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Abstract—Herein a theory of characteristic mode (TCM)-based design of circularly-polarized (CP)
quad-band compact microstrip antenna is proposed. It involves one annular ring radiator having eight
symmetrical slots along its boundary and three circular closed ring resonators (CRRs) on the bottom
side of the substrate. Initially, CM analysis was carried out for the radiator without a feeding structure,
to determine the modal currents and their corresponding modal fields (radiation patterns) of existing
modes. This helped in recognizing the symmetric modes to be selectively excited by the feed to furnish
CP and gave direction for selecting an asymmetric CPW-fed structure as the feed of choice. Evolution
process of the antenna geometry shows that the eight symmetrical slots in tandem with the CRRs
generate wide impedance bandwidth (IBW), while measured quad CP bands are obtained through
uses of an asymmetric ground plane resonating at 5.63 GHz (120 MHz), a cross-shaped slit at 7.69 GHz
(650 MHz), a rectangular open loop at 9.91 GHz (1200 MHz), and a tuning stub in the feeding structure
at 12.09 GHz (160 MHz). Series of parasitic strips augmented CP radiation and eliminate ripples in
the radiation pattern. Measured findings relate satisfactorily with simulations done using Ansys HFSS
2020 R1. A low cost FR-4 substrate is used to fabricate the antenna with an optimized dimension of
35 × 30 × 1.6 mm3. The measured IBW ranges from 4.36–4.82 GHz, 5.50–5.78 GHz, and 5.95–beyond
14 GHz. The proposed antenna may find suitable applications in C band, X band, and 5GHz WLAN
devices.

1. INTRODUCTION

In contemporary wireless communication devices, there is an enduring challenge for developing
miniaturized, multiband, and cost-effective antennas. Circular polarization technique has become an
attractive choice due to its high immunity against multipath interferences, heftiness to polarization
mismatches, and reliable transmission characteristics in hostile weather conditions [1]. Circular
polarization can be generated using either double or single feed mechanism in microstrip antennas.
Dual feeds generate broad CP bands, but they require external power dividers and extra space, which
becomes problematic for fabricating compact microstip antennas [2]. Therefore, single feed mechanism
for generating CP radiation is more desirable in terms of easy fabrication. In single feed mechanism,
principal scheme involves detuning of the degenerate mode in a symmetrical patch by implementing
minor modifications in geometry at suitable positions to perturb electric fields. The generated mode of
a patch antenna can be divided into two orthogonal modes by well-studied perturbation sections like
slits, slots, truncated segments, or stubs [3]. The radiation fields excited by these modes are typically
perpendicular to each other. These two modes can be tuned to equal amplitude and phase quadrature at
the resonant frequency by optimizing the amount of perturbation created. In this way, CP radiation with
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considerably enhanced bandwidth can be attained employing single feed. Nowadays, multiple circularly
polarized antennas are replaced by a single antenna which satisfies multiple band operation. Slot
antenna [4–8] research has greatly impacted various fields like telecommunication, medical, military, and
commercial applications by helping in realizing miniaturized microstrip antennas needed in these areas.
Very recently, a triple band circularly polarized antenna has been demonstrated using slot/strips [9].
Optimization of slot antennas by utilizing single feed mechanism to achieve circularly polarized quad
bands remains a challenging area which needs urgent attention of researchers. Recently, some antennas
have been developed using single feed to achieve either quad- or multi bands [10–13].

The theory of characteristic modes (TCM) was proposed way back in 1971 by Garbacz and
Turpin [14], and later improvised by Harrington and Mautz [15, 16]. Recently, a resurrection of interest
in TCM is observed for designing microstrip antennas. It provides a plain understanding of every
resonant mode, the equivalent mode current, and its far field radiation pattern. These details can also
give significant control during designing best feeding network and desired polarization properties [17].
TCM analysis is also a good tool for antenna placement studies for platforms that are inherently part
of the radiator. In recent times, TCM has been applied in designing many wideband antennas [18–24].
However, many of these antennas lacked stable radiation patterns while trying to achieve wide IBW.
Very recently, we have also used TCM to design a circularly polarized coplanar waveguide (CPW)-fed
slot antenna [25]. The antenna is designed using theoretical lower resonating frequency 4.38 GHz so
that it can cover some channel of 802.11 standards used for Wi-Fi communications. Moreover, in many
countries like India, bands in this frequency region have been kept unlicensed and free usage allowed for
Wi-Fi and 5G communications. This motivated us to design a microstrip antenna envisaging 4.38 GHz
as the theoretical lower resonating frequency.

