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Abstract—The quaternion multiple signal classification (Q-MUSIC) algorithm reduces the dimension
of covariance matrix, which would result in performance degrading of DOA estimation. An augmented
quaternion MUSIC algorithm (AQ-MUSIC) based on concentered orthogonal loop and dipole (COLD)
array is presented in this paper. The proposed algorithm uses an augmented quaternion formalism
to model the completely polarized signals, which allows a concise and novel way to an augmented
covariance matrix. The fact reveals that more accurate DOA parameters could be extracted from an
augmented covariance matrix. Even compared with the long vector MUSIC (LV-MUSIC) algorithm
whose dimension of covariance matrix is the same as AQ-MUSIC, the accuracy of DOA parameter
estimation is also improved. Simulation results verify the performance promotion of the proposed
approach.

1. INTRODUCTION

Compared with the conventional scalar array, the electromagnetic vector sensor array is a superior array,
which contains not only the incident sources’ spatial information, but also the polarization information.
As such it has many applications in radar, sonar, wireless communications, etc. [1–4]. A large number of
works have been conducted by extending the classical scalar array processing techniques to the vector-
sensor case, such as MUSIC-like [5, 6] and ESPRIT-like [7, 8] methods dealing with multi-components
of vector sensor array with different configurations. The vector sensor array considered in the above
mentioned methods is formulated in the real or complex field, as arranged one by one into a “long-
vector”. Although “long-vector” subspace-based approaches appear to have a better performance than
classical scalar ones, they have the drawback of ignoring possible structural information of the vector-
type signal.

Further, by maintaining the vector nature of array output, some efforts have been devoted to
vector array signal processing in quaternion framework. Those works demonstrated the advantages of
vector sensor array in DOA estimation accuracy and robustness to model errors. For instance, MUSIC-
like DOA estimators were formed for vector-sensor arrays, based on quaternion [9], biquaternion [10],
and quad-quaternion [11] data models, respectively, achieving equivalent or superior performance to
their complex counterparts as a result of utilizing strict orthogonality. Besides, despite less memory
required for data covariance representation in quaternion or biquaternion framework, the dimension of
corresponding data covariance is also reduced, which may result in a degraded performance because the
DOA estimation accuracy of the MUSIC-like methods mainly depends on the dimension of the noise
subspace of the covariance matrix.
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In this paper, we propose an augmented quaternion MUSIC (AQ-MUSIC) algorithm based on
a concentered orthogonal loop and dipole (COLD) uniform linear array (ULA)/sparse linear array
(SLA) by concatenating two quaternion models. Based on the AQ model, the AQ noise subspace is
obtained by performing eigenvalue decomposition (EVD) of the adjoint matrix of AQ covariance matrix
calculated with the AQ observations. Then the interesting DOAs are estimated based on the AQ-MUSIC
estimators by distinguishing the peaks. The superior performance of the proposed algorithm is shown
through computer simulations, as compared with the existing MUSIC-like counterparts. Therefore, the
proposed method can be better effectively applied in wireless monitoring applications than existing
methods by resorting to a more efficient patch antenna [12].

Notations: (·)∗, (·)T , and (·)H denote conjugate, transpose, and conjugate transpose, respectively;
diag{·} and blkdiag[·, ·] denote the diagonal and block diagonal matrices, respectively; Ik denotes
the k-dimensional identity matrix; E(·) and det(·) are the expectation and determinant operators,
respectively. ‖ · ‖2

F denotes the Frobenius norm. R, C, and H represent real, complex, and quaternion
fields, respectively.

