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Design of a Controllable Antenna Based on Embedded Differential
PSK Modulation

Yahiea Alnaiemy1, 2, * and Lajos Nagy1

Abstract—Direct Antenna Modulation (DAM) is explored recently in many wireless communication
systems. In this paper, we explore the modulation process of electromagnetic signals in the antenna
circuit design directly. The proposed antenna consists of two non-concentric elliptical patches for
broadband applications to suit the spread spectrum applications. To perform a Differential Phase
Shift Keying (DPSK) modulation, two identical antennas are fed by a two-branch microstrip line with
a phase shift. Utilizing Computer Simulation Technology of Microwave Studio (CSTMWS) based on
Finite Integral Technique (FIT), an optimization based-on numerical analysis is adopted for designing
the transmission line configuration at the desired frequency bands. The other significant aspect that has
been achieved in this research is reducing the patch size to be suitable for wearable devices. Therefore,
a cylindrical substrate is utilized for bending the proposed antenna structure. The proposed antenna
design shows a gain of 4.73 dBi and 2.5 dBi for the planar and folded antenna profile, respectively.
Two high-speed Positive Intrinsic Negative (PIN) diodes as switching elements of the RF signal are
inserted between the identical antenna elements through a transmission line. Switch 1 (SW1) and
switch 2 (SW2) are used to control the phase shift between the antenna elements by changing the
switching state from (OFF-ON) and vice versa. The designed antenna is further investigated to realize
the effects of radiation leakage from the antenna elements on the human body in the context of wearable
applications. This study is conducted to the antenna performance when it is bent on a cylinder and
compared to the flat case on four human body regions: arm, head, thigh, and chest. The proposed
antenna based on PIN diodes is fabricated, measured, and tested. Using a 3D axis field strength meter,
the proposed antenna system field strength is measured for different conditions at various locations of
the human body. Finally, an excellent agreement is found between the obtained numerical results and
measurements.

