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The Magnetic Field Produced from a Conical Current Sheet and
from a Thin and Tightly-Wound Conical Coil

Matthew Smith1, Nikiforos Fokas1, Kevin Hart2,
Slobodan Babic3, and Jerry P. Selvaggi1, *

Abstract—Mathematical expressions for the components of the magnetic field produced by a conically-
shaped current sheet and by a tightly-wound conical coil are presented. The conical current sheet forms
the frustum of a cone. In the limit as the top radius of the frustum approaches the bottom radius,
a cylindrical current sheet is formed. Mathematical expressions for the magnetic field produced by a
cylindrical current sheet are then compared to known and published results.

1. INTRODUCTION

Analytical expressions for the off-axis components of magnetic field produced from a conical current
sheet do not appear to be forthcoming in the literature. However, semi-analytical expressions as well as
purely numerical results do exist. This article presents a method for analytically evaluating the magnetic
field produced from a conical current sheet. The components of the magnetic field are then compared
to the components of the magnetic field produced by an infinitely-thin and tightly-wound conical coil.
The lead wires for the coil and for the current sheet are not considered since the contribution to the
magnetic field from these sources can always be taken into account by employing linear superposition.

Before proceeding with any analysis, one should consider the limitations of any proposed model.
To this end, the fine structure contribution of the magnetic field [1] due to the helical nature of the
conical coil [2], as well as its geometric cross section, is not considered. Therefore, the effect of the
axial component of current, which must exist for any conical coil with a nonzero pitch, is ignored. The
same can be said about the fine structure contribution of the magnetic field due to a conical current
sheet. The thickness of conical sheet is being ignored, and therefore the computed magnetic field at
observation points very close to the current sheet should be viewed with skepticism.

Due to these restrictions, one should use caution when computing the magnetic field at observation
points very close to the current source. One can most certainly employ all the equations developed
in Section 2 to compute the magnetic field at any point in space not coincident with the source, but
for those observation points close to the source, the computed magnetic field may not yield a true
representation of the measured magnetic field from a real conical coil or from a real conical current
sheet. However, for observation points that are not “too close” to the current source, and for which any
first-order effects are negligible, the equations for the magnetic field in Section 2 should work well.

In this context, any first-order effect is one in which the thickness of the sheet, the cross-section
of the coil, and the pitch of the coil would be enough to perturb the field in such a way as to negate
the effectiveness of the proposed mathematical model for observation or field points close to the current
source. The more closely the design of the conical current sheet or the conical coil comes to its theoretical
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model, the more confidence one should have in the computation of the magnetic field near the magnetic
source.

The approximation of a thin current sheet and an infinitely-thin and tightly-wound coil seems,
at first, to be rather a restrictive condition. However, for those practical applications which involve a
desire to know the magnetic field at points off the symmetry axis but not “too close” to the current
source, the mathematical expressions developed in this article can be employed for both numerical and
analytical purposes.

The current in both the conical current sheet and conical coil is assumed to flow in a strictly
azimuthal direction. The starting point will be to develop the magnetic vector potential [3, 4] and then
to introduce a number of equivalent expressions for the components of the magnetic field. A series
of numerical examples are explored in order to test the accuracy of the analytical expressions. All
mathematical expressions have been checked using Mathematica [5]. This is done in order to develop
a common base line so that anyone reading this article can more easily reproduce all the mathematical
and numerical results. Also, the authors felt that Mathematica [5] has all the necessary analytical tools
to more easily develop the analytical expressions. This becomes important when finding the magnetic
field at points off the symmetry axis where the mathematics invariably becomes more complex.

2. CONICAL CURRENT SHEET AND CONICAL COILS

2.1. Conical Current Sheet Model

An ideal geometric model chosen for a thin and conically-shaped current sheet is represented by the
frustum of a cone as illustrated in Fig. 1 [6]. The authors will present a number of equivalent expressions
for computing the magnetic field from a conical current sheet. All bold-faced quantities are defined to
be vector quantities.
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Figure 1. Conical current sheet.

Assume that the current sheet exhibits only an azimuthally-directed current density as shown in
Fig. 1.

J =Jφ̂′, (1)
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where φ̂′ is the unit vector in the azimuthal direction, and J = |J| has units of Amperes(A) per unit
length. From Fig. 1, define the parameter, κ, as

κ =
R − r

L
, (2)

where κ = cot(α). The authors assume that J is a constant. However, this is not a mandatory condition
for the following analysis to be effectively applied. Also, as κ → 0 or r → R, the thin and hollow frustum
degenerates to a thin and hollow cylinder. The cylindrical current sheet is considered in Section 4, and
the analysis illustrated in this section is a result of the limiting case of the conical current sheet.

