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Dual-Band Bandpass Filter Design Using Stub-Loaded Hairpin
Resonator and Meandering Uniform Impedance Resonator
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Abstract—A novel microstrip dual-band bandpass filter (BPF) by coupling a stub-loaded hairpin
resonator and two stub-loaded uniform impedance resonators (UIRs) is proposed. First, a open-ended
stub is tap-connected to a meandering UIR at its centre, and these two stub-loaded meandering UIRs
are further placed at symmetrical locations with respect to a stub-loaded hairpin resonator. Secondly,
by introducing two parallel coupled lines at the two sides of the stub-loaded hairpin resonator, a dual-
band BPF with two passbands at 2.4 GHz and 5.2 GHz is constructed. Finally, a prototype filter is
designed and fabricated, and its measured results are provided to verify the predicted dual-band filter
design.

1. INTRODUCTION

With the development of modern wireless communication systems, the demand for dual-band microwave
systems has increased rapidly. The systems require microwave bandpass filters (BPFs) to handle
different frequency bands. So far, various techniques have been proposed to explore dual-band BPFs [1–
8]. The simplest way to construct a dual-band filter is combining two different single-band filters [1, 2].
This approach is superior to others in terms of simple design and flexible passbands. However, the circuit
usually occupies a large area, due to additional impedance-matching networks. The second method is
to separate an entire wide passband into two relatively narrow passbands by cascading a wideband BPF
with a narrowband bandstop filter [3, 4]. The third method is to construct two passbands by virtue
of first two resonant frequencies of coupled stepped-impedance resonators (SIRs) [5]. In [6] and [7], a
simple stub-loaded dual-mode resonator was employed for the dual-band filter design, but it is difficult to
synthesize the corresponding dual-band coupling degrees. Another paper in [8] proposes a class of dual-
band bandpass filters with SIRs and presents a rigorous synthesis method for these compact filters. An
embedded dual-mode hairpin resonator is studied and used for a dual-band filter design [9]. In another
method, multimode resonators (MMRs) have been attracting much attention of researchers with their
advantage of compact size in the design of dual-passband filters on the microstrip-line MMRs [10] and
slotted patches [11] or SIW MMR [12].

In this Letter, a novel dual-band BPF with a compact size is presented by coupling a stub-loaded
hairpin resonator and two stub-loaded UIRs. The characteristics of these resonators are analyzed, and
then applied to the dual-band BPF design. Finally, a prototype filter is designed and fabricated to
provide experimental verification.

2. THEORETICAL ANALYSIS

As described in Figure 1(a), the conventional UIR is bent at both ends, and a stub is tap-connected
in its centre. Compared with the existing stub-loaded resonators, the proposed one apparently has a
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Figure 1. Layout of Stub-loaded meandering UIR and its transmission line models with loose coupling.
(a) Layout. (b) Transmission line models.

miniaturized size. Its transmission line models is shown as in Figure 1(b). The resonator is loosely-
coupled with I/O ports by C = 0.01 pF, here (Z1, Z2, and Z3) denote characteristic impedances, and
(θ1, θ2, and θ3) indicate corresponding electrical lengths. The input admittance is given by

Yin = jY
tanθ3 + 2 tan(θ1 + θ2)

1 − [tanθ3 + tan(θ1 + θ2)] · tan(θ1 + θ2)
(1)

where θi = βLi, Z1 = Z2 = Z3 = 1/Y . The resonant frequencies can be calculated by setting Yin = 0,
as follows:

tanθ3 + 2tan(θ1 + θ2) = 0 (2)

To investigate the resonant properties of a stub-loaded meandering UIR, its respective transmission
line model shown in Figure 1(b) is analyzed in Agilent Advanced System (ADS) on a substrate with
a thickness of 1.27 mm and dielectric constant of 10.8. Here, L1=2.4 mm and L2 = L3=2.4 mm in
Figure 1(a), and the corresponding electrical lengths and impedance for the stub-loaded resonator are
chosen to be θ1 = 25◦, θ2 = θ3 = 40◦, and Z1 = Z2 = Z3 = 80Ω, in Figure 1(b). Based on the above
analysis, the resonant property of the resonator is plotted in Figure 2. It can be seen that there is a
transmission zero at 7.85 GHz between the second and third resonant modes due to the loaded stub,
which can vastly improve the upper stopband with enhanced attenuation.

Figure 2. Frequency responses of the resonator circuits in Figure 1(b).

By appropriately folding a UIR at the centre, a coupled-line hairpin resonator with two stubs-
loaded shown in Figure 3(a) can be constructed, here L4 = 5.6 mm, L5 = L6 = 5.4 mm, W1 = 0.6 mm,
W2 = 0.3 mm, g = 0.2 mm. Its transmission line model with loose coupling is shown in Figure 3(b), in
which the corresponding electrical lengths and impedances are chosen to be θh = 42◦, θho = θhe = 86◦,
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Figure 3. Layout of Stub-loaded hairpin resonator and its transmission line models with loose coupling.
(a) Layout. (b) Transmission line models.