1. INTRODUCTION

Due to the rapid developments in present wireless communication and information technologies, several
approaches have been developed based on Direct Antenna Modulation (DAM) process as alternatives
to the classical modulation approaches [1]. DAM can be used to overcome the challenges based on
modulation systems, such as high-cost, high-complexity transmitter design, which are inevitable in such
modulation systems. Therefore, DAM has emerged as a practical approach to overcome drawbacks
of such modulation systems [2]. DAM’s principal idea is to allow modulation of the carrier wave
in the antenna structure [3]. Based on an array of switchable passive reflectors for reconfigurable
antennas, different DAM approaches were suggested [4]. These developments add more capabilities
to resolve the complexity relative to the development of such wireless communications [5]. Unlike
conventional electromagnetic devices such as antennas, artificial or smart antennas can be produced
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renewable and from local non-conventional devices that are well matched with the rapid developments
in communication and information technologies [6]. Moreover, combining the reconfigurable antenna
with other communication devices in the engineering electromagnetic applications to produce new
electromagnetic devices is a versatile and reliable solution of development, enabling the antennas,
wireless sensors, solar cells, smart clothes, and wearable microwave devises [7]. The intimate relationship
between the new technologies and communication developments is through finding methods to satisfy
the requirements of these developments that can substitute the traditional approaches [8]. Transitional
technologies to merge between the antenna designs and semiconductors helped the rapid growth in
wireless communication markets; however, this merge still requires novel antennas to find alternative
solutions for many obstacles, including the design complexity and size reduction [9]. Therefore, the
present wireless communication technology invoked tremendous interest in smart antennas, especially
for 4G and 5G [10]. For this, the researchers have been attracted to utilize reconfigurable smart
antennas to improve the wireless communication systems performance in different applications [11–13].
However, they faced a new challenge: integrating antennas with modern high-speed semiconductors
while maintaining the size miniaturization and keeping high gain-bandwidth produce over the frequency
band of interest [14, 15]. Based on such techniques, several trades-offs are among the antenna
characteristics such as antenna size, antenna geometry, and effects of these parameters on the antenna
design performances [15]. Therefore, the main key design is focused on the antenna characteristics
isolation from the high-speed semiconductor switching devices in the communication system [16]. Many
researchers utilized different RF switches such as MEMS, varactor diodes, transistor switches, and
PIN diodes for current and future wireless communication systems by enabling frequency, pattern,
and polarization reconfigurability [17–45]. Reconfigurable antennas based on polarization, radiation
patterns, and frequency are reported in [17–45] by integrating PIN diodes, RF MEMS, and varactor
diode into a device platform as switches to control the polarization, radiation direction, and frequency
operation bands. The PIN diodes are considered one of the most important Radio Frequency (RF)
switches due to their high-speed response and low forward resistance with low capacitance [17]. For
example, PIN diodes as switches on a monopole antenna were proposed for frequency reconfiguration
in [18]. An antenna of circularly polarized structure based on an Electromagnetic Band Gap (EBG)
array was proposed for frequency and polarization reconfiguration techniques as presented in [19]. For
frequency and polarization reconfiguration, an antenna design based on single PIN diode integrated
to a folded slot patch on a flexible substrate was discussed in [20]. The proposed antenna in [21] was
designed to work on the 2.45 GHz frequency band when the PIN diode was set to ON state while
it worked at 2.36 GHz and 3.64 GHz, when the diode was switched to OFF, making the proposed
antenna design suitable for the WLAN and WiMAX applications. The developed antenna in [22]
was designed with two PIN diodes as switching circuits to directly control two binary Phase Shift
Keying (PSK) modulated signals. A reconfigurable aperture antenna design was discussed in [23];
the reconfiguration was utilized based on using Field Effect Transistor (FET) switch to meet different
antenna performances; however, the design was quite complex and large. For time delay beam steering
in an ultra-wideband (UWB) antenna array, the authors in [24] proposed a complementary metal-oxide-
semiconductor (CMOS) technology for the beam steering process. The authors in [25] designed an array
of 7×7 patch elements for beam steering based on tunable functions. Integrating three Schottky diodes
(HSCH-5330) as switching devices on the slots for DAM was presented in [26] for the UWB transmitting
antenna design. A switchable band notch based on PIN diode integrated with Complementary Split Ring
Resonators (CSRR) slot for reconfigurable monopole UWB antenna was investigated in [27] underlay
cognitive radio applications. Single and dual stopbands for a printed UWB slot antenna were presented
in [28] by using two PIN diodes embedded across the circular slot patch antenna to suit the WiMAX
and WLAN bands. Three PIN diodes were utilized in [29] for a reconfigurable filter antenna to suit
the impulse radio UWB, WLAN, and WiMAX applications. Changing between frequency and pattern
reconfigurability was achieved in [30] based on three PIN diodes switches. By adjusting the three PIN
diodes state (ON-OFF) and depending on the switch, the condition can easily convert the antenna
reconfigurability between the frequency and beam directions. In UWB, WiMAX and WLAN rejection
bands were controlled based on two PIN diodes using an open-ended slot and a U-shaped slot for
the modified monopole antenna [31, 32]. Two orthogonal antennas were introduced in [33] to realize
a circularly polarized Quadrature PSK (QPSK) modulated signal. A switchable Frequency Selective
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Surface (FSS) based on ASK modulator was described in [34] for the THz communication application.
Radio frequency carrier DAM was discussed in [35] as a phase modulator for the Internet of Things (
IoT) applications based on reconfigurable FSS. A DAM On-Off Keyed (OOK) signal based narrowband
transmitter antenna was studied in [36] for inter-symbol interference. 8-PSK modulation with 8 × 32
phase unit cells was demonstrated in [37] of a transmitter based on programmable metasurface. In
Ka-band, a linearly polarized reconfigurable, beam-steering antenna with a 2-bit phase resolution was
presented in [38]. The authors in [38] utilized transmission phase to control four PIN diodes switching
on the radiating patches based on six metal layers of dielectric and film substrates.

In this article, a novel technique for embodying the electromagnetic signal modulation in antenna
circuitry is investigated. Therefore, the antenna structure is designed based on integrating high-speed
circuits of two PIN diodes. The modulation technique is optimized at the resonance frequency by
modulating the carrier wave signal directly in the antenna structure with a semiconductor switching
device that controls the baseband information signal phase change, encoded into a digital pulse stream.
The pulse train controls the antenna phase shift and modulates the transmitted carrier wave effectively
by biasing the semiconductor switch. Simultaneously, the antenna is designed to operate at broad
bandwidth to be ideal for spread spectrum applications achieved by partial ground plane structure.
Another significant achievement in this work is the antenna structure miniaturization to make the
antenna suitable for biomedical devices. The use of a traditional impedance-matching network with
different lengths to realize the phase shift between antennas is proposed. The proposed network is
based on two lines with two different lengths (l2 and l1) to provide a phase shift of 180◦ as seen in
Equation (1):

(Δl)β = (l2 − l1)
2πf
vp

= 180◦ (1)

where Δl is the difference between the physical lengths, β the phase propagation constant, f the
frequency band of interest, and vp the phase velocity.

