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Abstract—With the rapid development and in-depth research of non-contact bio-radar-based detection
technology, researchers have recently been putting more emphasis on target identification. Living status
identification, a hotspot of target identification research, is particularly useful in search and rescue
missions. During such missions, in order to rescue victims and provide corresponding medical support
in a timely manner, it is necessary to acquire the survival information of victims, especially when they
are injured. Hence, the vital signs extracted from a radar signal should be considered as the crucial
parameters to reflect the living status. To determine living status through analyzing vital signs, this
study utilized a bio-radar system to continuously monitor hemorrhagic animals, which simulated injured
persons with hemorrhagic symptoms. Moreover, we defined and classified three survival periods based
on changes in vital signs combined with a K-nearest neighbor algorithm (KNN) classifier. Experimental
results show that we can approximately determine the current living status of animals with this method,
which can aid in providing information for on-site rescue and follow-up medical treatment.

1. INTRODUCTION

Previous studies have confirmed that radar is an effective instrument in non-contact detection, which
shows great potential in multiple applications, such as disaster rescue, terrorist activity identification,
and medical monitoring [1–7]. It is well established that in disasters such as earthquakes, landslides,
and terrorist attacks, the most pressing goal is to rescue victims. Until now, studies on bio-radar
have basically accomplished human presence detection behind barriers. At present, most research is
focusing on the location, number, and movement of targets [8–12]. With the further development of
bio-radar technology, an increasing number of studies are putting more emphasis on target identification
to acquire valuable information through bio-radar, which we think will become a hotspot in non-contact
life detection research [13–16].

Target identification mainly includes three aspects: human and animal distinction, living status
identification, and accurate individual identification. Our team has reported the use of bio-radar to
locate and detect the respiration and heartbeats of healthy persons behind obstacles [17–22]. However,
under a complex rubble environment, there exists the possibility that some animals are also present, and
since the vital signs of humans and animals are similar, misjudgment may occur. To solve this problem,
we have proposed some novel methods to distinguish between humans and animals [23–25]. During
search and rescue missions, the survival condition of a victim is an essential piece of information for the
diagnosis and treatment of injury. After distinguishing the correct human body buried under rubble,
the next task is to acquire their current physiological status. It is best if we can extract the survival
information from the received radar signal to determine the living status of victims. The survival
information can aid in decision-making about the priority for rescuing injured persons and allocating

Received 27 October 2020, Accepted 21 December 2020, Scheduled 25 December 2020
* Corresponding author: Jianqi Wang (wangjq@fmmu.edu.cn).
1 Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China. 2 Department of Medical Engineering,
The General Hospital of Western Theater Command PLA, Chengdu, China.



24 Yu et al.

medical resources more reasonably. Besides, with the help of valuable survival information, the working
efficiency can be largely enhanced, and victims can be rescued and cured in time.

Hemorrhage is the leading cause of morbidity and mortality in surgery and trauma patients [26].
During natural disasters or anti-terrorist missions, individuals often suffer traumatic injuries, and blood
loss is one of the most common symptoms. Rescuers should monitor the current vital signs of injured
persons derived from radar to reflect their life status. Given this factor, some groups have studied
the detection and monitoring of injured subjects. A research group in Japan reported that they could
distinguish a hypovolaemic group of rabbits from a normal group using radar, but the living statuses
in the two groups were changeless [27]. The Chinese Academy of Sciences continuously monitored the
vital signs of Beagle dogs and Wistar rats with different injuries and summarized four survival periods
according to variational life signals [28]. However, since the sensors used in this study were contact type
and wearable, they were a source of outside disturbance to the animals. Furthermore, the above studies
mainly focused on the rate variables of heartbeats and respiration, which may not totally determine the
condition of subjects, since the single rate feature cannot completely describe signal characteristics in
complicated situations.

Due to the time-varying, non-stationary, and nonlinear characteristics of biomedical signals, time-
frequency analysis is a suitable choice for analyzing these signals and providing the instantaneous
frequency and amplitude. Additionally, the non-contact detection mode of radar is suitable for animal
experiments, since it does not constrain the animals or cause any obvious outside effects. Based on the
advantages of radar detection and time-frequency analysis, this study explores the feasibility of using
radar to continuously monitor the physiological state of humans suffering from massive hemorrhage and
analyzing life signals in the time-frequency field. The goal was to determine the current living status
through vital signs derived from radar echo signals.