All primed variables are defined as source variables, and all the unprimed variables are defined as
the field or observation variables. The magnetic vector potential produced by the conical current sheet
of Fig. 1 is

A =
μ0J

4π

L∫
0

2π∫
0

ρ′

|r− r′| φ̂
′dφ′dz′, (3)

where the azimuthal unit vector φ̂′ = − sin(φ′)x̂ + cos(φ′)ŷ. In circular cylindrical coordinates, the
distance between the field point and the source point is written as∣∣r− r′

∣∣ =√ρ2 + ρ′2 + (z − z′)2 − 2ρρ′ cos(φ − φ′), (4)

where ρ′ is a function of z′ given by
ρ′ = R − κz′. (5)

Also, the authors define J to
J = NtI0, (6)

where Nt is defined as the number of turns per unit length of the equivalent tightly-wound conical coil,
and I0 is a uniform current in Amperes. Choosing Eq. (6) as the defining magnitude of the current
density allows for a simpler comparison between the magnetic field produced by a conical current sheet
and that of a tightly-wound conical coil presented in Section 2.1. A similar idea can be found in
Flax et al. [7]. This approach should become more clear as we proceed.

However, one may wish to define an alternative current density without introducing an equivalent
turns per unit length, Nt. If this is the case then all subsequent analysis is still valid since we have
assumed that J is a constant. For example, if one were to replace NtI0 in all subsequent equations
with J = I0/

√
(R − r)2 + L2, which is exactly what the current density would be for an ideal current

sheet, then the analysis remains unchanged. The goal is to find the magnetic field produced by a conical
current sheet and compare it to the magnetic field produced by a tightly-wound conical coil.

The inverse distance function, |r − r′|−1, given by Eq. (3) can be expanded in terms of toroidal
harmonics [8–20] as follows:

1
|r − r′| =

1
π
√

ρρ′

∞∑
m=0

εmQm− 1
2
(ξ) cos[m(φ − φ′)], (7)

where εm is 1 for m = 0; εm is 2 for all m ≥ 1; and ξ = ρ2+ρ
′2+(z−z′)2
2ρρ′ > 1. The function Qm− 1

2
(ξ) is

called the zeroth order Legendre function of half integral degree or toroidal function of zeroth order.
Only the m = 1 term survives the azimuthal integration in subsequent analysis, and therefore only
Q 1

2
(ξ) is needed for the azimuthally-directed vector potential. The Q 1

2
(ξ) term is then rewritten as a

infinite series [15], and then employed for analytically evaluating the components of the magnetic field.

2.1.1. Magnetic Flux Density in Integral Form

Mathematical expressions written in integral form often form the basis of asymptotic analysis. For this
reason, expressing the magnetic flux density in integral form may be quite useful. Also, when integrals
are difficult to evaluate analytically, or their corresponding analytical expressions become cumbersome,
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which is often the case when finding the magnetic field at observation points which lie off the symmetry
axis, one may always resort to numerical integration in order to get accurate results. Introducing a
few equivalent expressions for the magnetic flux density in integral form gives the reader some choices
depending on the application.

For an azimuthally-directed current, the general expression for magnetic vector potential [3, 4] in
Cartesian coordinates has only an x and a y component given by

Ax = −μ0NtI0

4π

L∫
0

2π∫
0

ρ′ sin(φ′)
|r− r′| dφ′dz′, (8)

Ay =
μ0NtI0

4π

L∫
0

2π∫
0

ρ′ cos(φ′)
|r− r′| dφ′dz′. (9)

Employing Eqs. (8) and (9) yield the general expressions for the components of the magnetic flux density
in Cartesian and circular cylindrical coordinates as follows:

Bx =
μ0NtI0

4π

L∫
0

2π∫
0

ρ′(z − z′) cos(φ′)
|r− r′|3 dφ′dz′, (10)

By =
μ0NtI0

4π

L∫
0

2π∫
0

ρ′(z − z′) sin(φ′)
|r− r′|3 dφ′dz′, (11)

Bz =
μ0NtI0

4π

L∫
0

2π∫
0

ρ′ [ρ′ − ρ cos(φ − φ′)]
|r− r′|3 dφ′dz′, (12)

Bρ = Bx cos(φ) + By sin(φ). (13)
Now, substituting Eq. (7) in both Eq. (8) and Eq. (9) yields azimuthal component for the vector potential
in cylindrical coordinates written as

Aφ =
μ0NtI0ρ

4

∞∑
n=0

(4n + 1)!!
(n + 1)!n!

