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A Simple Matrix Approach for Computing the Equivalent Resistance
and Unknown Components in Resistor Networks

Aris Alexopoulos*

Abstract—A method is presented for computing the equivalent resistance and the unknown
components of simple series and parallel resistor networks. The approach consists in taking the product
of a simple 2 × 2 matrix (N − 1) times, where N is the total number of components in the network.
The matrix approach originates from the study of continued fractions. Numerical computations only
require an algorithm that handles matrix multiplication.

1. INTRODUCTION

Resistor networks are fundamental to many electrical and electronic devices, and a method for computing
the equivalent resistance RE or conductance 1/RE is required. Finding the equivalent resistance then
allows determination of other unknown quantities such as voltage or current using Ohm’s law, V = IRE ,
for example. A large number of resistor networks can be reduced to resistors in a series-parallel
configuration with some exceptions such as the Wheatstone bridge circuit. For such networks there
is a requirement to determine the value of one or more unknown resistors in the network when a
required equivalent resistance RE is given.

For small networks, such an analysis can be done algebraically by reducing the parallel resistors to
series components and then summing all of them to obtain RE or by solving the algebraic expressions for
the unknown component. A number of interesting networks have been analyzed using simple algebraic
techniques [1–3]. More complicated networks require sophisticated techniques such as Kirchhoff’s
approach or the simpler approach based on nodal potentials whose variables are the values of the electric
potential at the circuit’s nodes [4]. Other methods that have been used involve Green’s function [5] for
the computation of large networks, Laplace transforms [6] and variational approaches as an alternative
to Kirchhoff’s loop theorem [7].

The problem with these methods for computing the equivalent resistance or the value of unknown
resistors in large networks is that they can be very complicated and in some cases intractable. In what
follows, a new method is introduced that consists of the multiplication of a simple 2×2 matrix, (N −1)
times, where N is the total number of components in the network, see [8] for a good exposition of matrix
algebra. This allows easy computation of RE or the computation for the unknown resistor values of a
network when RE is given. For small resistor networks the matrices can be multiplied algebraically in
order to obtain closed form solutions if required.

2. THEORETICAL DEVELOPMENT

Consider the following optimization problem. A circuit design requires that the total resistance in the
circuit be equal to RE = 17 kΩ. Due to manufacturing costs, the cheapest resistors available that can

Received 21 October 2020, Accepted 21 December 2020, Scheduled 28 December 2020
* Corresponding author: Aris Alexopoulos (arisa@iinet.net.au).
The author is with the P. O. Box 123-AA, Adelaide 5000, Australia.



126 Alexopoulos

be used to achieve this equivalent resistance have a value of R = 10 kΩ. How many R = 10 kΩ resistors,
which there are plenty of, can one use to produce the equivalent resistance? The answer is quite simple.
The number of resistors required x is:

x =
RE

R
=

17
10

= 1.7 (1)

Thus 1.7× 10 kΩ resistors are sufficient provided that one is a ‘whole’ 10 kΩ resistor, and the other is a
0.7 kΩ resistor. This however is rather problematic as it is not possible to cut a 10 kΩ resistor to match
the required fraction of 0.7 kΩ. It is critical that all resistors have the value R = 10 kΩ and no other
resistor types are allowed. To resolve this problem, it is possible to use R = 10 kΩ resistors in a network
consisting of series and parallel combinations. For example, the resistors can be set out as shown in
Fig. 1 and it can be shown that the equivalent resistance of this network is indeed RE = 17 kΩ.

R = 10

R = 10 R = 10 R = 10

R = 10

R = 10

R = 10

RE

Figure 1. One way to achieve an equivalent resistance of RE = 17 kΩ using R = 10 kΩ resistors is to
set them up in a network consisting of series and parallel arrangements as shown.