Herein using TCM, a wide impedance and circularly polarized bands antenna simultaneously
showing stable omnidirectional radiation patterns is proposed. It has been realized using eight
symmetrical slots on the edge of an annular radiator as it can generate wide impedance band compared
to a conventional rectangular microstrip antenna. Initially, CM analysis of the radiator, without feeding,
was carried out to identify the existing desired symmetric modes. A modified asymmetric CPW-
fed ground is chosen as the preferred feeding network to excite the identified desired modes without
excitation of undesired anti-symmetric modes. Three CRRs on the opposite side of the substrate are
used for increasing coupling with the radiator to provide widened IBW. A series of parasitic strips
along the edge of the annular radiator enhanced CP radiation and eliminated ripples in the radiation
pattern. The asymmetric cross-shaped slit at the centre of the annular radiator provides CP radiation
at 7.69 GHz. The coupling effect between the annular ring radiator and a smaller open loop resonator
placed near the right corner of this main radiator played a pivotal role in obtaining circular polarization
band at 9.91 GHz. The tuning stub on the feed furnished another CP band at 12.09 GHz and further
widened the overall IBW. Asymmetric CPW-fed technique has been used for feeding to excite the
desired symmetric modes and create optimized perturbations required to obtain another CP band at
5.63 GHz. The measured quad CP bands are well inside the ranges of measured and simulated IBWs.
Simulations were carried out using Ansys HFSS 2020 R1 based on the Finite Element Method (FEM).
The achieved very wide CP bands of the antenna can be used for various applications in C, X and Ku
bands.

The paper is organized as follows, Section 2: Antenna Configuration; Section 3: TCM Analysis;
Section 4: Choosing Appropriate Feeding for Excitation of Identified Useful Modes; Section 5:
Experimental Validations and Discussions; and Section 6: Conclusion.

2. ANTENNA CONFIGURATION

To elaborate the design evolution process, five antenna structures are defined in Figs. 1(a)–(e). Simulated
IBW and axial ratio bandwidth (ARBW) curves of these five antenna designs are presented in Figs. 2(a)
and (b), respectively. In Antenna.1, eight symmetrical slots are etched around the edge of the annular
radiator [26] to obtain wide impedance band at upper frequency boundary, and on the edge of the
radiating element an array of parasitic strips are utilized to achieve CP radiation. Antenna.1 gave
two small impedance bands, and ARBW values were too large (> 3 dB). In the next step to improve
antenna performance, use of an asymmetrical cross shaped slit [2] with optimized long arm and short
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(a) (b) (c) (d) (e)

Figure 1. Five improvement stages for design of antenna: (a) Antenna.1 top view, (b) Antenna.2 top
view, (c) Antenna.3 top view, (d) Antenna.4 and Antenna.5 top view, (e) Antenna.5 bottom view.

(a) (b)

Figure 2. Improvement for five stages of design of antenna: (a) Reflection coefficient and (b) axial
ratio bandwidth.

arm and cross angles 42.5◦ and 130.5◦, respectively, helped in obtaining circular polarization in the
middle range of frequency for Antenna.2. In next step, near the right most corner of the radiating
element, a rectangular open loop is placed to create the coupling effect between the radiator and open
loop, which further improved circular polarization in the middle frequency range for Antenna.3 [27]. A
tuning stub added on the feeding element [28] in Antenna.4 helped in achieving a CP band at the upper
range of frequency and widen IBW as well. Antenna.5 was designed, to obtain wide IBW at upper
frequency range, by employing three circular CRRs [29] on the bottom side of the substrate. This
resulted in significant increase in IBW as well as furnished four wide IBWs. Two are in lower frequency
range (4.15–4.75 GHz, 5.4–5.55 GHz) and the other two at higher frequency range (5.95–8.12 GHz, 8.95–
12.45 GHz).

The configuration and dimensions of the radiator without feed are presented in Fig. 3.
Optimized Dimensions for radiator without feed (all in mm): Ls = 35, Ws = 30, h = 1.6, r1 = 5.8,

r2 = 11.3, r3 = 10.3, r4 = 13.2, r5 = 11.9, r6 = 8.2, L3 = 6.6, L4 = 8, L5 = 1.5, L6 = 4, S1 = 0.7,
S2 = 0.6, S3 = 1.7, S4 = 2.8, S5 = 2.2, Lf = 6.28, W3 = 1.6, W4 = 0.4, W5 = 1.5, Wf = 2.7,
c1 = 6.5, c2 = 4.5, c3 = 1.5, d = 1, φ1 = 42.5◦, φ2 = 130.5◦.

3. THEORY OF CHARACTERISTICS MODE ANALYSIS

At the fundamental mode, the current flows on the whole antenna, contributing to radiation at lower
frequencies. On the other hand, at higher modes, the mode current mainly flows on the edge of the
radiator contributing to radiation at higher frequencies. That presents flexibility to modify the phase
of the far zone electric field as additional radiating modes are concerned.

