Etg and Htg are their components tangential (tangent) to the corresponding
surfaces; U(g, k) = Hx(g, k) is the only nonzero component of H(g, k). The nonzero components of
E(g, k) are determined by the relations [20, 21]

Ey (g, k) = − η0

ikε (g, k)
∂zHx (g, k) , Ez (g, k) =

η0

ikε (g, k)
∂yHx (g, k) . (2)

Real-value functions ε(g, k) and μ(g, k) set relative permittivity and permeability of the wave
propagation medium (ε(g, k) = μ(g, k) ≡ 1.0 for y > f(z) and ε(g, k) = ε(k), μ(g, k) = μ(k) for y <
f(z)); l and h are period and height of the boundary Σε,μ

x = {g : y = f(z), −h ≤ f(z) ≤ 0}, the surface
Σε,μ = Σε,μ

x × (−∞ < x <∞) of discontinuities of material parameters ε(g, k) and μ(g, k) is assumed
to be sufficiently smooth. Γ+

n =
√
k2 − Φ2

n, ReΓ+
n ≥ 0, ImΓ+

n ≥ 0 and Φn = (n+ ζ)2π/l are vertical
and horizontal wave numbers for spatial harmonics (plane waves) U+

n (g, k) = Rn(k) exp(iΓ+
n y)ϕn(z)

propagating in the domain A with attenuation (when ImΓ+
n > 0) or without it (when ImΓ+

n = 0). The
transverse functions ϕn(z) = l−1/2 exp(iΦnz), n = 0,±1,±2, . . . form a complete (in space L2(0, l))
orthonormal system in the cross section of the Floquet channel R. k = 2π/λ is a frequency parameter
or just frequency, λ is the wavelength of electromagnetic waves in free space; η0 = (μ0/ε0)1/2 is an
impedance of free space; ε0 and μ0 are electric and magnetic vacuum constants; ζ, Imζ = 0 is a numeric
parameter.

We determine the signs of real and imaginary parts of the square root Γ+
n using the radiation

condition at infinity [19–21], which ensures the unique solvability of the model problem (1) for almost
all values of real parameters k and ζ. Exceptions are possible for no more than a countable number
of values k = k̄ and ζ = ζ̄ belonging to the sets Θk and Θζ (see Section 3), which are spectral sets
corresponding to possible eigen field oscillations and possible eigen waves in the open electrodynamic
structure [20, 21]. In the reflection zone of the periodic structure (in the half-space y > 0), due to the
radiation condition, the field U+(g, k) consists only of the waves U+

n (g, k) outgoing from the boundary
Σε,μ

x . The same condition determines the branch of the square root Γ−
n =

√
k2ε(k)μ(k) − Φ2

n: all partial
components U−

n (g, k) = Tn(k) exp[−iΓ−
n (y + h)]ϕn(z) of the field U−(g, k) in the transmission zone of

the periodic structure (in the half-space y < −h) should be plane homogeneous waves (in the case
when ImΓ−

n = 0) moving away from the boundary Σε,μ
x , which transfer energy in the general direction

y = −∞, or inhomogeneous waves (in the case when ReΓ−
n = 0), exponentially decaying when moving

in the same direction. This general statement allows us to define the sign of ImΓ−
n (ImΓ−

n ≥ 0). The
sign of ReΓ−

n we shall define below.
In the electrodynamic theory of gratings, the plane waves U+

n (g, k) and U−
n (g, k) are called spatial

harmonics of periodic structure [19–21]. The ones with numbers n corresponding to real propagation
constants Γ+

n and Γ−
n are able to propagate infinitely far from the boundary Σε,μ

x . In the reflection zone
y > 0, they leave the boundary at the angles αn(k) = − arcsin[Φn(k)/k] that are counted anti-clockwise
from the axis y. Obviously, for any fixed finite values of real parameters k and ζ, the number of such
waves is finite.