How was this arrangement of the R = 10 kΩ resistors made possible such that it resulted in the
required equivalent resistance of RE = 17 kΩ? To understand how this was done, suppose that any
number x where x ∈ R+, is written as two parts: x = [x] + {x}, where [x] is the integer part of x and
{x} is the fractional part of x. For example, (1) can be written as 1.7 = [1.7] + {1.7} ≡ 1 + 0.7. Define
the fractional part of x to be {x0} = {x}. Then for n = 0, 1, 2, ... the following definitions are given:

xn+1 =
1

{xn} (2)

and
1

{xn} = [xn+1] + {xn+1} (3)

The use of Eqs. (2) and (3) and why they are needed will become apparent shortly. In fact their use
will reveal how many R = 10 kΩ resistors are needed in series and how many are needed in parallel
in order to facilitate the network design of Fig. 1 which achieves RE = 17 kΩ using only R = 10 kΩ
resistors. Since x = 1.7 can be written as x = 1 + 0.7, it is a matter of addressing the fractional part
{x0} = {x} = 0.7 using Eqs. (2) and (3) for n = 0, 1, 2, .... Note that the number of values chosen for
n is such that the nth fractional term is zero, {xn} = 0. Alternatively n can be arbitrarily chosen to
terminate the process if a good enough approximation is achieved. Using (2) the following terms are
obtained:

n = 0 : x1 =
1

{x0} =
1

0.7
= 1.428571...; [x1] = 1, {x1} = 0.428571...

n = 1 : x2 =
1

{x1} =
1

0.428571...
= 2.3̇; [x2] = 2, {x2} = 0.3̇

n = 2 : x3 =
1

{x2} =
1

0.3̇
= 3; [x3] = 3, {x3} = 0

(4)
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From Eq. (4), the last fractional term is zero when n = 2, hence n takes the values n = 0, 1, 2. Using
these values in Eq. (3) gives

1
{x0} = [x1] + {x1}

1
{x1} = [x2] + {x2}

1
{x2} = [x3] + {x3}

(5)

Starting from the last term in Eq. (5) and back-substituting the reciprocal of each term into the
expressions above, i.e., the last term is substituted into the second and then the second into the first
gives:

{x0} =
1

[x1] +
1

[x2] +
1

[x3] + {x3}

(6)

All the values in Eq. (6) have been calculated in Eq. (4) and substituting them gives

0.7 =
1

1 +
1

2 +
1

3 + 0

(7)

Then the equivalent resistance becomes:

x = 1.7 = 1 + 0.7 = 1 +
1

1 +
1

2 +
1
3

(8)

using Eq. (7) to replace 0.7. What does this all mean? To understand this expression, let all the 10 kΩ
resistors be represented by R, see Fig. 1. The requirement is the same as before, that is, to use the same
type of resistors in some series and parallel configuration so that in the end an equivalent resistance of
RE = 17 kΩ is achieved. Thus starting with

RE

R
= 1.7 → RE = 1.7R = R + 0.7R (9)

the same process is followed as before using Eq. (2):

n = 0 : x1 =
1

{x0} =
1

0.7R
=

1.428571...
R

; [x1] =
1
R

, {x1} =
0.428571...

R

n = 1 : x2 =
1

{x1} =
R

0.428571...
= 2.3̇R; [x2] = 2R, {x2} = 0.3̇R

n = 2 : x3 =
1

{x2} =
1

0.3̇R
=

3
R

; [x3] =
3
R

, {x3} = 0

(10)

Substituting the values in Eq. (10) into Eq. (6) gives the following result for the equivalent resistance
RE via Eq. (9):

RE = R +
1

1
R

+
1

2R +
R

3

(11)

Evaluating the right-side of Eq. (11) gives

RE =
17R
10

= 17 kΩ (12)
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since all the resistors in Fig. 1 have the same value R = 10. The form given by Eq. (11) has a very
important meaning. The series and parallel resistors alternate. To clarify this even more let series
resistors be denoted by s while parallel resistors by p, then Eq. (11) becomes:

RE = s +
1

p +
1

2s +
1
3p

(13)

It should be clear now that as one moves from left to right in Fig. 1, there is one series resistor s
which is in parallel with one resistor p which in turn is in parallel with two series resistors 2s which are
themselves in series with three parallel resistors 3p. This is how the network of Fig. 1 was created so
that in the end it was possible to achieve the desired 17 kΩ using only 10 kΩ resistors.