With the aim to broaden impedance and circularly polarized bandwidth of an antenna, it is desired
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Figure 3. Top view of proposed antenna without feeding and ground plane.

to know the existing modes in the radiator. To realize the potential of the modified annular ring antenna
providing wide operating frequency bands, it was needed to know the existing modes within it. So, TCM
analysis was carried out to identify the desired modes to be excited in x and y directions. For the ease of
understanding, some equations of TCM are briefly discussed below. More details about TCM analyses
are available in [14–24].

3.1. Theory of Characteristic Modes

Provided a typical conducting element, any electric current ( �J) on its surface is defined as a total of
characteristic modes or eigen currents (

−→
Jn) with different product coefficients (αn):

�J =
∑

n
αn

−→
Jn =

∑
n

V i
n

−→
Jn

1 + jλn
(1)

where
−→
Jn are the eigen currents; λn are the eigen values; αn are the modal weighting coefficients; and

V i
n are the modal excitation coefficients, which are expressed by:
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where
−→
Ei is the impressed source. Modal weighting coefficient αn can be obtained by means of the

following equation:

αn =
V i

n

1 + jλn
(3)

Modal significance (MSn) is generally used to estimate the radiation efficiency of a mode. Then MSn

can be calculated as:

MSn =
∣∣∣∣ 1
1 + jλn

∣∣∣∣ (4)

One more significant parameter that is exploited for the design of the antenna is characteristic angle
βn, which can be expressed as:

βn = 180◦ − tan−1 (λn) (5)

In the case of a resonant mode,
−→
Jn viz. λn = 0, MSn = 1, and βn = 180◦ from Eqs. (4) and (5),

respectively. When a mode is excited, it radiates maximum energy when βn = 180◦, and the closer the
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βn approaches 180◦ or λn towards 0, the more efficiently the mode radiates. As per expression (1), how
efficiently a mode

−→
Jn is excited relies on the modal weighting of αn coefficient. For the time being, αn

is regulated by two parameters, i.e., λn eigenvalues and modal excitation coefficients V i
n. When a mode

is resonating at its resonance frequency, λn equals 0. Therefore, Equation (3) may be modified as:

αn = V i
n (6)

In the case of some non-resonant modes, their eigenvalues are quite large over the observed frequency
band. This implies that irrespective of a conducting object or the antenna is excited, the modal weighting
coefficient is generally quite small. These modes are commonly considered as unimportant modes. For a
more relevant and simpler study, significant modes are considered, whose characteristic angles are near
180◦. Using formula (3), when eigenvalue λn is static, the modal weighting coefficient is completely
controlled by how the antenna is excited. Following Eq. (2), in order to get a comparatively high value
of modal weighting coefficient, the excitation must be placed where the eigen current is quite high.

So Equation (3) is the condition to obtain the desired mode, and preciously a large modal
significance is needed, but also a large modal excitation coefficient Vn is required. The modal excitation
depends on the properties of feeding such as the feeding type, feeding position, and feeding dimensions.
In the following subsection, the modes of the proposed antenna are analyzed in detail.

3.2. Identification of the Existing Symmetric Modes to Be Excited

In this section, the antenna without feeding structure is analyzed using TCM. To make the process
simpler, an ideal environment is envisioned, where the antenna is assumed to be a perfect conductor
with zero thickness and without any substrate. The Characteristic Mode Analysis Solver is the IE
analogue to the FEM eigen solver. All the characteristics mode simulations were carried out using
Ansys Electronics Desktop 2020 R1 and presented in Fig. 4.

(a) (b) (c)

Figure 4. Characteristics mode analysis: (a) Eigen value (λn), (b) modal significance (MSn) and (c)
characteristics angle (βn).

From Fig. 4(a) it is found for the modified annular ring radiator that there are total ten modes out
of which three modes’ eigenvalues (λn) approach zero. Here, λn > 0 indicative of a mode that stores
electrical energy, whereas λn < 0 indicates a mode that stores magnetic energy, and λn = 0 indicative
of a mode that is resonant and easily excited by plane wave.

For the radiator, there are no dominant modes observed lower than 7.99 GHz and more than
13.86 GHz as clearly seen from Modal Significance curves in Fig. 4(b). As the eigenvalue goes to zero,
it resonates; the Modal Significance goes to 1 for three modes (Modes 1, 6, and 7 dominant frequency
13.86 GHz, 10.03 GHz and 7.99 GHz).

Figure 4(c) shows the characteristic angle βn curves where the same three resonant modes appeared
as βn = 180◦. When βn equals 90◦ or 270◦, it only stores energy, but when it is around βn = 180◦, it
radiates strongly.