Therefore, two RF PIN diodes are the key elements of the proposed reconfigurable design; the phase
shift between two identical slotted patch elliptical antennas is controlled through two switches, (SW1
and SW2). By adjusting the switch states via the voltage biasing of the PIN diodes, which are positioned
between slotted patch elliptical antennas, a phase shift with 180◦ is obtained by controlling the current
to pass through the transmission line with different lengths. The numerical simulations using CSTMW
based on FIT are performed to examine the proposed antenna properties. This paper is organized as
follows. In Section 2, the proposed design aims is introduced. Design planar and folded antenna profile
is described and discussed in Section 3. In Section 4, the proposed antenna performances with planar
and folded profiles are discussed. The results validation and measurements are presented and compared
in Section 5. In Section 6, antenna performance-based wearable applications are explored. Finally, the
paper is concluded in Section 7.

2. DESIGN METHODOLOGY

Design of the microstrip patch antenna for wearable biomedical applications based on a modulation
circuitry system is investigated in this section. The patch antenna structure based on a single microstrip
antenna is centered on a slotted patch elliptical structure. The slotted patch structure is investigated
to increase the proposed antenna bandwidth to be a good candidate for spread spectrum systems.
Therefore, to apply the antenna for wearable applications, the proposed antenna structure is placed on
a flexible substrate. Nonetheless, a pair of the same antenna structure is aligned with each other for
DPSK modulation. The patch structure is fed with a 50 Ω microstrip line network of two branches,
and one of them is delayed with 180◦. Two BAR63-03W-SOD323 PIN diodes are utilized in this paper
with high-speed RF switching signals. The main reason for choosing such type of PIN diodes is its
high-speed switching, low forward resistance, and low capacitance [19]. The property of the PIN diodes
acts as the forward resistance Rs in series and shunt capacitance with substantial resistance Rp for the
two PIN diodes states ON and OFF, respectively [19], as indicated in Fig. 1.

The mean reason for utilizing such modulation is that it is possible to change the modulated signal
phase relative to the previous signal. The DPSK reference signal, therefore, does not require an oscillator
for comparison [37]. Fig. 2 describe the block diagram of the DPSK and the model waveform.
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(a) (b) (c)

Figure 1. Equivalent circuit and configuration of the PIN diode bias circuit. (a) Forward bias, (b)
reverse bias, and (c) bias circuit.

(a) (b)

Figure 2. (a) The proposed method for achieving DPSK modulation using PIN diodes as switchable
and (b) waveform of DPSK.

3. ANTENNA DESIGN

The proposed antenna structure is simulated numerically in both planar and folded profiles. The patch
and ground plane are fabricated from copper and mounted on a lossy dielectric Roger RO3203 substrate
with εr = 3.02, and tan δ = 0.0016 of 1 mm thickness. The patch is formed as an elliptical slotted patch
to enhance the antenna bandwidth to provide capacitive coupling inductions for the proposed antenna
bandwidth enhancement [39].

3.1. Planar Antenna Profile

The proposed planar antenna profile is based on two identical slotted patch elliptical structures as
depicted in Fig. 3. In this section, the authors utilize a single patch structure centered on the proposed
antenna flat profile as a reference design to be adapted later to the folded configuration. Nevertheless,
the antenna geometry characteristics are optimized to reach the optimal bandwidth as a single element.
The authors targeted their work to achieve the modulation using a two-antenna array instead of a single
antenna with two input ports. The main reason for using two antennas the degree of freedom is that
the switching does not affect current distribution and radiation pattern. Therefore, this is considered to
avoid the raise time delay required by the antenna switching process that could affect the modulation
speed processing. Also, using a single antenna with two input ports may affect the antenna polarization
severally. Therefore, we attempted this work to avoid affecting the antenna polarization. For only a
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(a)

(b)

(c)

(d)

(e)

Figure 3. The geometrical antenna details; (a) front view, (b) backed view, (c) side view, (d)
transmission line, and (e) cylindrical profile.

simulation process, a rectangular slot (SW1 and SW2) with 1 mm × 2 mm dimension is embedded and
installed within the proposed antenna structure to connect the transmission line with the two slotted
patches elliptical structure as shown in Fig. 3. Numerically, ON-OFF states of the PIN diodes are
simulated with changing the short line material from Vacuum-to-PEC when changing the PIN states
from OFF-to-ON and vice versa. A 50 Ω SMA connector is used to connect the antenna element to the
RF source. Table 1 shows the geometrical dimension of the proposed antenna.

Table 1. Geometrical dimensions (mm) of the proposed antenna.

