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Remote Human Respiration Detection Using Ultra-Wideband
Impulse Radar Mounted on a Linearly Flying Platform

Budiman P. A. Rohman1, 2, * and Masahiko Nishimoto1

Abstract—Non-contact vital sign detection using radar is relevant for many applications. In search
and rescue missions in disaster-stricken areas, this technology can be used to non-invasively detect live
survivors on the ground. However, in a very large disaster area, a fast and effective detection approach
is required. This need has suggested radar mounted on a flying platform such as a drone as the most
feasible approach. This task is challenging, since human respiration is weak, and the signal recorded is
easily affected by disturbances such as noise and movement of the platform. Therefore, in this study, we
propose a signal processing technique to deal with this problem. Human respiration signals modulate
a hyperbolic pattern recorded by moving radar because of distance projection, leading us to applying
sequential image processing steps and hyperbolic pattern reconstruction to extract respiration signals. A
Fourier transform is then applied to seek the respiration frequency component. The results of laboratory
experiments show that the proposed method can detect human respiration. As an important note, the
flying speed of the platform should be determined carefully to cope with slow human respiration.

1. INTRODUCTION

Remote detection of human respiration using ultra-wideband (UWB) radar is desirable for many
applications, including military, medical, and search and rescue missions [1–4]. The use of a drone-
borne radar is promising, especially in large areas where observation is risky and complex. The drone
provides flexibility and mobility to support this kind of mission. In addition, the modularity of the drone
means that different multiple sensors can be employed based on the specific mission [3, 4]. However,
the detection of human vital signs using a drone-borne radar is challenging, since the signal of human
respiration is weak and easily contaminated by noise. The problem becomes more complex when the
drone moves or flies at a certain speed above the human body.

Various radar signal processing techniques for remote vital sign detection have been developed.
For example, Xu et al. proposed the use of multiple higher-order cumulants for UWB impulse radar to
detect vital signs, specifically using the fourth order cumulant. Testing showed that this method could
extract information about distance and respiration frequency [5]. Naishadam et al. applied the state
space method to UWB radar echo to detect and estimate cardiac and respiration rates. This method
can characterize the vital signal without the higher-order harmonics and intermodulation products that
commonly plague Fourier analysis [6]. Then, Wu et al. proposed a signal processing for UWB linear
array radar. This method can estimate the azimuth angle and detect multiple respirations from B-scan
data [7]. Although the methods outlined here show promise, they need data collected over a relatively
long period and work only in static conditions.

There is limited research on the application of such detection methods to non-stationary conditions.
Li and Lin proposed the use of two radars working together to accommodate one-dimensional random
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body movement [8]. Although the method works well enough, it is relatively complex to implement and
not appropriate for drone-borne radar applications. Nakata et al. employed a phase compensation of
the drift of hovering drone for human vital sign detection [9]. This method performs well in laboratory
experiments but is limited to only half of the radar wavelength by vertical drifting. Of course, to
make the human respiration detection more effective, the flying platform or drone is required despite of
hovering. Since the human respiration signal is very weak and slow, a flying drone borne radar needs a
robust radar signal processing to tackle this problem.

In this paper, we propose a new detection technique for UWB impulse radar which is mounted on a
linearly flying platform, such as drone borne radar searching for human vital signs on the ground. The
proposed technique works by employing several sequential techniques, such as adaptive thresholding,
image processing, and hyperbolic pattern fitting. Instead of respiration frequency and strength, the
study focuses on the effects of platform flying speed and height on its ability to detect a human
respiration signal.

2. PROBLEM FORMULATION

The problem formulation is illustrated in Fig. 1. In common static vital sign detection schemes, the radar
system detects the changes in target distance corresponding with delay time caused by the respiration
and heartbeat. The range between the human chest and radar is defined as

x(t) = x0 + r(t) = x0 + Ar sin(2πfrt) + Ah sin(2πfht) (1)

where x0 is a constant distance between radar and human; Ar and Ah are the amplitudes of respiration
and heartbeat, respectively; and fr and fh are the corresponding frequencies. The propagation time
delay τv(t) of this distance can be expressed by