This implies that to excite the radiating element at frequency lower than 7.99 GHz in order to
obtain wide IBW using the same radiator with high efficiency and stable high gain, a suitable feeding
technique with a proper ground plane and tuning or matching network will be required.
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Mode-1 Mode-2 Mode-3 Mode-4 Mode-6 Mode-7

Mode-1 Mode-2 Mode-3 Mode-4 Mode-6 Mode-7

Mode-2 Mode-6 Mode-7 Mode-2 Mode-6 Mode-7

Mode-7
(f)

Mode-7

Figure 5. Modal currents (a), (c), (e) and radiation pattern (b), (d), (f) without feeding network of
10 modes (desired and undesired) at broadside direction. (a) Modal surface current distribution of 10
modes at 12.06 GHz. (b) Modal field (far field radiation pattern) of 10 modes at 12.06 GHz. (c) Modal
surface current distribution of 10 modes at 9.91 GHz. (d) Modal field (far field radiation pattern) of 10
modes at 9.91 GHz. (e) Modal surface current distribution of 10 modes at 7.69 GHz. (f) Modal field
(far field radiation pattern) of 10 modes at 12.06 GHz.

At higher frequency, more modes with relatively large modal significance are involved. In order
to analyze [30–32] the modes of the antenna clearly, the current and far field of different characteristic
modes were studied. Figs. 5(a)–(f) show the modal current distribution of the radiator for three desired
existing modes at their CP resonating frequencies. Figs. 5(a)–(b) show that modes 1 and 6 are the
fundamental modes in y and x directions, respectively, radiate in +z direction at fc4 = 12.09 GHz,
and constitute good main lobe. A circular polarization is produced due to these two modes as phase
difference between them is 90◦. Modes 2, 3, 4, 7 lead to the cancelation of electric field in the far field
zone at +z direction and split the main lobe.

Figs. 5(c)–(d) show that modes 6 and 7 are the fundamental modes in x and y directions
correspondingly and radiate in +z direction at fc3 = 9.91 GHz. Again a circular polarization is produced
as phase differences between them is 90◦. Mode 2 leads to the cancelation of electric field in the far
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field zone at +z direction and split the main lobe.
Figs. 5(e)–(f) show that mode 7 is the fundamental mode in y direction and radiates in +z direction

at fc2 = 7.61 GHz. To generate circular polarization, a proper feeding technique is required in order to
create another x directed mode orthogonal to mode 7.

So, after this characteristics mode analysis (CMA) analysis, a suitable feeding technique was
searched in order to excite these desired existing dominant modes in the radiator. According to TCM
extension, unacceptable modes (2, 3, 4, 5, 8, 9, and 10) might also get excited by feeding and then affect
the total radiation pattern. Therefore, they should be moved out of the operating band or optimized
with good patterns.

4. CHOOSING APPROPRIATE FEEDING FOR EXCITATION OF IDENTIFIED
USEFUL MODES

From the above TCM analysis three desired modes (1, 6, and 7) were identified out of ten. It was
further concluded that other seven modes (viz. 2, 3, 4, 5, 8, 9, and 10) were undesired modes and
not useful. To achieve high gain at bore sight direction, a proper feeding method should provide a
good impedance matching for the symmetric desired modes without the excitation of undesired anti-
symmetric modes. Generally, only one mode has high modal significance value, and feeding techniques
like microstrip-line feed, probe feed, aperture coupled feed, proximity coupled feed are used to feed a
rectangular microstrip antenna (RMSA). However, the presence of multiple modes with high modal
significance puts limitations to designing an appropriate feed. In those cases, CPW-fed is a preferred
choice as it exerts least disturbance over a wide impedance band. To achieve circular polarization, it is
necessary to create two orthogonal electric fields with equal amplitude and quadrature phase difference.
This can be achieved if one can generate unequal current path lengths. So, asymmetric CPW-fed is one
of the best choices to obtain CP at desired symmetric modes.

4.1. Selection of CPW-Fed and Its Effect on the Proposed Antenna

The CPW-fed is the feeding technique where side-plane conductor is the ground, and centre strip carries
the signal. CPW-fed monopole antennas have been extensively investigated because of their many
enticing features like wide IBW, light weight, and compact structure, and omnidirectional radiation
characteristics. The CPW-fed can provide a large electric coupling between the radiator and the ground.
CPW feeds [33] use a sole metallic layer basically generating trivial conjoint coupling among two fine-
tune lines, to give wide bandwidth. They are quite common for their easy integration with solid state
active devices or MMICs. When CPW-fed is asymmetric, because unequal path lengths generate wide
band CP [34]. Accordingly, we intended to use asymmetric CPW-fed.