2. QUATERNIONS AND POLARIZATION MODEL

2.1. Quaternions

A quaternion q has four components with one real part and three imaginary parts, which can be
represented in Cayley-Dickson form as [9–11]:

q = r0 + r1i + r2j + r3k

= c1 + c2j,
(1)

where r0, r1, r2, r3 ∈ R are real numbers; c1 = r0 + r1i, c2 = r2 + r3i ∈ C are complex numbers; and
i, j, k are three imaginary units obeying the following rules:

ij = −ji = k, jk = −kj = i,

ki = −ik = j, i2 = j2 = k2 = −1.
(2)

Then, we introduce an important theorem of quaternion matrix used in our proposed algorithm.
Given a square quaternion matrix B ∈ H

M×M , the eigenvalue decomposition of its adjoint matrix Bσ

can be expressed as [4]:

Bσ =
[

U1 U2

−U∗
2 U∗

1

] [
D 0
0 D∗

] [
U1 U2

−U∗
2 U∗

1

]H

= UcDcUH
c . (3)

In Eq. (3), the eigenvalues of Bσ appear in conjugated pairs, contributing to diagonal matrices
D ∈ H

M×M and D∗ ∈ H
M×M , and Dc and Uc are the adjoint matrices of D and U = U1 + U2j,

respectively. Therefore, the eigenvalue decomposition of the quaternion matrix B is given by

B = (U1 + U2j)D(U1 + U2j)H . (4)

In particular, when B is a Hermitian matrix, D is a real diagonal matrix.

2.2. Polarization Model

Consider a ULA consisting of M pairs of COLD, which are located on y-axis with the center at y = md
(m = 1, . . . ,M), as shown in Fig. 1 of [7]. The distance d between two adjacent COLD pairs is assumed
within a half-wavelength to avoid angle ambiguity. Assume that K far-field completely polarized signals
sk(t), k = 1, . . . ,K impinge on the array from θk, k = 1, . . . ,K in the y-z plane, where θk denotes the
angle of the kth source measured from the z-axis, and the steering vector a(θk) is the response of the
array corresponding to the kth DOA. With respect to the element at the origin of the axes, the mth
element of a(θk) is defined as am(θk)=eimγk , where γk = −2πd

λ sin θk, and λ is the wavelength of the
signal.

The response of a COLD can be decomposed into electric field components and magnetic field
components. The loop and dipole arranged respectively in the x-direction and z-direction measure each



Progress In Electromagnetics Research Letters, Vol. 95, 2021 27

component separately, with the dipole measuring the electric component and the loop measuring the
magnetic component. Hence, for the kth signal, the components of the signal received by a COLD can
be defined as [7]

ξk =
[

ξk,1

ξk,2

]

=
[ − sinϕk cos θk cos ϕk

− cos θk cos ϕk − sin ϕk

] [
cos αk

sin αke
iβk

] (5)

where 0 ≤ αk ≤ π/2 and 0 ≤ βk ≤ 2π are the ranges of the polarization angle and phase difference,
respectively, while ϕk is the angle of the kth source measured from the x-axis, as we assume that all
sources are in the y-z plane, which means ϕk = 90◦. Therefore ξk can be simplified as

ξk =
[ −1 0

0 −1

] [
cos αk

sinαke
iβk

]
. (6)

Thus, the signal vector xm(t) received by the mth COLD pair at time t with x1,m(t) and x2,m(t)
denoting the observed components from x-axis dipole and z-axis loop can be, respectively, expressed as

xm(t) =
[

x1,m(t)
x2,m(t)

]

=
K∑

k=1

am(θk)
[ − cos αk

− sinαke
iβk

]
sk(t) + nm(t)

(7)

where nm(t) = [ n1,m(t)
n2,m(t) ] is the noise vectors at the mth COLD pair with its x-component noise

n1,m(t) and z-component n2,m(t), which is assumed as independent and identically distributed circularly
symmetric Gaussian random variables with mean zero and variance σ2

n. The traditional LV-MUSIC is
based on the LV polar model in Eq. (7), which inevitably ignores the structural information contained
in the output of the vector array.

3. THE PROPOSED ALGORITHM

In this section, two quaternion polar models are firstly introduced to construct the AQ model; then
based on the AQ model, a multiple-dimension (MD) parameter decoupled MUSIC (named AQ-MUSIC)
algorithm is proposed by utilizing the RARE principle for the DOAs.