Zh1 = 80Ω, Zho = 35Ω, and Zhe = 90Ω. As discussed in [13], it can generate transmission zeros between
the first and second resonant modes under the condition of the impedance ratio R = Zho/Zhe < 0.5. In
this letter, R is selected as 0.4, thereby achieving our desired two transmission zeros between the dual
bands which ensure the good selectivity of the filter. The transmission zeros are calculated by

S21 =
−jYh1ΔY1cot(θeff )

Y 2
h1cot

2(θeff ) − ΔY2 + jYh1cot(θeff )ΔY1
= 0 (3)

where

ΔY1 = 2Yhe + Yho − Yhocot2(θeff )

ΔY2 = 2YheYho

(
1 − cot2(θeff )

)

Yho = 1/Zho; Yhe = 1/Zhe; Yh1 = 1/Zh1

here θeff is the arithmetic-averaged electrical length of θhe and θho for the coupled-line section. Figure 4
plots the frequency responses of the hairpin resonator loosely-coupled with I/O ports by C = 0.01 pF.
By properly adjust the lengths of coupled-line section and the stubs, the proposed resonator shows the
emergence of two transmission zeros at 3.67 GHz and 4.8 GHz between the first and second resonant
modes. This feature is because the two arms of the hairpin resonator are closely spaced, and there are
both electric and magnetic couplings between them. Each arm of the hairpin resonator has the maximum
electric field density at the end and the maximum fringe magnetic field density at both of the adjacent
sides. As described in [14], this will result in producing transmission zeros by appropriately tuning the
parameters of electric coupling and magnetic coupling, and the coupling mechanism of transmission
zero generation is investigated in detail in [14].

3. FILTER DESIGN AND IMPLEMENTATION

In view of above characteristics, a Chebyshev BPF using a stub-loaded hairpin resonator and two stub-
loaded meandering UIRs coupled is designed with central frequencies, f I

0 = 2.4 GHz and f II
0 =5.2 GHz.

Its coupling topology structure is shown as in Figure 5. The passband bandwidths of this filter depend
on the external quality factors and coupling coefficients. Therefore, considering the layout of the I/O
structure of Figure 6(a), the gap g1 and coupling length L determine the external quality factors. The
gap g and s, shown as in Figure 6(b) have relationship with the coupling coefficients. In addition,
because two arms of each hairpin resonator are closely spaced, they function as a pair of coupled line
themselves, which can have an effect on the coupling as well. According to the coupling coefficients,
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Figure 4. Frequency responses of the resonator circuits in Figure 3(b).
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Figure 5. The coupling topology structure of the BPF.

Lines width:0.6 mm

Gap: 0.2 mm 

Lines width: 0.3 mm  

Gap: g1

L

(a) (b)

Figure 6. (a) Layout of I/O structure. (b) Coupling aperture between two adjacent resonators.

we can only roughly give the spacing between resonators. Therefore, to design this type of filter more
accurately, a design approach employing full-wave simulation is applied to optimize it.

In order to demonstrate the performance of the proposed filter, the filter circuit is synthesized
and optimally designed, and its relevant layout with detailed dimensions is depicted in Figure 7(a).
Figure 7(b) describes the simulated and measured results. It can be observed that the stopband is now
expanded up to 12.7 GHz with insertion loss larger than 17 dB, where the maximum in-band return
losses are 32 dB and 19 dB; the minimum insertion losses are 1.37 dB and 1.23 dB at the 2.34 GHz
and the 5.18 GHz; the measured 3-dB fractional bandwidths are about 10.5% and 5.5% at 2.34 GHz
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Figure 7. Optimally designed filter. (a) Dimensional layout. (b) Simulated and measure results.

Figure 8. Photograph of the fabricated bandpass filter.

and 5.18 GHz. Simulated results almost agree with measured ones over a wide frequency. The slight
discrepancy of simulated and measured results is mainly caused by unexpected tolerance in fabrication
and the added input/output subminiature A (SMA) connectors. From the frequency responses of the
stub-loaded meandering UIR and stub-loaded hairpin resonator, shown as in Figure 2 and Figure 4,
it can be seen that the first resonant modes of stub-loaded hairpin resonator form the first passband,
and the first resonant modes of stub-loaded meandering UIR compose the second passband. Figure 8
shows a photograph of the fabricated bandpass filter. Finally, the comparisons of the proposed BPF
with other typical dual-band BPFs are summarized in Table 1. It clearly shows that the bandpass
filter designed in this study has the advantages of compact size and good out-of-band rejection to those
reported in [15–18]. λg is the guided wavelength at the first central frequency 2.4 GHz. Moreover, the
design method and structure are simple, which is suitable for engineering application.

Table 1. Comparison with other reported bandpass filters.

References Central frequencies (GHz) FBW(%) Stop-band (GHz) Size λg × λg

[15] 2.42/5.24 7.4/9.2 7 (2.9f I
0) 0.48 × 0.45

[16] 2.4/3.5 8.3/5.1 5.5 (2.3f I
0) 0.93 × 0.26

[17] 2.4/5.16 13.7/6.3 / 0.46 × 0.46
[18] 2.4/5 14.6/5.8 9.2 (3.8f I

0) 0.58 × 0.26
This work 2.4/5.2 10.5/5.5 12.7 (5.3f I

0) 0.30 × 0.33
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4. CONCLUSION

In this letter, a simple and effective design method for a dual-band filter has been presented with
high frequency selectivity. After detailed optimal design, a prototype has been implemented following
the given design procedure. The experimental results display that the proposed filter exhibits good
operation performance.
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