From Fig. 5, it is seen that the current and magnetic fields of mode 1, mode 6, and mode 7 are the
highest along the edge of the radiator. Mode current distributions show that the magnetic current of the
feed should be in the same direction of the mode current and be placed where the current is maximum.
When the feed is positioned at centre, it will give the best symmetric current distribution with respect
to xz or yz planes. These requirements can be best realized by employing a CPW-fed. Antenna.5 did
not give wide IBW by using the modified annular ring radiator and a symmetric CPW-fed ground on the
same plane of the substrate. However, TCM analysis indicated that using the same radiator, much wider
IBW and ARBW can be obtained by exciting the desired dominant modes through another appropriate
feeding structure, which in this case was found to be an asymmetric CPW-fed. This led to generation
of three wide impedance bands (4.36–4.82 GHz, 5.50–5.78 GHz, 5.95–beyond 14 GHz), as well as three
CP bands at desired dominant frequencies. Though modes 1, 6, 7 (13.86 GHz, 10.03 GHz and 7.99 GHz)
exhibited slight shift (12.09 GHz, 10.03 GHz, and 7.69 GHz) after adding the asymmetric CPW-fed, the
currents remained symmetric with respect to xz and yz planes, like the current of the modes without
the CPW-fed. In addition, another CP mode was generated due to this feeding at fc1 = 5.63 GHz,
ranging 5.57–5.69 GHz. Thus, it becomes easy to achieve a wide impedance and CP bands by tuning
the position, length, and width of the feed line. Design steps of the asymmetric CPW-fed are shown in
Fig. 6, and their effect on the antenna performance is shown in Fig. 7.
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(a) (b)

Figure 6. Two improvement stages for design of antenna: (a) Antenna.6 top view, (b) Antenna.6
bottom view.

(a) (b)

Figure 7. Improvement for two stages of design of antenna: (a) Reflection coefficient and (b) axial
ratio bandwidth.

5. EXPERIMENTAL VALIDATIONS AND DISCUSSIONS

Figure 8 shows the simulated and fabricated monopole antennas. Figs. 8(a) and (b) depict the top
and bottom views of simulated proposed antenna, whereas Figs. 8(c) and (d) represent them for the
fabricated antenna. Dimension of the antenna is 35× 30 mm2 (0.84 × 0.72λ2

gL, where λgL is the guided
wavelength at measured lower resonating frequency 4.38 GHz). It was fabricated on an FR4-epoxy
substrate (dielectric constant εr = 4.4, tan δ = 0.02). The optimized dimensions of the fabricated
antenna are listed below.

Optimized Dimensions for Proposed Antenna (all in mm): L1 = 3.8, L2 = 2.6, S1 = 0.7, W1 = 13,
W2 = 5.65, R1 = 13.2, R2 = 11.9, R3 = 11.6, R4 = 11.2, R5 = 8, R6 = 6.2.

5.1. Experimental Data

Ansys Electronics Desktop 2020 R1 was used for simulations. Agilent Technologies, PNA-L Network
Analyzer-N5234A (10 MHz–43.5 GHz) VNA, were used to perform the IBW measurement. Fig. 9(a)
shows the comparison between measured and simulated return losses of the implemented antenna up
to 14 GHz. The measured IBWs are 4.36–4.82 GHz, 5.50–5.78 GHz, and 5.95–beyond 14 GHz. The
corresponding simulated 10-dB IBWs are 4.26–4.78 GHz, 5.46–5.67 GHz, and 6.21–beyond 14 GHz.

Figure 9(b) shows the comparison between measured and simulated ARBW curves. Measured
curve spans 120 MHz (5.57–5.69 GHz, fcp1 = 5.63 GHz), 650 MHz (7.36–8.01 GHz, fcp2 = 7.69 GHz),
1200 MHz (9.31–10.51 GHz, fcp3 = 9.91 GHz), and 160 MHz (12.01–12.17 GHz, fcp4 = 12.09 GHz),
whereas simulated curves span 180 MHz (5.42–5.53 GHz and 5.61–5.68 GHz), 700 MHz (7.32–8.02 GHz),
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(a) (b) (c) (d)

Figure 8. Dimensions of antenna simulated and fabricated. (a) Top view, (b) bottom view and (c) top
view, (d) bottom view.

(a) (b)

Figure 9. Comparison of measured and simulated. (a) Reflection coefficient curves and (b) ARBW
curves.

1390 MHz (9.15–10.54 GHz), and 170 MHz (12.02–12.19 GHz, fcp4 = 12.09 GHz). All four CP bands
are within the range of measured and simulated IBWs. Therefore, the proposed antenna can well be
used for some C-band and ITU (8 GHz) applications. The first measured CP band can be used for
5GHz WLAN 5570–5650 MHz band application. The second CP band can be used for FIXED Satellite
communication. The third CP band may find use in Earth exploration satellite communication and
radio location application, and lastly the fourth CP band may be used for FIXED Satellite (Space to
Earth) communication.