An experimental hemorrhagic state was produced by arterial blood withdrawal in rabbits. We
utilized a physiological signal collection system and a radar system to monitor the vital signs of rabbits
simultaneously. Data collected from the physiological signal collection system were considered as the
reference information during the experiment. The study defined three periods of the physiological
state of an injured rabbit based on the blood pressure variation. To determine the physiological state
of animals from the radar echo signal, K-nearest neighbor (KNN) classification was conducted using
variables derived from the proposed non-contact method. This technique can be applied to aid in search,
rescue, and therapy for deeply buried, injured humans and may aid in vital sign estimation.

The rest of study is organized as follows: Section 2 introduces materials and methods, including
monitoring systems, animal experiments, and signal processing methods. The experimental results are
described in Section 3. Section 4 gives the discussion on the experimental results. Section 5 ends the
paper with a conclusion on existing problems and a description of further research directions.

2. MATERIALS AND METHODS

The goal of this experiment is to monitor changes in the vital signs of rabbits in a hemorrhagic state
using bio-radar as well as a contact-type monitoring system. We aim to obtain living status information
derived from vital sign changes.

2.1. Contact-type Monitoring System

The RM6240E physiological signal collection system was utilized to acquire blood pressure, respiration,
and heartbeat signals, as shown in Figure 1. It has four independent data channels, and the sampling
rate can reach up to 100 kHz.

Studies show that mean arterial pressure (MAP) is an important hemodynamic variable which can
indicate physiological periods and is associated with increasing hemorrhage volume and mortality [29–
31]. In an attempt to better define and characterize the life status of subjects, the MAP parameter was
used in this paper for physiological period classification in the contact-type measurements.

According to the measurement of blood pressure of rabbits during the experiment, we defined
three survival periods based on MAP variation: normal period (narcosis period), hemorrhage period,
and agonal period. Besides, the hemorrhage period can be refined into early hemorrhage compensation
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Figure 1. RM6240E physiological signal
collection system.
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Figure 2. Curve of MAP in different periods.

stage and exhaustion stage. We adopted the fixed-volume hemorrhage method to build the hemorrhagic
model, which was accomplished via the withdrawal of blood from the carotid artery. In the normal
period, the animals were anesthetized. The vital signs of the rabbits were in the standard scope and
were quite stationary under the anesthesia condition. The value of MAP was above 60 mmHg. In
the hemorrhage period, as a result of body compensatory mechanisms, animals become restless. Due
to blood loss, the ventricular diastolic filling becomes insufficient, and the heart is unable to provide
optimal blood flow to cells and tissues. Initially, the arteries constrict and the heartbeat quickens in
order to maintain blood pressure and redistribute cardiac output [31]. In the meantime, the amplitude
and frequency of breathing increase, and the MAP ranges from 60 mmHg to 40 mmHg. However, the
compensatory mechanisms are limited. With the volume of blood loss increasing, the compensatory
mechanisms will gradually become invalid, and severe cellular hypoxia and organ damage may occur,
which may lead to an exhaustion stage [32]. In the exhaustion stage, the amplitude and frequency of
breathing slow down and arrhythmia appears. Furthermore, the MAP fluctuates around 40 mmHg and
even below 40 mmHg. When the compensatory mechanisms become totally invalid, the micro-vibration
signal gets weak little by little and the subject will reach the agonal period with MAP decreasing
continuously, mostly below 30 mmHg. Figure 2 shows the curve of MAP in different survival periods.
The MAP variations in all rabbits showed similar trends during observation.

2.2. Non-Contact Monitoring System

The microwave radar technology introduced in this study was developed by our research group. The
continuous wave (CW) radar generates a stable microwave at 24 GHz. It is a transmitting and receiving
sensor which consists of a transmitting antenna and a receiving antenna. The block diagram of the
CW radar system is shown in Figure 3. The radar raw signals are captured by a data acquisition card
and processed and displayed on the computer. Figure 4 shows the processing flow of the radar echo
signal. After preprocessing, including background removing, low-pass filtering, and adaptive filtering,
most noise is eliminated, and effective life signals remain. Then, Fast Fourier Transform (FFT) of
the microwave radar analogue output is conducted using an analyzing recorder so as to extract the
respiratory signal.