Let x1,m(t) and x2,m(t) be the output of two sub-arrays constituted by dipoles and loops, which
can be given by

x1,m(t) =
K∑

k=1

am(θk)ξk,1sk(t) + n1,m(t)

x2,m(t) =
K∑

k=1

am(θk)ξk,2sk(t) + n2,m(t)

(8)

or in matrix form,
x1(t) = Q1s(t) + n1(t)
x2(t) = Q2s(t) + n2(t)

(9)

where Ql = [a1ξ1,l, . . . ,aKξK,l], l = 1, 2 is the angle-polarization array manifold matrices; s(t) =
[s1(t), . . . , sK(t)]T is the signal vector; and nl(t) = [nl,1(t), . . . , nl,M (t)]T is the noise vector of each
sub-array.

Then, define A = [a1, . . . ,aK ],Vl = diag{ξ1,l, . . . , ξK,l}, and a quaternion-based array output
vector can be constructed as follows

x(t) = x1(t) + x2(t)j = AVxs(t) + nx(t) (10)
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where Vx = V1 + V2j = diag{ξ1,1 + ξ1,2j, . . . , ξK,1 + ξK,2j} ∈ H
K×K, nx(t) = n1(t) + n2(t)j ∈ H

M×1.
To proceed, another quaternion-based array output vector is defined as follows

y(t) = x2(t) + x1(t)j = AVys(t) + ny(t) (11)

where Vy = V2 + V1j = diag{ξ1,2 + ξ1,1j, . . . , ξK,2 + ξK,1j} ∈ H
K×K, ny(t) = n2(t) + n1(t)j ∈ H

M×1.
Then, an AQ array output vector can be formed by concatenating x(t) and y(t),

z(t) =
[

x(t)
y(t)

]
=

[
AVx

AVy

]
s(t) +

[
nx(t)
ny(t)

]
. (12)

The AQ covariance matrix R of z(t) is calculated by

R = E
{
z(t)zH(t)

}

=
[

AVx

AVy

]
Rs

[
AVx

AVy

]H

+ 2σ2
nI2M

= ĀRsĀ
H + 2σ2

nI2M

(13)

where Rs=E{s(t)sH(t)} is the signal covariance matrix, and Ā is the extended array manifold matrix
related to (θ, α, β). Obviously, R is a self-conjugated quaternion covariance matrix, and its complex
adjoint matrix Rσ is a complex Hermite matrix. On the basis of the complex adjoint matrix defined in
Eq. (3), we perform EVD on Rσ as follows

Rσ =
(

R1 R2

−R∗
2 R∗

1

)

=
(

U1 U2

−U∗
2 U∗

1

)(
Λ 0
0 Λ

)(
U1 U2

−U∗
2 U∗

1

)H

.

(14)

The EVD of R has the form of
R = UΛUH

= (U1 + U2j)Λ(U1 + U2j)H

= UsΛsUH
s + UnΛnUH

n

(15)

where Us ∈ H
2M×K is the quaternion-based signal subspace corresponding to eigenvalue matrices Λs,

and Un ∈ H
2M×(2M−K) is the quaternion-based noise subspace corresponding to eigenvalue matrices

Λn.
Similar to the orthogonality relationship in complex-valued MUSIC method [5], the quaternion

matrix Us is still orthogonal to Un. Furthermore, the extended array manifold matrix Ā and signal
subspace Us span the same subspace [5], thus Ā is also orthogonal to Un, namely,

āHUn = 0 (16)
where ā is the column vector of Ā. Based on Eq. (16), the spectrum function of AQ-MUSIC is
constructed as

fQ(θ, α, β) =
∥∥āH(θ, α, β)Un

∥∥2

F
(17)

where

ā(θ) =
[

a(θ)(ξk,1 + ξk,2j)
a(θ)(ξk,2 + ξk,1j)

]