Well defined, measured left hand circular polarization (LHCP) and right hand circular polarization
(RHCP) are observed in Figs. 10(a), (c), (e), (g) and (b), (d), (f), (h) which depict the radiation patterns
at ϕ = 0◦ (XZ plane) and ϕ = 90◦ (Y Z plane) at fc1 = 5.63 GHz, fc2 = 7.69 GHz, fc3 = 9.91 GHz,
fc4 = 12.09 GHz. It is found at CP resonating frequencies on the broadside direction that the radiations
are LHCP, LHCP, RHCP, and LHCP, while the measured co-polarizations are greater than cross-
polarization levels by 17 dBi, 25 dBi, 19 dBi, 29 dBi, respectively.

Figure 11(a) depicts the measured and simulated radiation efficiencies for the implemented antenna
with respect to frequency. The simulated and measured radiation efficiencies are in the range of 63%–
92% for all CP bands, and the measured efficiency is maximum at 6.52 GHz, 92%. Fig. 11(a) also shows
the measured and simulated peak gains. The maximum measured peak gain is 5.38 dBi at 10.2 GHz.

Figure 11(b) shows that the magnitude of Ex/Ey is nearly equal to 1 or 0 dB over the range of
quad CP bands, and the phase difference between them is also around 90◦. This proves that the quad
bands satisfy CP criteria.
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Frequency = 9.91 GHz Frequency = 12.09 GHz

(a) XZ plane (b) YZ plane (c) XZ plane (d) YZ plane

(e) XZ plane (f) YZ plane (g) XZ plane (h) YZ plane

Frequency = 5.63 GHz Frequency = 7.69 GHz

Figure 10. Simulated radiation patterns (LHCP and RHCP) in the (c), (e), (g) for XZ (ϕ = 0◦) and
(b), (d), (f), (h) for Y Z (ϕ = 90◦) planes.

(a) (b)

Figure 11. Implemented antenna: (a) measured, simulated gain and radiation efficiency plot vs.
frequency; (b) simulated EX/EY magnitude and phase plot vs. frequency.

5.2. Simulations of Antenna Parameters and Discussions

Figure 7(b) depicts the comparison of simulated ARBWs of the two prototypes (Antenna.5 and
Antenna.6) of the monopole antenna. For the symmetric CPW-fed ground plane cases, due to strong
standing wave along its width, the radiation is linearly polarized at 5.63 GHz, and the AR values are
large at this frequency. With the introduction of CPW-fed asymmetric ground plane (from the feed
gap left side area L2 × W2 = 0.062 × 0.135λ2

gL and right side area L1 × W1 = 0.091 × 0.310λ2
gL), CP

performance is achieved at fcp1 = 5.63 GHz. For the proposed case, a combination of two asymmetric
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cross-shaped slits in centre position of the main radiator (areas L3 × W3 = 0.158 × 0.038λ2
gL and

L4×W4 = 0.192× 0.0096λ2
gL) leads to a new CP excitation at fcp2 = 7.69 GHz. Due to the presence of

a rectangular open loop (length L6 = 0.096λgL, width c1 = 0.156λgL, thickness d = 0.024λgL, gap length
c3 = 0.036λgL) at the right corner side of the radiator, another CP band is obtained at fcp3 = 9.91 GHz.
The presence of the tuning stub (area L5 × W5 = 0.036 × 0.36λ2

gL) in the feeding structure generates
the fourth CP band at fcp4 = 12.09 GHz. In conclusion, the utilization of the proposed radiator has
given not only multiple wide impedance bandwidths but also quad bands CP performance as shown in
Figs. 12(a)–(d).

The simulated surface current distribution of the presented antenna at fcp1 = 5.63 GHz is shown
in Fig. 13. The CP waves originate from the alternate excitation of the asymmetric CPW-fed
ground and the annular stack patch with eight symmetrical slots along its periphery. The current
components in vertical direction transpire along the slots of annular ring, and the horizontal current
components originate from asymmetric CPW-fed ground. Fig. 14 presents the simulated electric
current distributions of the implemented antenna at fcp2 = 7.69 GHz. The current components in
vertical direction transpire along the two asymmetric cross shaped slits in centre position, and the
horizontal current components originate from annular ring. Fig. 15 represents the simulated electric
current distributions for the antenna at fcp3 = 9.91 GHz. The current components in vertical direction
transpire along the rectangular open loop, and the horizontal current components originate from annular
ring. Similarly, Fig. 16 represents the simulated electric current distributions for the antenna at
fcp3 = 12.09 GHz. The current components in vertical direction transpire along the feed line, and
the horizontal current components originate from the stub on the feeding element. So, these surface

(a) (b) (c) (d)

Figure 12. Simulated surface current distributions of the implemented antenna at CP resonating
frequencies: (a) fcp1 = 5.63 GHz; (b) fcp2 = 7.69 GHz; (c) fcp3 = 9.91 GHz; (d) fcp4 = 12.09 GHz.