2.3. Signal Entropy

Due to complicated interferences, the life signal transmitted from the radar receiver has a low signal-to-
noise ratio (SNR), strong randomness, and low frequency range. Thus, the signal output is nonlinear
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Figure 3. Block diagram of the CW radar system.

Figure 4. Processing flow of radar echo signal.

and non-stationary. Therefore, a signal processing technique applicable to time-varying signal detection
has been demonstrated that permits us to classify physiological periods.

Shannon put forward the concept of “information entropy,” which resolved the problem of
quantitative measurement of information and found a unified scientific measurement method for the
amount of measurement information [33]. On the basis of the concept of thermodynamic entropy,
Shannon referred to the information-excluded redundant average information quantity as “information
entropy” and raised the mathematical calculation for information entropy, shown in Function 1 and
Function 2. Entropy reflects the average degree of complexity of the information source that can be
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defined as a measure of the uncertainty of the quantitative information in a system [34]. A more
disordered signal indicates higher entropy.

n∑
i=1

pi = 1. (1)

H(X) = −
n∑

i=1

p(xi) log p(xi). (2)

In the above formulas, the information X contains n random events. p(xi) is the probability of
each random event xi, and H(X) is the entropy of the information X.

According to the non-stationary feature of body vibration signals, entropy information can be
applied to this kind of signal analysis. Figure 5 displays the respiratory signal from radar. When
animals are in the normal period, the micro-vibration signal of radar is stationary, and the entropy
value is calculated as 1.56. In the hemorrhage period, the micro-vibration signal is non-stationary
and time-varying because of compensatory mechanisms. If the blood loss volume is too heavy to
compensate, the animal will tend to experience body failure. During this period, the signal becomes
complex and disordered, and the entropy value is correspondingly higher: 3.31. In the agonal period,
the micro-vibration signal becomes more disordered and finally disappears. The entropy value is still
at a high degree: 3.08, but there appears to be a decreasing trend of amplitudes corresponding to a
decreasing breathing frequency. From the above description, the entropy fluctuates from low to high in
different periods. Although the entropies between the normal and agonal periods are somewhat similar,
the amplitude of the agonal period is obviously the minimum among all three periods. The results
presented here demonstrate that the entropy combined with the amplitude parameter can basically
identify three survival periods of targets. In order to obtain more accurate classification of survival
periods, we also add the frequency feature in classification.
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Figure 5. Respiratory signal of three survival periods from radar.

2.4. K-nearest Neighbors Classifier

The K-nearest neighbor algorithm (KNN) is a common classification algorithm in machine learning,
which was first proposed by Cover and Hart [35]. KNN has become a very effective non-parametric
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classification algorithm, which is widely used in multiple applications such as pattern recognition,
statistical classification, computer vision, and DNA sequencing [36].

KNN is a lazy learning process that simply stores known training data. The core concept is that
if the majority of nearest neighbors of a sample belong to a certain category, the sample also belongs
to this category and possesses characteristics of this category. The classification method is based on
selecting the k-th neighbors with minimum eigenvector distances between the known training dataset
and the test dataset. In k-th minimum distances, the major category of these k-th neighbors determines
the final category of the testing sample. The classifying steps are described as follows:

Step 1: Calculate distances between the testing data and each set of training data. The Euclidean
distance was used in this study, shown in Function 3.

d(x, y) =

√√√√
n∑

i=1

(xi − yi)2, (3)

where X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) represent the data of two samples, and n is the
number of eigenvectors.

Step 2: Sort distances by ascending order.
Step 3: Select k-th minimum distances.
Step 4: Calculate frequencies of categories of k-th neighbors.
Step 5: Determine the category of the testing data. The majority voting in the neighborhood is the

predicted category of the testing data.