The Poynting’s complex power theorem [22] for the field {E(g, k),H(g, k)} in the volume
[0 ≤ x ≤ 1] × [0 ≤ y ≤ −h] × [0 ≤ z ≤ l] implies the fundamental relation [21]

∞∑
n=−∞

[
|Rn|2 ReΓ+

n + ε−1 (k) |Tn|2 ReΓ−
n

]
= ReΓ+

0 + 2 ImR0ImΓ+
0 . (3)

According to Eq. (3), the values

W+
n (k) = |Rn|2 ReΓ+

n∣∣Γ+
0

∣∣ , W−
n (k) = ε−1 (k) |Tn|2 ReΓ−

n∣∣Γ+
0

∣∣ (4)

determine the relative part of energy directed by the boundary Σε,μ
x into the relevant spatial harmonic,

U+
n (g, k) or U−

n (g, k). If ImΓ+
0 = 0 (the boundary is excited by a homogeneous plane wave V0(g, k),

coming onto the grating at an angle αi
0 = arcsin[Φ0(k)/k]), we have from Eqs. (3) and (4)∑
n

[
W+

n (k) +W−
n (k)

]
= 1. (5)
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If the boundary is excited by an inhomogeneous plane wave V0 (g, k) (ReΓ+
0 = 0, ImΓ+

0 > 0), the
near-field to far-field conversion efficiency is determined by the value of 2 ImR0 (see Eq. (3)), which is
nonnegative in this case and

2 ImR0 =
∑
n

[
W+

n (k) +W−
n (k)

]
. (6)

The equality in Eq. (3) defines the sign of ReΓ−
n (ε−1 (k) ReΓ−

n ≥ 0) and together with the relation

P =
1
l

l∫
0

(E × H∗) dl =
1
l

l∫
0

(EzH
∗
xy − EyH

∗
xz) dz =

1
l

η0

kε (k)

[∑
n

(
− |Tn|2 Γ−

n y + |Tn|2 Φnz
)]

, (7)

which is the complex Poynting vector P(k) of the field {E(g, k),H(g, k)} in the plane y = −h averaged
over the period l of the boundary Σε,μ

x , allows strict, unambiguous, and complete determination of the
direction of phase velocity of the harmonics U−

n (g, k), ImΓ−
n = 0 propagating in the domain y < −h

and the direction of energy transfer performed by these harmonics. For a conventional (right hand)
medium, these directions coincide and are set by the vector −Γ−

n y + Φnz, Γ−
n > 0 (y and z are the unit

vectors for the axes 0y and 0z). For a bi-negative medium, Γ−
n < 0, the phase velocity is oriented along

the vector −Γ−
n y+Φnz, and the direction of energy transfer is oriented along the vector Γ−

n y−Φnz. In
a medium with only one negative constitutive parameter, the harmonics U−

n (g, k) transferring energy
in the direction z = −∞ are not excited.

To solve the problem (1) numerically, we use the approach from [18, 23, 24], and it is a version of
the analytical regularization method [19, 21, 25], which can be described briefly as follows. The system
of orthonormal functions ϕn(z), n = 0,±1,±2, . . . is complete in the space L2(0, l) of functions with
the integrable (on the interval 0 ≤ z ≤ l) squared module. This allows us to write down the conditions
in (1), related to the continuity of tangential field components on the boundaries Σε,μ, y = 0, and
y = −h in the form of an ill-conditioned infinite system of linear algebraic equations. The right and
left side analytical regularization of this system [25, 26] allows one to construct an operator equation
of the second kind equivalent to it (the Fredholm operator equation); its numerical solution can be
obtained by a truncation method converging in a norm in one of the Hilbert spaces of infinite sequences
{Rn}∞n=−∞, {Tn}∞n=−∞ [27, 28].