(a) (b) (c) (d)

Figure 13. Distribution current on the surface (simulated) for phases of (a) 0◦, (b) 90◦, (c) 180◦ and
(d) 270◦ at fcp1 = 5.63 GHz.
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(a) (b) (c) (d)

Figure 14. Distribution current on the surface (simulated) for phases of (a) 0◦, (b) 90◦, (c) 180◦ and
(d) 270◦ at fcp2 = 7.69 GHz.

(a) (b) (c) (d)

Figure 15. Distribution current on the surface (simulated) for phases of (a) 0◦, (b) 90◦, (c) 180◦ and
(d) 270◦ at fcp3 = 9.91 GHz.

current distribution analyses in Figs. 13–16 deduce a quad-band CP performance at their respective CP
resonating frequencies.

5.3. Effect of Length and Width of the CPW-Feed on IBW and ARBW

In the CM analysis, infinite ground plane is assumed, and the feeding network is not considered. In the
actual design, an asymmetric CPW-fed ground plane is used. It is necessary to study the effect of the
feeding parameters on the proposed antenna. In this section, the effects of only the crucial parameters
L1 and W2 on the resulting reflection coefficient and axial ratio bandwidth are discussed. When a
parameter is studied, dimensions of others remain unchanged.

Through extensive parametric studies, it has been established that the length of left CPW-fed
ground plane (L1) and width of right CPW-fed ground plane (W2) contribute significantly in producing
the return-loss curve. A program in MATLAB is written for interpolation and optimization of L1 and
W2. Simulations for parametric analysis of L1, W2 over whole frequency band of these parameters of
the CPW-fed ground are plotted in Fig. 17(a). It is noted that a local minimum is there in the impedance
band curve and maximum IBW that occurs when L1 = 3.8 mm and W2 = 5.65 mm. Fig. 17(b) shows
the simulated contour plot for the variation of L1 and W2 with respect to operating frequency region.
Through similar exhaustive parametric studies, it was established that L1 and W2 play important roles
in producing the ARBW (< 3 dB) curve. A program in Python has been written for interpolation,
design of variation, and optimization of L1 and W2. It can be seen from this contour diagram that
when the optimized value of L1 = 3.8 mm and W2 = 5.65 mm, the ARBW is maximum giving quad
CP bands over this operating frequency.
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(a) (b) (c) (d)

Figure 16. Distribution current on the surface (simulated) for phases of (a) 0◦, (b) 90◦, (c) 180◦ and
(d) 270◦ at fcp4 = 12.09 GHz.

(a) (b)

Figure 17. (a) Simulated reflection coefficient over frequency band for different parametric values of
L1 (mm) and W2 (mm); (b) simulated contour plot of ARBW over the operating frequency band with
changing of L1 (mm) and W2 (mm).

5.4. The Influence of the SMA Connector on IBW and ARBW

The influences of the SubMiniature version A (SMA) connector on IBW (Fig. 18(a)) and ARBW
(Fig. 18(b)) were simulated and compared both with simulated results without SMA connector and
actual measured results of fabricated antenna with the SMA. From Fig. 18(a) it can be said that
reflection coefficient curves for the SMA connector simulated and measured results are well matched,
but simulation results without SMA connector deviate a little in the higher frequency range. From
Fig. 18(b) it can also be said that simulated (with SMA) ARBW bands match well with both measured
(SMA) and simulated (without SMA) results. Some little differences are observed in higher frequency
region with simulation (with SMA) which may be due to phase changes. The detailed dimensions
and structure of the simulated model for the used SMA connector are shown in Fig. 18(c). The SMA
connector is filled with Teflon to provide mechanical strength. Fig. 18(c) also shows the simulation
model for this proposed antenna with SMA connector.

The influence of the SMA connector can be de-embedded or removed from the measured and
simulated S11 by the following relation [35].

SDe-embeded SMA
11 = SSMA-W

11 × e(2jβhs) (7)

where β = phase constant = ω
√

με, and ω, μ, ε are the annular frequency, permittivity, permeability
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(a) (b)

(c) (d)

(e) (f)

Figure 18. (a) Reflection coefficient vs. frequency characteristics; (b) ARBW vs. frequency
characteristics; (c) simulation model of SMA connector for proposed antenna; (d) SMA connector
equivalent LC ladder circuit model; (e) electric field intensity for the proposed antenna (without SMA)
in XZ plane (10.5 GHz); (f) electric field intensity for the proposed antenna (SMA) in XZ plane
(10.5 GHz).

of the SMA connector, correspondingly. Here, hs is the height of the Teflon layer in SMA connector,
and SSMA-W

11 is the value of S11 with SMA connector. Additionally, the de-embedded measured result
by using Equation (7) is shown in Fig. 18(a). This result is in good agreement with the simulation if
the SMA connector is not taken into account.