τv (t) =
2x(t)

c
= τ0 + τr sin (2πfrt) + τh sin (2πfht) (2)

with c = 3 × 108 m/s being the speed of light, τ0 = 2x0/c, τr = 2Ar/c, and τh = 2Ah/c. Then, by
considering that just one human exists, and all other objects are stationary or not moving, the radar
impulse response is given by

u (τ, t) = avδ (τ − τv (t)) +
∑

i

aiδ(τ − τi) (3)

where τ is the propagation delay; aiδ(τ − τi) is the signal from the i-th static target with amplitude ai

and time delay τi; and avδ(τ − τv(t)) is the human vital sign motion signal with amplitude av.
In the case of moving radar or antenna, as illustrated in Fig. 1(a), the propagation delay will follow

the hyperbolic pattern caused by radar distance projection (see Fig. 1(b)). Since the hyperbolic shape

(a) (b)

Figure 1. Illustration of (a) vital sign detection on the human lying on the ground, and (b) respiration
sign modulate on the hyperbolic pattern.
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and size depend on the platform speed and height, we assume that the hyperbolic pattern is a function
of time t and one-dimensional space η, ζ(t, η). Thus, the new propagation delay τ ′

v(t) is defined as

τ ′
v (t) = ζ (t, η) τv(t) (4)

Therefore, if s(t) is the transmitted signal, the received signal R(τ, t) is defined as

R (τ, t) = s (t) ∗ u′ (t, τ) = avs
(
t − τ ′

v (t)
)

+
∑

i

ais(t − τi) (5)

Since the heartbeat signal is weak, we focus on the respiration signal in this study. Our
method works by locating and estimating ζ(t, η), allowing us to extract the respiration signal pattern
τr sin (2πfrt).

3. PROPOSED METHOD

The proposed detection method consists of four major steps: data acquisition and pre-processing, image
processing, hyperbola pattern fitting, and post-processing (see Fig. 2). The result of each processing
step can be seen in Fig. 3.

Figure 2. Proposed signal processing technique.

3.1. Data Acquisition and Preprocessing

The radar system records data during the flight. The collected data are R with size M × N , where M
and N are the sizes for the fast and slow time domains, respectively. In this case, the fast time domain
correlates with the range sampling point, while the slow time domain correlates with distance achieved
by the drone flight path containing the respiration signal.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Result in each processing step with laboratory data, respiration frequency 0.8 Hz,
displacement 10 mm.

As the first step, the direct-current (DC) bias component of each trace signal is removed. This
process is computed by removing the mean value of each trace expressed by

R̄[m,n] = R[m,n] − 1
M

M∑
m=1

R[m,n] (6)

Then, a double density discrete wavelet transform (DDDWT) filter is applied to denoise the signal.
This filter has been previously confirmed to perform well in radar applications [10, 11]. It works by
recursively applying the three-channel analysis filter banks to the lowpass sub-band. Conversely, the
inverse double-density wavelet transform is obtained by iteratively applying the synthesis filter bank.
The filter bank constants were adopted from [10].

�[m,n] = DDDWT
(
R̄[m,n]

)
(7)

This process is necessary to create a clean image for signal thresholding and blob detection process
(Fig. 3(a)).
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3.2. Image Processing

For thresholding, firstly, we compute the baseband shape of the amplitude of the signal image. Thus,
along with the fast time domain, the envelope signal �s was computed from its analytic signal
representation through a Hilbert transform H (Fig. 3(b)) expressed by

�s(m,n) = |�(m,n) + iH{�(m,n)}| (8)

H(�)(m,n) =
1
π

P.V.

∫ +∞

−∞

�(k, n)
(m − k)

dk (9)

where P.V. is a Cauchy principal value. Then, to extract the segment units of the detected objects,
we apply cell-averaging constant false alarm rate (CA-CFAR), which is commonly used in radar
applications. CA-CFAR considers two states of signal whether the cell under test contains a target
H1 or not H0 by maintaining the probability of false alarm Pfa, defined as

H1 : r ≥ T (10)
H0 : r < T (11)

where the threshold value T is computed by

T = α Z (12)

α = Ncfar

(
P

−1/Ncfar

fa − 1
)

(13)

with α being a scaling factor, Z the average value of adjacent cells, and Ncfar the number of computed
adjacent cells. To enhance the object group unity, we choose a relatively high value of Pfa. The false
detected object area is then removed by the selection step based on the connected pixel size (Fig. 3(c)).