As one moves from left to right in Fig. 1, there is an alternation between series and parallel resistors.
If either a series or parallel resistor is missing set s = 0 or p = 0 in Eq. (13). For example, if there is no
series resistor to begin with then the equivalent resistance becomes

RE = 0 +
1

p +
1

2s +
1
3
p

(14)

If instead, the first parallel resistor is removed or absent then p = 0 so that

RE = R +
1

0 +
1

2s +
1
3
p

(15)

and so on. The process that has been shown above is generalizable to resistor networks containing
different values for its series and parallel components. The other important observation is that the
analysis used to obtain Eq. (8) or (11) has allowed then to be written in a very familiar mathematical
form. They are in fact known as continued fractions and the reader can refer to [3] for their use in
circuit analysis. A ‘simple’ continued fraction x is defined as

x = a0 + KN
n=1

1
an

= a0 +
1

a1 +
1

a2 +
1

a3 + ...

(16)

where KN
n=1 means the fractional summation, and in this case the numbers or variables a0, a1, ... replace

the alternating series and parallel resistors. Whether an represents resistors or arbitrary numbers, they
can be written in a ‘pseudo-array’ structure A = [a0, a1, ...] that will be useful later on. The problem
with using continued fractions in resistor networks should be obvious. Continued fractions can become
complicated very soon especially for large resistor networks, and it can be very difficult to use them
in such an analysis. For this reason a simpler approach will now be discussed which only requires the
multiplication of a simple 2 × 2 matrix.

Let the continued fraction with components A = [a0, a1, a2] be expanded as

A = a0 +
1

a1 +
1
a2

(17)

Define the Q-matrix as [9, 10]:

Q(an) =
(

an 1
1 0

)
(18)
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The premise here is that by using the Q-matrix it is possible to represent any continued fraction such
as Eq. (17) as a product of the Q-matrices:

R =
N−1∏
n=0

Q(an) (19)

where N is the total number of elements in the array A. Then using Eq. (19), A can be obtained so
that it has the exact form as the continued fraction in Eq. (17) if

A =
R11

R21
(20)

Using the array elements and N = 3, Eq. (19) becomes

R =
2∏

n=0

Q(an) = Q(a0)Q(a1)Q(a2) (21)

then

R =
(

a0 1
1 0

)(
a1 1
1 0

)(
a2 1
1 0

)
=
(

(1 + a0a1)a2 + a0 1 + a0a1

1 + a1a2 a1

)
(22)

Using Eq. (20), A becomes

A =
a0 + (1 + a0a1)a2

1 + a1a2
= a0 +

a2

a1a2 + 1
= a0 +

1

a1 +
1
a2

(23)

which is equivalent to Eq. (17). By induction this can be shown to be the case for n > 2. Thus not only
does the Q-matrix compute continued fractions, but it also computes the series and parallel components
of resistor networks in order to obtain such things as the equivalent resistance RE or other properties.
These will be examined in more detail next.