Parameter Dimension Parameter Dimension Parameter Dimension

L1 13 g 4 R 19

L2 9.8 W 2 dy out 24

L3 6.8 W sub 30 dy in 16

L4 7.8 L sub 60 dx out 12

r1 4.5 t sub 1 dx in 8

r2 6.5 L Grd 30 - -

3.2. Transmission Line Feed Network Structure

The transmission line network is designed to switch the feeding between the patches with a phase shift
of 180◦ at the frequency band of interest. The switching mechanism is conducted using two PIN diodes,
which are controlled by the base data signal as; if the bit value is one, then SW1 is ON, and SW2 is
OFF; if the bit value is 0, then SW1 is OFF, and SW2 is ON. For wearable applications, the proposed
antenna structure based on two antenna patches is folded on a flexible cylindrical substrate with a
radius of 9.5 mm, as shown in Fig. 3.



48 Alnaiemy and Nagy

4. RESULTS AND DISCUSSION

In this section, the planar and folded antenna profiles are performed for simulation in CST MWS
based on FIT. The proposed antenna performance is evaluated in terms of the scattering coefficients,
bandwidth, and radiation patterns. In this section, the design approach is applied to optimize
the proposed antenna performance. The patch dimensions and feed length are adjusted concerning
simulations through several iterative simulation steps to achieve an optimal phase shift across multiple
bands. This approach is justified, as it is found that the resonant frequencies do not change significantly
with a single antenna function observed performance. The simulations are conducted using CST MWS
by running two tests: the first is sufficiently distinct by ensuring the geometry and fields. Perfectly
Matched Layer (PML) is invoked at standard incidence with the reflection coefficient of 0.0001. The
tetrahedral mesh is applied, and the second test is taken into account by setting the −80 dB accuracy
limit.

4.1. Antenna Performance Based on Planar Profile

The numerical results indicate different resonance frequencies, but the authors concentrated on the
frequency resonance on 5GHz to match the current wireless communication systems and find similar
impedance |S11| ≤ −10 dB for both cases, as shown in Fig. 4. The authors targeted, in their work,
5GHz, because the phase shift between the two antennas is found to be 180◦. Therefore, it is very wise
to realize the antenna design at 5GHz since the proposed transmission network shows a phase shift of
180◦ at this frequency.

Figure 4. S11 Spectra of the proposed antenna
at two switch cases based on planar profile.

Figure 5. Phase difference spectra of the two
switches cases.

4.2. Transmission Line Feed Network Structure

The authors have carried out numerical simulations to check the proposed transmission line network
performance. S11 spectra of the proposed transmission line network are shown in Fig. 5. The numerical
simulation results are conducted to test the transmission line network performance. The phase difference
S-parameters of the proposed transmission line network are evaluated in Fig. 5 for both switch cases. It
is indicated that a 180◦ phase difference is obtained at 5GHz when the switches are changed (ON-OFF)
and vice versa.

4.3. Antenna Performance Based on Folded Profile

A matching circuit with the best possible phase difference is performed to suit and achieve excellent
matching at 5 GHz to preserve the proposed antenna performance after bending the proposed antenna
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Figure 6. Matching circuit configuration.

structure on a cylindrical profile. The matching circuit is shown in Fig. 6.
For the bending configuration, CST MW based on FIT formulation is performed for the proposed

antenna structure with a resolution of 1 mm to characterize the antenna performance in terms of resonant
frequency, bandwidth, gain, and radiation efficiency. The proposed antenna spectra |S11| based on two
switch cases bending configuration are shown in Fig. 7. It is noticed that the frequency is shifted to
5.03 GHz which is related to antenna bending.

The authors presented the phase difference of the proposed folded antenna structure (see Fig. 8), to
ensure the antenna performance at the same reliability when bent. The phase difference about 173.22◦
is considered to be negligible.

Figure 7. |S11| Spectra of the proposed antenna
at two switch cases based on folded profile.

Figure 8. |S11| Spectra of the proposed antenna
at two switches cases based on folded profile.

4.4. Comparison between the Planar and Folded Antenna Profiles

The planar and folded antenna profile performances are investigated in this section in terms of |S11|,
gain, bandwidth, phase-difference, and radiation pattern. From the simulated results (see Figs. 7 and
8), it is found that the folded antenna profile exhibits a shift in the frequency resonance from 5 GHz
to 5.03 GHz. The frequency shift is attributed to the effects of patch bending that realizes surface
current motion on a substrate [12]. The impedance matching is improved for the folded profile, and
simultaneously, the realized gain is reduced without significant effects on antenna bandwidth compared
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(a) (b)

Figure 9. The E-plane radiation patterns for (a) planar and (b) folded antenna profile.

(a) (b)

Figure 10. The current distribution of the proposed antenna at 5GHz when (a) SW1 is ON, and SW2
is OFF and (b) SW1 is OFF, and SW2 is ON.

to the planar profile as seen in Figs. 4, 5, 7, and 8. Furthermore, the phase difference between the
antenna patches for the folded profile is unaffected compared to the planar antenna profile. A slight
reduction in the antenna gain is taken place for the folded profile due to the back lobe increase after
bending [39]. The folded profile antenna pattern is changed due to the entire antenna surface current
change, where the energy mostly radiates in the forward direction. Furthermore, as seen in Fig. 9,
the radiation pattern from the folded antenna disperses to different directions that severely affects the
antenna gain and efficiency.