Before the application of blob detection, a two-dimensional median filter and masking filter
convolution are applied to remake the image so that the incomplete segment can be united and filled
perfectly. If the result of CA-CFAR and median filter is �̄, the masking filter process is defined as

�̃[m,n] = C ∗ �̄[m,n] =
h∑

i=−h

h∑
j=−h

C(i, j)�̄[m − i, n − j] (14)

C =

⎡
⎢⎢⎢⎣
0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ (15)

where C is the mask kernel matrix with size h × h. The result is shown in Fig. 3(d).
The processed B-scan data are converted to the grayscale image, which is then processed using

connected component labeling and selection method to extract the hyperbolic pattern area. This step
scans an image and groups its pixels into components based on pixel connectivity. Once all groups have
been determined, each pixel is labeled according to the component to which it was assigned ((Fig. 3(e)).
Small blobs will be considered noise and removed. The selected blob containing the respiration signal
is shown in Fig. 3(f).

The area border of each blob is then smoothed using a moving average technique before making a
center axis index to extract the hyperbolic pattern. To minimize inaccuracy in indexing, we calculate
the average from the lowest and uppermost values of each time index. This index-connected line roughly
represents the axis of the hyperbolic pattern.

3.3. Hyperbolic Pattern Fitting

Since the presence of noise negatively affects the obtained rough hyperbolic axis, the curve fitting
method matching the general hyperbolic equation is applied. We employ Nelder-Mead simplex algorithm
introduced by Lagarias et al. [12, 13] to refine the pattern. The method is a heuristic optimization
algorithm to match the data by applying a gradient-descent method. The success of this fitting method
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is determined mostly by the initialization value. The general hyperbolic function is defined in Eq. (16),
and Eq. (17) is used for the curve fitting step:

(m − m0)
2

a2
− (n − n0)

2

b2
= 1 (16)

mest = a

⎛
⎝

√
(n − n0)

2

b2
+ 1

⎞
⎠ + m0 (17)

where m and n are the indices of rough hyperbolic pattern axis; m0 and n0 are the coordinate index of
hyperbolic center; a and b are hyperbolic constants; and mest is the estimated index. In this case, we
apply curve fitting to find the optimum values of m0, n0, a, and b. The objective function J is defined
as

J =
l∑

i=1

{m − mest} (18)

with l being the length of the blob being tested. From this step, assume that the estimated indices
of selected blob were listed as mest and nest so that the reconstructed signal can be represented as
�[mest, nest]. The result of this processing step is shown in Fig. 3(g). From this figure, we confirm the
work of the algorithm in the reconstruction of recorded hyperbolic pattern.

3.4. Postprocessing

After obtaining the signal, we apply linear trend subtraction (LTS) to remove the noise and clutter
effect, including radar instability and inaccuracy of the hyperbolic pattern reconstruction.

�́ = LTS(�[mest, nest]) (19)
We then apply a median filter to smooth the signal producing �̌ so that we can inspect a signal
representing human respiration from the frequency component through Fourier transform result
expressed by,

Y (ω) =
l∑

i=1

�̌(mest,i, nest,i)e−j2πωi/l (20)

with ω being the frequency bin. The result of these processing can be seen in Figs. 3(h)–(i).

4. EXPERIMENTAL SETUP

The experimental setup and equipment are shown in Fig. 4. As radar, we used UWB impulse radar
Cayenne from Xethru [14]. A bow-tie antenna pair is used to transmit a monocycle pulse with a
bandwidth of 1.5–6 GHz. The sampling rate of the pulse is 39 Giga samples per second. Each of the
datasets consists of 5000–6000 traces; each trace has 512 samples, and the rate is around 250 pulses
per second. In controlled environment experiments, we used an artificial vital sign actuator developed
specially to imitate human chest with displacement of 3, 5, and 10 mm and a frequency of 0.3, 0.6, and
0.8 Hz. These parameters follow the established characteristics of common human respiration [15, 16].
The corresponding speed of the radar movement is around 0.12, 0.08, 0.06, and 0.04 m/s; the range
between the radar and respiration actuator is within 1m.

To confirm the applicability of the method, we also check the method with a real human around
1m from the radar source. The human respiration frequency is around 0.33 Hz, and its strength is
relatively normal.