KNN has many advantages, such as simple concept, high accuracy, and low sensitivity to abnormal
values, and it can be used either in classification or regression. This paper chose KNN to classify
survival periods because of its good generalization, easy implementation, and better accuracy in multi-
classification [37]. Besides, KNN appears particularly suitable to classify intersectional or overlapped
testing data because it classifies based on nearby samples rather than directly determining the class
label. The data in this experiment have some overlaps, which is another reason why we choose KNN.

3. RESULTS

3.1. Animal Experiments

Nine New Zealand rabbits, each weighing approximately 2.5 kg, were anesthetized by intraperitoneal
injection of 25% urethane at 5 ml per kilogram of body weight. After anesthetization, rabbits were fixed
on the operating table in the supine position and remained fully anesthetized throughout the experiment.
The monitoring time was 30 min under the anesthetic condition. Then, the right carotid artery of each
rabbit was isolated and cannulated using an arterial catheter. A t-branch pipe was connected to the
arterial catheter in order to control blood withdrawal and monitor blood pressure. The hemorrhage
period was induced by withdrawal of 4 ml/kg blood each time from the carotid artery catheter with a
monitoring interval of 30 minutes. Moreover, the speed of withdrawal was about 2ml/(kg*min). When
the subject reached the agonal period, we stopped blood drawing and monitored until death. The radar
was placed 30 cm away from the side abdomen of the rabbit to monitor the respiratory signal. The
experiment setup is shown in Figure 6.

To compare the results of the proposed non-contact method with those of the contact method,
the abdominal position with the most obvious respiratory fluctuation of rabbits was fixed with the
tie-on respiratory transducer to measure the respiratory signal. The output breathing signal was the
first data channel of the RM6240E physiological signal collection system. The electrocardiogram was
recorded as the second data channel by subcutaneous insertion using the limb lead. To monitor the
blood pressure associated with the physiological periods, a pressure transducer was connected to one
side of the t-branch pipe. The carotid arterial pressure signal output was the third data channel.

All experiments were conducted in accordance with the guidelines of AirForce Military Medical
University Medical Ethics Committee and were in compliance with the Declaration of Helsinki.
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Figure 6. (a) The monitoring experiment setup. (b) The hemorrhage experiment setup.

3.2. Experimental Results

The respiratory rates were determined by the proposed non-contact method correlated significantly with
the respiratory rates measured by the respiration transducer, as shown in Figure 7. The fitting curve
was

y = 1.008 ∗ x + 0.8049 (4)

where x is the contact respiration rate, and y is the non-contact respiration rate. The correlation
coefficient was R2 = 0.9979, indicating that the radar respiration measurement was accurate.
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Figure 7. Respiratory rates measured by contact and non-contact methods.

The radar data collected were divided into several subsections, and each subsection contained
2400 sampling points (the sampling rate was 40 Hz). The divided subsections data were used in later
classification.

In KNN classification, three classes were measured: normal period, hemorrhage period, and agonal
period. The radar data of six rabbits were used for the training set (normal: 150 groups, hemorrhage:
500 groups, agonal: 90 groups), and the radar data of the other three rabbits were used for the testing
set (normal: 83 groups, hemorrhage: 370 groups, agonal: 42 groups). Since the absolute value of
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Figure 8. Three-dimensional diagram of feature vectors of all samples.

the amplitude parameter was large, directly substituting the calculation would have resulted in the
proportion of the component being too large, so the parameters needed to be normalized. Therefore, the
feature vectors were normalized frequency, normalized amplitude, and entropy value of body vibration
signal. Figure 8 shows the three-dimensional diagram of feature vectors of all samples.

Because this is a multi-class classification question, we presented three methods to conduct KNN
classification and made a comparison among these three methods to find the most suitable method.

Method 1: We conducted three-class classification directly. The predicted results are shown in
Table 1 with the classification accuracy of 83.8%. Results show that the normal period is easy to
identify. However, hemorrhage and agonal periods have some overlaps. The reason partially lies in
the relationship between hemorrhage and agonal periods, as the agonal period is a transition from the
hemorrhage period. Thus, these two periods are somewhat similar in terms of vital signs. Given this
condition, we set k = 3 in the classification, which has better accuracy than one neighbor.

Table 1. Classification results of KNN (K = 3).