2.1. The Q-Matrix and Resistor Networks

It has been established in the previous section that series-parallel resistor networks can be represented
by continued fractions. In turn it was shown that such continued fractions have an equivalence or
duality with the Q-matrix approach. This allows the analysis of resistor networks as follows. Let the
network resistor components in series be written as elements of the array:

A = [a0, a1, a2, · · · , aN−1] ≡ [R0, R1, R2, · · · , RN−1] (24)

where R0, R1... are the resistor values for the network components. For resistor components in parallel
(shunt) configurations, the inverse is taken for the entries of the array A,

A = [a0, a1, a2, · · · , aN−1] ≡ [1/R0, 1/R1, 1/R2, · · · , 1/RN−1] (25)

As an example of a network consisting of both types, the component array A can be written as:

A = [a0, a1, a2, · · · , aN−1] ≡ [R0, R1, 1/R2, · · · , RN−1] (26)

where a0 = R0, a1 = R1 are series resistors, and a2 = 1/R2 implies a resistor in parallel and so on,
see for example Fig. 2. In all cases, N is the total number of components in the network. Recall the
Q-matrix (18):

Q(an) =
(

an 1
1 0

)
(27)

Observe that when a component in array A is missing, an is set to zero so that the Q-matrix takes on
a kind of ‘pseudo’-identity matrix. The matrix in Eq. (27) can be used to obtain the following product
for each component n of the array A as discussed in the previous section,

R =
N−1∏
n=0

Q(an) = Q(a0)Q(a1)Q(a2) · · ·Q(aN−1) (28)
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Then the network equivalent resistance RE is obtained as:

RE =
R11

R21
(29)

Here (R11, R21) are obtained from the final product of all the matrices appearing in Eq. (28). It is worth
pointing out that the approach discussed above also works when the number of components is as small
as N = 1. In this case, the only contribution to R in Eq. (28) is Q(a0), and if a0 is a series component
for example, i.e., a0 = R0, then the equivalent resistance is merely RE = R0 from Eq. (29) as expected.

So far consideration has been given on how to obtain the equivalent resistance RE when series and
parallel resistors in a network are given. Another interesting problem is to determine what the values
of one or more resistors should be which achieve a desired equivalent resistance RE . This is easily done
using the approach discussed above via the use of Eq. (29):

RER21 − R11 = 0 (30)

for a given value of RE. Suppose that a network contains N resistors in series and parallel:

R =
N−1∏
n=0

Q(an) = Q(a0)Q(a1)Q(a2) · · ·Q(a21) · · · (31)

Let the component array be given as

A = [a0, a1, a2, ..., a21, ...] = [R0, 1/R1, R2, ..., 1/R21, ...] (32)

Assume that all resistors in Eq. (32) are known except R2. For a given value of RE , the problem requires
finding the numerical value of R2. Since R0 and R1 are known this implies that the product of the
Q-matrices gives the final matrix

Q(a0)Q(a1) =
(

R0 1
1 0

)⎛⎝ 1
R1

1

1 0

⎞
⎠ ≡

(
α β

γ δ

)
(33)

where the elements α, β, γ, δ are just numerical values. In a similar way, all matrices to the right of
Q(a2) are multiplied out to give the final numerical matrix:

· · · Q(a21) · · · ≡
(

ε ζ

η θ

)
(34)

where once again ε, ζ, η, θ are numerical values. Then Eq. (31) becomes,

R =
(

α β

γ δ

)(
R2 1
1 0

)(
ε ζ

η θ

)
=
(

αη + ε(β + αR2) αθ + ζ(β + αR2)
γη + ε(δ + γR2) γθ + ζ(δ + γR2)

)
(35)

Obtaining R21 and R11 from Eq. (35) and using Eq. (30), the unknown resistor R2 can be extracted
from the expression

R2 =
βε + αη − RE(δε + γη)

ε(REγ − α)
(36)

where RE is given. The theory developed here will be applied to a couple of simple resistor networks
in the next section.

3. APPLICATION TO RESISTOR NETWORKS

In order to elucidate the approach presented in the previous section, two simple resistor networks will
be considered here. These networks also have the added benefit that closed form solutions can be
obtained for comparison. For larger networks, closed form solutions can become horrendously complex
and intractable and so numerical techniques are needed which are usually too inefficient. On the
contrary, implementing the approach described here makes large network analysis rather simple and
straightforward.
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RE

R R0 2

R R1 3

Figure 2. A simple ‘ladder’ resistor network consisting of N = 4 resistors in a series and parallel
configuration.