= ȧ(θ)
[

ξk,1 + ξk,2j
ξk,2 + ξk,1j

] (18)

where ȧ(θ) = blkdiag{a(θ),a(θ)}. Substituting Eq. (18) to Eq. (17), the spectrum function fQ(θ, α, β)
can be changed to

fQ (θ, α, β) =
[

ξk,1 + ξk,2j
ξk,2 + ξk,1j

]H

ȧH (θ)UnUH
n ȧ (θ)

[
ξk,1 + ξk,2j
ξk,2 + ξk,1j

]

= εH(α, β)C (θ) ε(α, β)
(19)
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where

C(θ) = ȧH(θ)UnUH
n ȧ(θ), ε(α, β) =

[
ξk,1 + ξk,2j
ξk,2 + ξk,1j

]
(20)

As 0 ≤ αk ≤ π/2, ξk,1 + ξk,2j and ξk,2 + ξk,1j are not equal to zero in general, thus ε(α, β) �= 0. In
general, the matrix C(θ) is full rank with the assumption of K ≤ M . However, when the true DOA
presents, which is θ = θk, k = 1, . . . K, the matrix C(θ) is rank deficient or equivalently det[C(θ)] = 0.
Based on the RARE principle [13, 14], the spectrum function fQ(θ, α, β) can be simplified as

fQ(θ) =
1

det[C(θ)]
(21)

By searching over θ ∈ [−π
2 , π

2 ], the DOA estimates of all sources can be obtained from the K highest
peaks. A flowchart of the proposed algorithm is shown in Fig. 1.
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Figure 1. The flowchart of the proposed algorithm.

4. SIMULATION RESULTS

Several examples are conducted in this section, to verify the performance of the proposed AQ-
MUSIC algorithm, as compared to LV-MUSIC [5] and Q-MUSIC [9]. Consider a ULA of COLDs
with half-wavelength inter-element spacing, illuminated by three uncorrelated equal-power signals,
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which have the interesting parameters (θ1, α1, β1) = (10◦, 22◦, 35◦), (θ2, α2, β2) = (30◦, 33◦, 45◦) and
(θ3, α3, β3) = (45◦, 44◦, 60◦), respectively. The noise of the COLD element which is additive white
Gaussian with zero-mean is uncorrelated with the incoming signals. The root mean squared error
(RMSE), calculated by 500 Monte Carlo trials, is adopted as the performance index.

In the first example, the DOA estimation performance is studied with respect to SNR. The number
of elements is 8, and the SNR varies from −6 dB to 18 dB. The number of snapshots T adopted is 50.
Fig. 2 shows that the AQ-MUSIC algorithm has clearly outperformed the Q-MUSIC and LV-MUSIC
algorithms, especially in low SNR regions.

In the second example, the average received SNR of each signal is 5 dB. The RMSEs of the estimated
DOA parameter versus the number of snapshots are depicted in Fig. 3. As shown in Fig. 3, the RMSEs
of the estimated DOAs of all three algorithms decrease as the number of snapshots increases. From the
results, the AQ-MUSIC provides more accurate DOA estimation than other counterparts with a small
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Figure 2. RMSE versus SNR.
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Figure 4. Spatial resolution capability.

number of snapshots.
In the third example, the spatial resolution capability of the AQ-MUSIC method is demonstrated

based on a ULA/SLA of 4 elements with SNR = 20 dB and 10 snapshots. Fig. 4 shows that the
AQ-MUSIC algorithm based on SLA has clearly distinguished the DOAs with sharper peaks than ULA.

5. CONCLUSION

By utilizing a COLD array, an AQ-MUSIC algorithm is proposed for DOA estimation of fully polarized
signals. With judiciously arranging the observed signals, an AQ data model is constructed, and the AQ
noise subspace is achieved by performing EVD on the adjoint matrix of AQ covariance matrix. Based
on the orthogonality relationship, the AQ-MUSIC estimator is built to achieve the DOAs corresponding
to the peaks. In comparison with the existing MUSIC-type counterparts, the proposed AQ-MUSIC
method yields an overall improved performance in low SNRs with small number of snapshots.
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