In Fig. 18(c), a = inner conductor radius and b = outer radius of Teflon layer in SMA connector.
L and C are the series inductance and parallel capacitance per unit length as shown in Fig. 18(d). L
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and C are expressed as

C =
2πεrε0

log b
a

(8)

L =
μ0

2π
log

b

a
(9)

where ε0 and μ0 are the permittivity and permeability in free space. Then the characteristic impedance
becomes

Zc =

√
L

c
=

√
μ0

εrε0

log b
a

2π
(10)

By replacing the parameters in Equation (10) by the values given in Fig. 18(c), obtain Zc = 50.4Ω for
the SMA connector, which is well matched with antenna characteristics impedance (50 Ω).

Figures 18(e)–(f) show the distribution of electric field intensity in the xz plane for simulation
modelling of antenna without SMA and with SMA connector, respectively. For the case of ‘(e)’ a
50 Ω lumped port excitation is used, whereas for the case ‘(f)’ the outer conductor and holder of
SMA connector, the electromagnetic fields affect them. This is due to the impinging effect of the
electromagnetic wave on the outer conductor and holder of SMA connector which is radiated from
proposed antenna. Therefore, the simulation results of IBW and ARBW without SMA connector vary
little, particularly in the higher frequency region, with that of simulated and measured results with
SMA connector.

5.5. Comparison of the Proposed Antenna with Related Designs

In Table 1, comparison is drawn between the proposed antenna and some very recently designed quad
band CP antennas. It transpires that the proposed antenna shows the widest IBW with quad CP
characteristics, stable radiation patterns, and fair peak gain. It is also compact in size.

Table 1. Comparison with related quad-band CP antennas.

Ref.

(Year)

Antenna Size — λ3
gL (mm3),

Substrate material
IBW-GHz (%) ARBW-GHz (%)

10 (2015) Not Mentioned, RO3003 4.97–6.49 (26.53)
5.122–5.173 (0.99), 5.471–5.71 (4.27),

6.275–6.331 (0.89), 7.677–7.782 (1.36)

11 (2015)

0.674 × 0.713 × 0.02

(52 × 55 × 1.52),

Taconic RF-5

2.37–2.75 (14.84), 3.4–8 (80.7)
2.35–2.48 (5.58), 3.45–3.75 (8.33),

5.25–5.45 (3.74), 5.7–5.87 (2.94)

12 (2018)

0.42 × 0.499 × 0.021

(32 × 38 × 1.6),

FR4-epoxy

2.4–2.6 (8.8), 2.9–3.1 (6.67),

3.3–3.5 (5.8), 4–8.3 (69.92)

2.39–2.55 (6.48), 3.05–3.1 (1.63),

4–5 (22.22), 6.3–6.64 (5.25)

13 (2019)

0.955 × 0.828 × 0.021

(75 × 65 × 1.62),

Taconic TLY-5

2.33–5.70 (83.93)
2.38–2.56 (4.92), 2.75–3.03 (9.69),

3.42–3.53 (3.16), 5.16–5.54 (7.1)

Proposed

Work

0.84 × 0.725 × 0.038

(35 × 30 × 1.6),

FR4-epoxy

4.36–4.82 (10.02), 5.5–5.78 (4.96),

5.95–beyond 14 GHz (> 80.7)

5.57–5.69 (2.13), 7.36–8.01 (8.46),

9.31–10.51 (12.11), 12.01–12.17 (1.32)
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6. CONCLUSION

A three-step design procedure using TCM has been utilized to design a quad band monopole antenna
consisting of a novel annular ring radiator. It has been revealed that the structure can support three
dominant modes over the frequency band of interest. CMA helped in locating these dominant modes,
radiation parameters and position of feed line. Asymmetric CPW-fed ground has been used to selectively
excite the three desired modes with symmetric currents and an additional CP resonance at 5.63 GHz.
Tuning of the length and width of the asymmetric CPW-fed ground plane plays a crucial role in achieving
wide impedance band. The measured IBW ranges in 4.36–4.82 GHz, 5.50–5.78 GHz, and 5.95–beyond
14 GHz. The measured quad CP bands obtained inside the IBW curves and range in 5.57–5.69 GHz,
7.36–8.01 GHz, 9.31–10.51 GHz, and 12.01–12.17 GHz. All measured data faithfully validate simulation
results. Measured results confirm that the proposed antenna exhibits high gain and can be used for
C band (4–8 GHz), X band (8–12 GHz) and 5 GHz WLAN, FIXED Satellite, radiolocation application
devices. The proposed design is compact, efficient and furnishes wider quad CP bands than recently
reported related quad-band CP antennas.
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