Normal (test) Hemorrhage Agonal
Normal (predict) 74 30 1

Hemorrhage 9 329 29
Agonal 0 11 12

Method 2: Because both normal and hemorrhagic periods can be considered as the live condition,
we unified normal and hemorrhage periods as one live condition and conducted two-class classification
between the live condition and agonal period first. The accuracy of the first classification was 87.9%.
Then we used two-class classification again between the normal and hemorrhagic periods. Therefore,
this method employed two-class classification twice. The accuracy of the second classification was 93.6%.
The predicted results are shown in Tables 2 and 3. The total accuracy was 82.3%, which is the result
of 87.9% multiplied by 93.6%.

From Table 2, we can see that only 12 sets of agonal data were correctly predicted as the agonal
condition. Most of agonal data were classified as the live condition. The reason for the high error rate
may be that some agonal periods are transitional periods from the live condition to death. Hence, these
agonal periods and some live conditions have similar characteristics. In Table 3, it becomes easy to
identify normal and hemorrhage periods, and the accuracy gets higher correspondingly.

Method 3: Similarly, once the hemorrhagic experiment started, both hemorrhagic and agonal
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Table 2. The first two-class classification results of KNN (K = 3).

Live (test) Agonal

Live (predict) 423 30

Agonal 30 12

Table 3. The second two-class classification results of KNN (K = 3).

Normal (test) Hemorrhage

Normal (predict) 74 20

Hemorrhage 9 350

Table 4. The first two-class classification results of KNN (K = 3).

Normal (test) Abnormal

Normal (predict) 74 10

Abnormal 9 402

Table 5. The second two-class classification results of KNN (K = 3).

Hemorrhage (test) Agonal

Hemorrhage (predict) 333 30

Agonal 37 12

periods could be considered as abnormal conditions. The first step was classifying normal and abnormal
conditions by two-class classification, and the accuracy was 96.2%. Secondly, the hemorrhagic and
agonal periods were classified again, and the accuracy was 83.7%. The predicted results are shown in
Tables 4 and 5. The total accuracy was 80.5%.

Abnormal periods are easy to identify in Table 4, as normal periods are the most independent
condition in vital signs that can be separated easily from abnormal periods. Due to the same transitional
feature, most agonal periods are difficult to identify in Table 5.

4. DISCUSSION

In order to obtain higher classification accuracy, we utilized three methods to classify three periods.
Method 1 was a direct three-class classification, and method 2 and method 3 were twice two-class
classifications. The total accuracy of each method was 83.8%, 82.3%, and 80.5%, respectively. From the
above results, although method 1 had the highest accuracy among the three methods, it did not have
satisfactory performance. We think the reason lies in two parts. First, as mentioned before, the data
have some overlaps in hemorrhage and agonal periods, and some of the agonal samples are considered
as transitional periods. Second, the imbalanced sample size leads to misjudgment. But this factor is
unavoidable to a certain extent because the duration of hemorrhage is the longest, and the agonal period
lasts only for a short time compared with the other two periods. To solve this problem, we can try
other advanced algorithms in dealing with the issue of classification on imbalanced datasets.
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5. CONCLUSIONS

In rescue missions, it is of great importance to determine the survival conditions of humans buried
under rubble. Radar can be applied as a useful tool to detect the life signals of buried victims. After
the detection and location of victims, the next step is to evaluate the survival conditions of subjects in
order to provide appropriate medical attention. Thus, extracting survival information from the received
life signal is crucial. This study proposed a novel method to extract time-frequency characteristics
of body vibration signals from hemorrhagic rabbits and then defined three survival periods using a
KNN classifier. In time-frequency analysis, three features of the respiration signal could be acquired:
frequency, amplitude, and entropy. Next, three kinds of KNN methods were adopted to classify three
survival periods. Results showed that survival periods such as normal period, hemorrhage period,
and agonal period could be classified approximately, and the classification accuracies of the three KNN
methods were 83.8%, 82.3%, and 80.5%. Based on this idea, we are able to determine the living condition
of humans through a received radar echo signal. In future studies, we plan to conduct more animal
hemorrhage experiments and expand to a variety of animals such as dogs and pigs to fully evaluate the
effectiveness of this method.
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