3. EIGEN-MODES OF A PERIODIC INTERFACE

Main peculiarities of the field U(g, k) transformation are associated with the so-called normal (or eigen)
modes [20, 29–31]. When modes of this kind are excited in a periodic structure, it operates as an
open periodic resonator or an open periodic waveguide. One can simulate such regimes by extending
analytically homogeneous (spectral) frequency-domain problems (see, for example, problem (1) for
V0(g, k) ≡ 0) into the domain of complex values of one of the spectral parameters: the frequency k
or the longitudinal propagation number ζ [20, 21, 29, 32]. The domain of analytical extension coincides
with the infinite-sheeted Riemann surfaces K (real-valued ζ is fixed, and k ∈ K is a complex-valued
spectral parameter) or F (k > 0 is fixed, and ζ ∈ F is a spectral parameter) with algebraic branch
points k = k±n : Γ±

n (k±n ) = 0 or ζ = ζ±n : Γ±
n (ζ±n ) = 0, n = 0,±1,±2, . . .. The choice of branches of

the square roots in Γ±
n on the real axes of the first (physical) sheets of the Riemann surfaces K and F

has been done earlier. Such a choice has to ensure the physically understandable requirement that the
fields U+(g, k) and U−(g, k) do not contain waves coming onto the boundary Σε,μ

x from infinity.
The set Θk of eigenfrequencies k̄ is the frequency spectral set or the frequency spectra if for the

complex-valued frequencies k = k̄ ∈ K, the spectral problem (1) has nontrivial solutions U(g, k̄). Every
solution of this kind corresponds to a free field oscillation at the eigenfrequency k̄ in a periodic structure.
Likewise, one can define the set Θζ of propagation constants ζ̄ for surface, leaky, and other types [20, 29]
of eigen waves U(g, ζ̄) of a periodic media interface. If any eigenvalue ζ̄ belongs to the axis Reζ of the
first (physical) sheet of the surface Θζ and ImΓ±

n (ζ̄) > 0 for all n = 0,±1,±2, . . ., then we have an
ordinary surface real eigen wave (or true eigen wave) propagating near and along a media boundary
without attenuation. For periodic structures, the sets Θk and Θζ are countable nonempty ones. For a
number of canonical (elementary) periodic structures, the existence of eigen-modes can be proved by
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constructing explicit solutions of the corresponding spectral problems [20, 29]. It is possible to obtain
a similar result for much more complex structures, relying on the existence of eigen-modes for simple
structures and the results from [20, 29, 33], proving that for ‘smooth’ variations of any parameter of the
spectral problem, the existing eigen frequencies of the free field oscillation U

(
g, k̄ (τ)

)
and propagation

constants ζ̄ (τ) of the eigen waves U
(
g, ζ̄ (τ)

)
, moving along the sheets of surfaces K and F, cannot

disappear anywhere in their finite part.
A detailed discussion of spectral sets, localization, and dynamics of their elements on the surfaces

K and F, as well as the relation between anomalous or resonant scattering of monochromatic and
pulsed waves by periodic structures, and generation in these structures of high-Q free oscillations
and weak decaying eigen waves can be found in [20, 21, 29–35]. Here, we would like to note only
one result, which must be taken into account in a profound analysis of features and regularities in
the behavior of principal electrodynamic characteristics of the considered periodic structure. The
Green’s function G (g, g0, k, ζ) of the boundary Σε,μ

x in the field of point quasiperiodic sources ψ (g) =∑∞
n=−∞ δ (z − z0 − nl) δ (y − y0) exp (2πiζn) (here g0 = {y0, z0} ∈ Ωint and δ (. . .) is the Dirac delta-

function) for any fixed value ζ is a meromorphic function of the parameter k in local variables on the
surface K [36]; its poles coincide with points k̄ ∈ Θk and, in the neighborhood of these points, the
function G(g, g0, k, ζ) can be represented by the Laurent series

G (g, g0, k, ζ) =
∞∑

m=−M

am (g, g0, ζ)

{ (
k − k̄

)m(
k − k̄

)m/2

}
;

{
k̄ /∈ {k±n }n

k̄ ∈ {k±n }n

}
; (8)

M is a pole order at a point k = k̄. Similarly, in points ζ̄ ∈ Θζ for any fixed value k, we have