Based on the two switches scenarios, the surface-current distributions of the proposed planar
antenna configuration are shown in Fig. 10 at 5 GHz. It is found that when the SW1 is OFF, the
current moves toward the second patch; however, by switching SW2 OFF the current moves back
toward the first patch.

The gain pattern for the two switches scenarios is calculated and plotted in 3D-form at 5 GHz as
shown in Fig. 11. The gain is evaluated from CST MWS. It is found that the realized gain is equal to
4.15 dB when the SW1 is ON and SW2 OFF, and by switching SW1 OFF and SW2 ON, the gain is
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(a) (b)

Figure 11. 3D radiation patterns of the proposed antenna at 5GHz when (a) SW1 is ON, and SW2 is
OFF and (b) SW1 is OFF, and SW2 is ON.

changed to 4.73 dB.
The comparison of the proposed antenna performances based on the planar and folded profiles

is shown in Table 2. As indicated from Table 2, the planar profile shows comparatively more gain-
bandwidth product than the folded profile as expected. The folded antenna profile provides enhanced
impedance.

Table 2. Comparison between planar and folded antenna performance.

Antenna profile Frequency (GHz) |S11| (dBi) Bandwidth (MHz) Gain (dB) Phase
Planar (SW1-ON) 5 −10.55 334 4.15 173.2◦

Planar (SW2-ON) 5 −12.6 1190 4.73 −7.4◦

Folded (SW1-ON) 5.03 −55 752 2.45 −111.6◦

Folded (SW2-ON) 5.03 −62 646 2.50 61.7◦

5. RESULTS VALIDATION AND MEASUREMENTS

After applying the numerical study to arrive at the optimal antenna design, the authors attempted to
fabricate the proposed antenna based on the planar configuration, as shown in Fig. 12. The proposed
antenna is fabricated in the laboratory of printed wiring boards of BME-ETT in the Department of
Electronic Technology (ETT) of Budapest University of Technology and Economics (BME). A Printed
Circuit Board (PCB) technique is used to fabricate the proposed antenna on a Roger RO3203 substrate.
The fabricated antenna is fed through a 50 Ω RF SMA connector, as seen in Fig. 12. The SMA connector
is welded to the transmission line of the patch antenna. Two PIN diodes of BAR6303W high-speed
switching RF signals are used as switching elements. The two PIN diodes are soldered with a heating
soldering technique to avoid damages due to the direct high-temperature contact. Using two pairs of
cables for the PIN diodes (ON-OFF) state, an RF choke is used in series with a biased thread needed to
provide a DC supply to the PIN diode cathode and to prevent the RF from flowing into the DC supply.
A bias tee adapter is used to connect the antenna to the RF source.

The measured and simulated performances in terms of |S11| spectra of the planar profile around
the design frequency band are presented in Fig. 13. As shown in Fig. 13, the obtained simulated and
measured results show an acceptable agreement. It is found that if PIN diode 1 (SW1) is ON and PIN
diode 2 (SW2) OFF, the |S11| < −10 dB is equal to −10.55 dB at 5 GHz for the simulated results while it
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(a) (b) (c)

Figure 12. The fabricated antenna with PIN diodes; (a) front view, (b) back view and (c) biasing the
PIN diode.

Figure 13. Simulated and measured |S11| spectra of the proposed antenna at two cases based on planar
profile.

is equal to −23.8 dB for the measured results at 5 GHz. On the other hand, it is found that if PIN diode
2 (SW2) is ON and PIN diode 1 (SW1) OFF, the |S11| < −10 dB is equal to −12.6 dB for the simulated
results and equal to −10.94 dB for the measured results at 5GHz. A slight discrepancy between the
simulated and measured results is found due to the technical accuracy for the modeling of the antenna
system, making it challenging to obtain the similarity between the measured and simulated results for
both states. The experimental measurements are tested using Vector Network Analyzer STAR ms4642A
Series and inside an RF anechoic chamber.

The simulated and measured far-field radiation patterns for the proposed antenna based on the two
PIN diode states are shown in Fig. 14. It is observed that a good agreement between the measured and
simulated results has been obtained for the two PIN diodes states. The CST MW simulation does not
include the parasitic effects; therefore, the pattern changes are expected for conformal configurations
since not full matching and a slight shift in antenna radiation is made between the measured and
simulated results as depicted in Fig. 14. For this, the antenna gain and radiation patterns are measured
inside an RF chamber using a three-antenna method. The process is basically realized by conducting
a standard dipole antenna at the frequency band of interest after calibrating the path losses inside the
chamber.