3.1. Analysis of Network 1

Consider the ‘ladder’-network shown in Fig. 2 that has N = 4 resistor components. A component array
A is constructed by entering the resistors as they are encountered from left to right. Thus for Fig. 2,
the array becomes A = [a0, a1, a2, a3] ≡ [R0, 1/R1, R2, 1/R3]. It is important to note that this series-
parallel sequence is preserved for all computations. In other words, suppose that the parallel resistor R1

is removed from the network, then the number of components is still N = 4 but we set the entry to zero
for this missing component in the array: A = [a0, 0, a2, a3] ≡ [R0, 0, R2, 1/R3]. For this scenario, finding
the equivalent resistance RE is trivial since it is only the sum of the resistors: RE = R0 + R2 + R3. It
can be shown that the matrix approach also gives the same result as follows. If A = [R0, 0, R2, 1/R3]
then:

R =
3∏

n=0

Q(an) = Q(a0)Q(a1)Q(a2)Q(a3) (37)

Multiplying the Q-matrices out means that the matrix R becomes:

R =
(

R0 1
1 0

)(
0 1
1 0

)(
R2 1
1 0

)( 1
R3

1
1 0

)
=

⎛
⎜⎜⎝

R0 + R2 + R3

R3
R0 + R2

1
R3

1

⎞
⎟⎟⎠ (38)

The equivalent resistance is obtained from:

RE =
R11

R21
=

R0 + R2 + R3

R3

1
R3

= R0 + R2 + R3 (39)

as expected for resistors in series. Next, consider the case where R1 is reinstated again in the network
as in Fig. 2. Then the component array is A = [a0, a1, a2, a3] ≡ [R0, 1/R1, R2, 1/R3]. Before obtaining
RE for this network configuration using the matrix approach, a closed form solution can be derived in
algebraic form for comparison. The solution for RE becomes:

RE =
R0[R1 + R2 + R3] + R1[R2 + R3]

R1 + R2 + R3
(40)

The algebraic result in Eq. (40) is obtained by the reduction of parallel components to series components
and then summing them starting from the right and moving to the left in order to obtain the equivalent
resistor RE . The Q-matrix approach can also be used in algebraic form to obtain the same result for
verification. Using Eq. (37) gives,

R =
(

R0 1
1 0

)⎛⎝ 1
R1

1

1 0

⎞
⎠( R2 1

1 0

)⎛⎝ 1
R3

1

1 0

⎞
⎠
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=

⎛
⎜⎜⎜⎜⎝

1 +
R0

R1
+

R0 + R2

(
1 +

R0

R1

)
R3

R0 + R2

[
R1 + R0

R1

]
1

R1
+

R1 + R2

R1R3
1 +

R2

R1

⎞
⎟⎟⎟⎟⎠ (41)

where the second matrix is no longer the identity because the component R1 is now included as shown
in Fig. 2. The equivalent resistance is given by:

RE =
R11

R21
=

1 +
R0

R1
+

R0 + R2

(
1 +

R0

R1

)
R3

1
R1

+
R1 + R2

R1R3

=
R0[R1 + R2 + R3] + R1[R2 + R3]

R1 + R2 + R3
(42)

which is equal to Eq. (40) as expected. Let the values of the resistors in Fig. 2 be given as R0 = 1Ω,
R1 = 3Ω, R2 = 5Ω and R3 = 4Ω. Substituting these values into Eq. (42) gives the equivalent resistance
as RE = 3.25Ω. Suppose that instead RE ≡ 3.25Ω was given, as well as the resistor values except
R2 =?, then the problem requires finding the value of R2 by using Eqs. (30)–(36) as discussed in the
previous section. Since the network of Fig. 2 has already been solved in closed form, use of Eq. (42)
can be made. Rearranging Eq. (42) for the unknown resistor R2 gives:

R2 =
R0(R1 + R3) + R1R3 − RE(R1 + R3)

RE − (R0 + R1)
=

7 + 12 − 3.25 × 7
3.25 − 4

= 5Ω (43)

as expected. Typically for very large networks, closed form expressions become impractical so that
numerical multiplications of the Q-matrices are easiest.