G (g, g0, k, ζ) =
∞∑

m=−M

bm (g, g0, k)

{ (
ζ − ζ̄

)m(
ζ − ζ̄

)m/2

}
;

{
ζ̄ /∈ {ζ±n }n

ζ̄ ∈ {ζ±n }n

}
. (9)

It follows from Eqs. (8) and (9) that sharp (resonant) changes in electrodynamic characteristics
of the boundary Σε,μ

x are possible in those regions of the parameter values for which points k̄ ∈ Θk

(points ζ̄ ∈ Θζ) are found near the corresponding intervals of the axis Rek (axis Reζ) of the first
physical sheet of the surface K (surface F). The use of local representations following from Eq. (8) for
the first time allowed to give a sufficiently convincing explanation of the Wood’s anomalies, which are
non-differentiable singularities in the behavior of diffraction characteristics of periodic structures in the
vicinity of threshold points [20, 37].

The real parameters k and ζ of the problem (1) rarely fall into the near vicinity of spectral points
from the higher sheets of the surfaces K and F [20, 29, 36]; therefore the corresponding normal modes
cannot significantly affect diffraction characteristics of the periodic structure. However, we should find
an accurate way to calculate points k̄ and ζ̄. For example, determining the elements k̄ : Imk̄ = 0 of
the spectral set Θk on the higher sheets of the surface K, we, in essence, synthesize a periodic structure
able to implement the effects of complete transformation of plane waves and packets of plane waves,
and it has great applied interest [38, 39]. Including the effects associated with Vavilov-Cherenkov and
Smith-Purcell radiation, their theoretical study may be based on the numerical solution of the boundary
value problem (1).

4. TRANSITION TO A MODEL OF DIFFRACTION RADIATION PROCESSES

Now let us find the relation between the problems of analysis of effects of diffraction radiation induced
by the density modulated electron beam moving over a periodic boundary and the model problems of
the electrodynamic theory of gratings (1).

Suppose that the density-modulated electron beam, whose instantaneous charge density has the
form ρδ (y − c) exp [i (k/β) z], c ≥ 0, is moving over the boundary Σε,μ

x (see Fig. 1). Here, ρ and k are
the modulation amplitude and modulation frequency of the beam, and β < 1 is its relative velocity.
Own electromagnetic field of such an electron beam is H-polarized field (Ebeam

x = Hbeam
y = Hbeam

z = 0,
∂x = 0) with [6, 40, 41]

Hbeam
x (g, k) = 2πρβ exp

{
i

[√
k2 − (k/β)2 |y − c| + (k/β) z

]}
[ |y − c|/(y − c)] ; y �= c. (10)
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From Eq. (10) it follows that in the presence of a plane (in case h = 0) or periodic (h > 0)
boundary Σε,μ between vacuum and dispersive medium, the density-modulated electron beam with
−2πρβ

√
l exp[−kc√(1/β)2 − 1] = 1 and k/β = Φ0 = ζ2π/l (with this value Φ0, Γ+

0 is an imaginary
value) generates in domains y > 0 and y < −h H-polarized field, whose Hx-components U+(g, k) and
U−(g, k) are determined by the solution U(g, k) of the boundary value of problem (1). Indeed, under
the conditions specified above, Hbeam

x (g, k) = V0(g, k) = H i
x(g, k) for y < c, an electromagnetic field

of electron beam and a field of an inhomogeneous plane wave exciting the boundary Σε,μ
x coincide.

Consequently, secondary fields arising as a result of such excitation also coincide.

5. CONCLUSION

This work is of principal importance for the study of diffraction radiation generated by a density-
modulated electron beam flying over a periodically uneven interface between media, in particular, over
the boundary separating vacuum and artificial dispersive medium.

The essence of the presented study is the quality of numerical implementation and adequate
physical treatment of its results. The proposed quality is of particular importance for problem-oriented
mathematical models aimed at working in rather harsh conditions of possible resonant wave scattering,
which is a key feature of the problem.
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