The simulated and measured results of the proposed planar antenna performances are summarized
and listed in Table 3 for detailed comparisons. A good agreement has been obtained between the
simulated and measured results, as shown in Table 3.

6. ANTENNA PERFORMANCE-BASED WEARABLE APPLICATIONS

In order to use the proposed antenna for wearable applications, bending or crumpling of the proposed
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(a) (b)

Figure 14. Simulated and measured radiation patterns for the proposed antenna.

Table 3. The simulated and measured performance of the proposed antenna based on planar profile.

Simulated/Measured Switch status
Frequency

(GHz)
|S11|
(dB)

Bandwidth
(MHz)

Gain
(dBi)

Simulated SW1 (ON), SW2 (OFF) 5 −10.55 334 4.15
Simulated SW1 (OFF), SW2 (ON) 5 −12.6 1190 4.73
Measured SW1 (ON), SW2 (OFF) 5 −23.8 356 4.07
Measured SW1 (OFF), SW2 (ON) 5 −10.94 1245 4.55

antenna when being mounted on human body could be a subject of the mechanical effects on the
antenna. A numerical study is applied to the proposed antenna to be bent with different radii to ensure
this purpose suitability. The proposed antenna is examined with four different radii: 20 mm, 40 mm,
60 mm, and 80 mm; these radii are considered due to the possible varying of the human arms and legs
sizes. The proposed planar antennas under different bending conditions are illustrated in Fig. 15.

Figure 16 shows the proposed antenna performances in terms of S11 and gain spectra for two
switching cases, based on different bending radii. It influences the resonant frequency, which is shifted
to a lower frequency band with increasing the bending effect. A slight impedance reduction occurred
when the bending increased beyond 80 mm. In general, the antenna bandwidth is found to be affected
significantly due to the bending effect for both switching cases.

Figure 17 shows the simulated 2D radiation patterns based on two switching cases, with different
radius deformation in the E-plane and H-plane. Table 4 summarizes the proposed antenna performances
based on different radii values.

The antenna performance on the human body is discussed in this section when the proposed antenna
is mounted on the biological tissues. Hence, different hazards could be associated with the fields fringing
from such antennas [40]. To meet such wearable antenna requirements, the Specific Absorption Rate
(SAR) for the bent antenna structure is examined on the human body. SAR measurement is an industrial
standard that signifies the amount of energy absorbed by the biological tissues [41]. The proposed bent
antenna effect on the human body is numerically tested using CSTMW. The evaluation is conducted on
the human hand model. For the proposed scenario, the folded antenna is mounted around the human
hand by modeling the analysis with four layers of tissues: skin, fat, muscle, and bone. The average
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Figure 15. Structural deformation of the proposed antenna, with different radius curvature values.

(a) (b)

(c) (d)

Figure 16. Simulated S11 for (a) SW1 (ON), SW2 (OFF) and (b) for SW1 (OFF), SW2 (ON), gain for
(c) SW1 (ON), SW2 (OFF) and (d) for SW1 (OFF), SW2 (ON) with different values of the curvature
radius.
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(a) (b)

(c) (d)

Figure 17. The simulated radiation pattern for the proposed antenna in (a) E-plane and (c) H-plane
when SW1 (ON), SW2 (OFF), and (b) E-plane and (d) H-plane when SW1 (OFF), SW2 (ON) with
different radius values of deformation.

intrinsic properties of these tissues are described in Table 5, valid at 5GHz [42]. The authors chose
the skin dry, bone-cortical values for numerical simulation to simulate the human hand mode. The
proposed antenna should offer appropriate radiation characteristics with low SAR at 5GHz, and the
SAR threshold should be below 2 W/kg [43]. For calculating the SAR value, the formulation given in
Equation (2) [43] can be used. CSTMW is utilized to evaluate the proposed antenna performance when
the proposed antenna is formed as a planar rectangular, bent structure and cylindrical frame in touch
with the human arm, head, and chest, separately. As shown in Fig. 17, such cases are modeled as a
nonhomogeneous layer. The size of the flat antenna profile is considered as 30 mm × 60 mm. The radius
is fixed to 45 mm for the bent configuration, and for the folded configuration it is set to 9.5 mm. All the
proposed models are shown in Fig. 18 with a summary of the human body tissues properties at 5 GHz
in Table 5. The SAR is calculated using the following equation:

SAR =
σ|E2|

ρ
(2)

where σ is the electrical conductivity, E the electrical field, and ρ the density.
As far as S11 spectra of the proposed antenna are concerned, an analogous response for various

curvature profiles is obtained and presented in Fig. 19. The resonant frequencies for the two bending
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Table 4. The simulated performance of the proposed antenna under different radii values.