5. RESULT AND DISCUSSION

5.1. Experiment with Respiration Actuator

The result of the proposed signal processing technique is shown in Fig. 5. Fig. 5(a) shows that when
there is no respiration movement, we can see the frequency component from the hyperbolic pattern
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(a) (b)

(c)

(d)

Figure 4. Experimental setup: (a) measurement using respiration actuator, (b) real human, (c)
respiration actuator and (d) radar mounting.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Result of laboratory experiment with artificial respiration in various parameters: range
between radar and object h, respiration frequency f , displacement d, and platform flying speed v. (a)
No respiration, h = 50 cm, various speeds. (b) Respiration f = 0.3 Hz, d = 10 mm, h = 50 cm, various
speeds. (c) Respiration f = 0.6 Hz, d = 10 mm, h = 50 cm, various speeds. (d) Respiration d = 10 mm,
h = 50 cm, v = 6 cm/s, various frequencies. (e) Respiration f = 0.3 Hz, h = 50 cm, v = 6 cm/s, various
displacements. (f) Respiration f = 0.3 Hz, d = 3cm, v = 6cm/s, various heights.
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because of distance projection. The frequency component in this condition is widened as the platform
speed increases. This means that this component will overlap and mask the respiration signal at very
high speed, as confirmed in Fig. 5(b). At very high speed (12 cm/s), the respiration signal component
is fully masked (Fig. 5(b)).

The speed of the radar also affects the recorded respiration signal. As shown in Fig. 5(c), higher
speed produces spectral leakage wider than the original respiration frequency component. In other
words, with high radar speed, the accuracy of respiration frequency estimation decreases.

Figures 5(c) and (d) show that detection is more feasible when the respiration frequency is higher.
In addition, instead of being masked by the hyperbolic component, the low-frequency respiration is
easily masked by background noise. Fig. 5(e) compares the result of the proposed method with different
respiration displacements. This parameter imitates the strength of human respiration. This figure shows
that under the same conditions, weak respiration is more easily distorted, with low magnitude of the
frequency component. Thus, it is possible that weak and slow respiration may not be detected.

We analyze the height effect (Fig. 5(f)). A range increase makes the respiration signal clearer,
confirmed by the peakness of magnitude of the frequency component. This may be caused by
inter-reflection between the radar and the object. Thus, from this result, a range of around 1 m is
recommended.

In most cases, the measured frequency components are a little higher than the actual condition,
which may be caused by the inaccuracy of axis transformation of a hyperbola. Unstable data acquisition
processing may also be a reason for this shift. The limited sample data used to represent the respiration
signal may have also contributed to this issue. However, compared to no-respiration condition, the
results above confirm the function of the proposed method in the detection scheme.

5.2. Experiment with Real Human

We also conduct a laboratory experiment using a human (Fig. 6). Since the human body is not
as reflective as a respiration actuator in our previous section, the recorded signal seems weaker.

(a) (b)

(c)

Figure 6. Result of laboratory experiment with real human, v = 6 cm/s, h = 80 cm: (a) reconstruction
of hyperbolic pattern, (b) time domain signal, (c) frequency domain signal.
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However, the proposed method still works well and is able to extract the blob representing a human for
further inspection and extraction of the time-domain signal (Figs. 6(a)–(b)). Then, through frequency
component analysis, we are still able to detect respiration, despite its relative broadness due to weak
reflection and short recording period (Fig. 6(c)). Configuring the platform speed will be a crucial part
since the faster speed will make the frequency component of respiration and hyperbolic pattern overlap
as we shown in the result of experiment with actuator (Fig. 5(b)). Overall, this result confirms the
applicability of our proposed method for detecting real humans.

6. CONCLUSION

We describe our proposed technique for UWB impulse radar mounted on a flying platform to non-
invasively detect human respiration from a person on the ground. Controlled environment laboratory
experiments by using both respiration actuator and real human indicate the effectiveness of this method.

The results of this study suggest that the proposed method may be appropriate for detecting live
disaster survivors on the ground. Although the speed of the flying platform should be relatively slow,
this limitation can be tackled by appropriate drone equipment choices. For example, we can use dual
sensors on the drone employing radar and a forward-looking camera. In the beginning, the drone will
fly at a normal speed, but when the camera detects possible survivors, the drone could reduce its speed
and record radar echo to attempt to detect respiration sign existence.

However, some limitations in this method should be considered. First, in this study, we focus on one
person as a target for one-time processing. Multiple person detection is possible by using our method,
but it requires a sequential process. Second, in this study, we assume that the platform flies linearly.
Since we used a directional antenna so that a nonlinear and uncontrolled flying behavior may reduce
the clarity of the recorded signal. In the worst case, the vital sign will not be recorded. Nevertheless,
the data recording duration of each person is relatively short, thus linear flying in that time is very
possible except that there is any significant disturbance such as strong wind or unreliable controller.

The human buried by building debris case is also possible, but the advancement of the method is
required since in that case, several issues should be considered such as reflection and attenuation of the
signal. Future work should focus on such a situation.
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