3.2. Analysis of Network 2

The second example consists of the slightly more complicated network as shown in Fig. 3. Let the
resistors in Fig. 3 take the values: R0 = 1Ω, R1 = 12Ω, R2 = missing, R3 = 4Ω, R4 = 1Ω, R5 = 10Ω,
R6 = 2Ω and R7 = 8Ω. Recall that the missing resistor R2 must be accounted for in the array
A by setting its value to zero: A = [a0, a1, a2, a3, a4, a5, a6, a7] ≡ [1, 1/12, 0, 1/4, 1, 1/10, 2, 1/8]. The

RE R R1 3 R R5 7

R R0 4 R6

R   (missing)2

Figure 3. A resistor network consisting of N = 8 resistors in a series and parallel configuration. Even
though R2 is missing from the network, it is still counted as a component but its value is set to zero in
the component array A.
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equivalent resistance for the network is obtained via

R =
7∏

n=0

Q(an)

=
(

1 1
1 0

)( 1
12

1

1 0

)(
0 1
1 0

)⎛⎝ 1
4

1

1 0

⎞
⎠( 1 1

1 0

)⎛⎝ 1
10

1

1 0

⎞
⎠( 2 1

1 0

)⎛⎝ 1
8

1

1 0

⎞
⎠

=
(

9/4 82/15
3/4 34/15

)
(44)

The equivalent resistance for the network shown in Fig. 3 finally gives:

RE =
R11

R21
=

9
4
3
4

= 3Ω (45)

The problem of determining the value of a component when the equivalent resistance is given is now
revisited. Setting RE = 3Ω, what should the resistor R7 be if all other components have values as given
before? To determine this use is made once again of R21RE − R11 = 0. Multiplying all the Q-matrices
with the last one containing R7 gives:

R =
(

47/30 82/15
7/15 34/15

)( 1
R7

1
1 0

)
=

⎛
⎜⎝ 47/30 + (82/15)

1
R7

82/15

7/15 + (34/15)
1

R7
34/15

⎞
⎟⎠ (46)

Then using 3R21 − R11 = 0 and solving for R7 gives the expected value R7 = 8Ω. On the other hand
if there are multiple unknown components that need to be determined for a given RE, the process is
the same except that the equation for their solution takes the form Rx + Ry + Rz + ... = C, where
C represents all the other known resistor components. An equation such as this is known as a linear
Diophantine equation [11] and solving for Rx, Ry, Rz, ... is well documented. For example, consider
Fig. 2 and suppose that RE and all other resistor values are given as before except for R2 and R3. This
network has been solved above and is given by Eq. (42). Re-arranging for R2 and R3 gives:

R2 + R3 =
(R0 − RE)R1

RE − R0 − R1
(47)

Substituting all the known values on the right side of Eq. (47) gives the Diophantine equation:
R2 + R3 = 9 which can be solved using a Euclidean algorithm to obtain the solutions (R2, R3) =
[(1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1)]. These are the possible values that the resistor
components R2 and R3 can take for a fixed RE = 3.25. The set also includes the original values
for them, namely R2 = 5 and R3 = 4. Some of these solutions can be obtained by inspecting the
Diophantine equation; however for a larger number of unknown components, this is not so easy.

4. CONCLUSION

A simple matrix method has been proposed that allows computation for the equivalent resistance as
well as the determination of unknown components in simple resistor networks. It can also be used to
compute continued fractions. It is computationally efficient since it only requires the multiplication of
a 2 × 2 matrix (N − 1) times where N is the total number of components in the network.
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