R (mm) Switch status
Frequency

(GHz)
|S11|
(dB)

Bandwidth
(MHz)

Gain
(dBi)

Efficiency
%

Flat (SW1-ON, SW2-OFF) 5 −10.55 334 4.15 97.1
Flat (SW1-OFF, SW2-ON) 5 −12.6 1190 4.73 97.1
80 (SW1-ON, SW2-OFF) 4.87 −10.8 150 5.17 97.6
80 (SW1-OFF, SW2-ON) 4.88 −23.5 800 5.15 97.7
60 (SW1-ON, SW2-OFF) 4.87 −10.2 185 4.73 97
60 (SW1-OFF, SW2-ON) 4.95 −23 850 5.35 97.7
40 (SW1-ON, SW2-OFF) 4.96 −10.5 200 5.78 97.3
40 (SW1-OFF, SW2-ON) 5.06 −18 700 5.23 97.7
20 (SW1-ON, SW2-OFF) 4.12 −14 210 3.5 94.6
20 (SW1-OFF, SW2-ON) 4.92 −31 313 4.15 96.5

Table 5. Properties of human body tissues [32].

Tissue
Relative

permittivity (εr)
Conductivity

(σ) S/m
Density
(Kg/m3)

Loss
tangent (tan δ)

Thickness
(mm)

Skin Wet 39.611 3.5744 1100 0.32441 0.3
Skin Dry 35.774 3.0608 1100 0.3076 0.3

Fat 5.0291 0.2422 1100 0.17315 3
Muscle 49.54 4.0448 1060 0.29353 2.1

Bone Cancellous 70.774 0.12282 1850 0.0579 3.3
Bone Cortical 36.772 0.042822 1850 0.34459 3.3
Bone Marrow 19.269 0.0110905 1850 0.16683 3.3

(a) (b) (c)

Figure 18. The layout of the proposed antennas (a) mounted on human tissue, (b) bent around a
human arm, and (c) surrounded the human hand.

configurations are found almost the same as for the planar structure. Based on these deformations, a
slight change in the S11 matching value and resonant frequency is found for the two switching cases,
as seen in Fig. 19. However, the folded structure does not show a significant change in the resonant
frequency for the proposed antenna, while severe frequency change has occurred in the case of bending.
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Figure 19. Comparison of simulated S11 spectra of the proposed antenna based on a human tissue
under three conditions.

The main reason for this is the patch current surface change when the proposed antenna is shaped as
cylindrical geometry [44]. For the aspect of switching effects, the flat structure S11 matching impedance
is found about −14 dB at 5.15 GHz when SW1 is (ON) and SW2 (ON), S11 is found −31.5 dB at
4.85 GHz. As expected, more shift in operating frequency occurs in the case of the folded and bent
profiles. S11 for the bent profile is found to be −14 dB at 4.65 GHz when SW1 is switched (ON), while
when SW2 is switched (ON), S11 is changed to −26.5 dB at 4.34 GHz. The S11 for the folded antenna
profile is changed to −11.8 dB at 4.58 GHz when SW1 is (ON) and is changed to −21.5 dB at 4.5 GHz
when SW2 is (ON). Table 6 shows more details about the effects of switching scenarios on the antenna
performance in planar, bent, and folded profiles.

Table 6. Comparisons of the proposed antenna performance based on planar, bent, and folded profile.

Antenna Type
Frequency

(GHz)
S11

(dB)
Gain
(dBi)

Bandwidth
(MHz)

Phase shift
(degree)

Planar (SW1-ON, SW2-OFF) 5.15 −14 4.15 612 173.2◦

Planar (SW1-OFF, SW2-ON) 4.85 −31.5 4.73 775 −7.4◦

Bent (SW1-ON, SW2-OFF) 4.65 −14 4.7 375 132.6◦

Bent (SW1-OFF, SW2-ON) 4.34 −26.5 4.82 675 −41.9◦

Folded (SW1-ON, SW2-OFF) 4.58 −11.8 2.45 525 −111.6◦

Folded (SW1-OFF, SW2-ON) 4.5 −21.5 2.5 1125 61.7◦

The absorbed radiation effects on the human body are studied experimentally by monitoring the
absorption quantity in a given scenarios on the human arm, head, thigh, and chest. It is observed from
the listed results in Table 7 that the proposed antenna array shows minimum radiation leakage when
being bent over the arm. It is found that the field strength leakage from the antenna toward the arm
is about 47 mV/m. However, the field strength is increased rapidly on the chest for the flat case up
to 207 mV/m. The reason is that the arm size is mostly leasing compared to other human parts that
absorb less radiation [40]. These measurements are performed by placing the TM-195 RF 3-axis field
strength meter at 10 mm away from the human body but on the other side from the antenna back.
Table 7 shows a comparison between the field strength leakages at different scenarios from the human
body parts.
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Table 7. Comparison between the field strength leakage at different scenarios from the human body
parts.

Location Profile Field strength (mV/m)
Arm Planar 50
Arm Bended 47
Head Planar 199
Head Bended 188
Thigh Planar 140
Thigh Bended 150
Chest Planar 207
Chest Bended 189

Table 8. Comparison between the proposed antenna performances with the published works.

Reference Profile
Frequency

(GHz)

Dimension

(mm)2
Gain

(dBi)
Reconfiguration Application

[16] Planar 1.4 114 × 88 N
Frequency,

Polarization

Satellite

navigation

[18] Planar
2.45, 3,

3.69, 5.5
15 × 40 2.92 Frequency

Bluetooth, WLAN,

WiMAX, LTE

[19] Planar 8.88 N N Beam steering Radar, Radio

[20] Planar
0.85, 0.9, 1.8, 1.9,

2.1, 0.7, 2.3
65 × 114 2.92 Frequency

Bluetooth, WLAN,

WiMAX, LTE

[21] Planar 4.97, 4.77, 6.78 15.5 × 16.4 5.5–6.5 Polarization WLAN, Wi-Fi

[22] Planar 2.42, 2.36, 3.36 31 × 59 N
Frequency,

Polarization
WLAN, WiMAX

[23] Planar 1.95, 2.14 50 × 75 N
BPSK

modulation
Modulation

[24] Planar N 45 × 20 N Pattern QPSK

[25] Planar 0.85–1.45 22 × 225 4.5–6.5
Bandwidth,

Pattern
N

[27] Planar UWB 32 × 26 2.5 Band-notch Cognitive radio

[28] Planar UWB 20 × 20 0–3
Pulse

modulation
N

[29] Planar UWB 805 × 90 1–2 Frequency
IR/UWB,

WLAN, WiMAX

[30] Planar 3.1, 6.8 23 × 31 4.01, 4.6
Frequency,

Pattern
N

[32] Planar UWB 25 × 35 2–5 Band-notch WiMax, WLAN

[35] Planar 1.8 112.5 × 283.5 2.3 Frequency 8-PSK, IoT

[45] Planar UWB 30 × 60 4.5 N IoT

Proposed
Planar,

Folded
5 30 × 60 4.73, 2.5

Phase

Modulation
DPSK
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To highlight the viability of the proposed antenna design, this work is compared with the previously
published results regarding antenna profile, size, gain and type of the antenna reconfigurable. Table 8
shows the performances of the proposed antenna compared with other published work, it is indicated
that the novelty of the proposed work is represented by designing antenna to work within two profiles,
planar and folded unlike other published work, the antenna design work within only planar profile.
And the proposed direct modulation embedded with the antenna structure which makes the proposed
antenna a good candidate for many wearable and implantable wireless applications. The simplicity of
controlling the the proposed antenna modulation is another achieved in this work, making the design,
fabrication, and test the proposed antenna simple compared with other published work.

7. CONCLUSION

For DAM based on spread spectrum technology, a simple planar and folded antenna profile is presented
in this article. The proposed antenna is mounted on a flexible substrate for wearable applications.
The proposed antenna consists of two patches with the same geometry for DPSK process. The patch
structure is fed with a 50 Ω microstrip line network of two branches and delayed by a phase shift of 180◦
at different frequencies. The phase shift is controlled based on two PIN diodes. The proposed antenna
performance on the human body based on planar, bent and folded profiles is investigated. The proposed
antenna is examined based on a human tissue under three scenarios with four layers: skin, fat, muscle,
and bone tissues. Since the proposed antenna is designed for biomedical applications, the biological
effects from exposure to electromagnetic radiation of the human body are investigated in this paper.
The field strength from the proposed antenna array is measured at different human body locations
with different scenarios using a 3D axis field strength meter. The proposed antenna is found to be a
good candidate for multiple wireless communications systems in particular, the wearable applications.
Compared to other related work, the novelty of the proposed work is the simplicity of controlling the
switching mechanism, as an excellent candidate for wearable systems. The proposed antenna structure,
compared to earlier reported works, is in low profile, simple, easy to fabricate, easy to control the phase
shifting and activation of the antenna, and easy to integrate with other devices. As a future work for
this research, the authors are willing to adapt the antenna performance with varying the gain value to
quadrature amplitude-shift keying modulation.
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