(ρ

2

)2n
L∫

0

ρ
′2n+2

[(ρ2 + ρ′2 + (z − z′)2]2n+ 3
2

dz′,

=
μ0NtI0

8
√

2ρ

L∫
0

√
ρ′

ξ
3
2

F

(
3
4
,
5
4
,2,

1
ξ2

)
dz′, (14)

where F (·) is the Gauss hypergeometric function [21, 22] expressed in Mathematica [5] as
Hypergeometric2F1. From Eq. (14), the components of the magnetic flux density in circular cylindrical
coordinates are

Bρ = −∂Aφ

∂z
,

=
3μ0NtI0

16
√

2ρ
3
2

L∫
0

(z − z′)

ξ
5
2
√

ρ′

{
F

(
3
4
,
5
4
, 2,

1
ξ2

)
+

5
8ξ2

F

(
7
4
,
9
4
,3,

1
ξ2

)}
dz′, (15)

and

Bz =
1
ρ

∂(ρAφ)
∂ρ

,

=
μ0NtI0

16
√

2ρ
3
2

L∫
0

1√
ρ′ξ

5
2

{
5(ρ′ξ − ρ)F

(
3
4
,
9
4
, 2,

1
ξ2

)
− (ρ′ξ − 2ρ)F

(
3
4
,
5
4
, 2,

1
ξ2

)}
dz′. (16)
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Equations (15) and (16) can be rewritten in a number of different ways, and some of which may have
better numerical properties than others. Eqs. (17) through (22) yield a few equivalent expressions for
the radial and axial components of the magnetic flux density. These can be rigorously substantiated [23].

A few equivalent expressions for the radial components of the magnetic flux density produced by a
thin conical current sheet are given as follows:

Bρ =
μ0NtI0

2

L∫
0

∞∫
0

ρ′uJ1(ρu)J1(ρ′u)sgn(z − z′)e−u|z−z′|dudz′, (17)

Bρ =
μ0NtI0

2πρ
3
2

L∫
0

(z − z′)√
ρ′(1 − k2)2

{
2k2Q− 1

2
(ξ) − k(1 + k2)Q 1

2
(ξ)
}

dz′, (18)

Bρ =
μ0NtI0

πρ

L∫
0

(z − z′)
l2(1 − k2)2

{
(1 + k2)E(k2) − (1 − k2)K

(
k2
)}

dz′. (19)

The addition of the term sgn(z − z′) = d
dz |z − z′| in Eq. (17) is used in order to get the correct

sign associated with Bρ. The function sgn(z − z′) is the signum function which is positive when its
argument positive and negative when its argument is negative. In Mathematica [5], the signum function
is represented by Sign(·).

Likewise, a few equivalent expressions for the axial components of the magnetic flux density
produced by a thin conical current sheet are given by

Bz =
μ0NtI0

2

L∫
0

∞∫
0

ρ′uJ0(ρu)J1(ρ′u)e−u|z−z′|dudz′, (20)

Bz =
μ0NtI0

√
ρ

π

L∫
0

ρ
′ 3
2

l42(1 − k2)2
{

(ρ′ξ − ρ)Q− 1
2
(ξ) + (ρξ − ρ′)Q 1

2
(ξ)
}

dz′, (21)

Bz =
μ0NtI0

π

L∫
0

{
l22 − ρ

′2

l32(1 − k2)
K
(
k2
)− (z − z′)2 + ρ2 − ρ

′2

l32(1 − k2)2
E(k2)

}
dz′. (22)

The following expressions found in Eqs. (18), (19), (21) and (22) are defined as follows:

l1 =
1
2

[√
(ρ + ρ′)2 + (z − z′)2 −

√
(ρ − ρ′)2 + (z − z′)2

]
, (23)

l2 =
1
2

[√
(ρ + ρ′)2 + (z − z′)2 +

√
(ρ − ρ′)2 + (z − z′)2

]
, (24)

and
k =

l1
l2

. (25)

The functions K(·) and E(·) are the complete elliptic integrals of the first and second kind, respectively.
Also, J0(·) and J1(·) are Bessel functions of the first kind of order zero and one, respectively. Within the
Mathematica [5] environment, the complete elliptic integrals of the first and second kind are expressed
as EllipticK and EllipticE, respectively. Likewise, the Bessel function of the first kind is expressed as
BesselJ .

Equations (17) through (19) can each be numerically checked against Eq. (13) or Eq. (15), and
Eqs. (20) through (22) can each be numerically checked against Eq. (12) or Eq. (16). One must remember
that in all expressions, ρ′ is given by Eq. (5). In other words, the cylindrical source radius, ρ′, varies
with the source axial variable, z′.
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2.1.2. Magnetic Flux Density in Non-Integral Form

The radial and axial components of the magnetic flux density, in non-integral form, are found by
integrating the expressions given by Eqs. (15) and (16). The non-integral expressions are then
numerically checked against those given in integral form in Section 3.

a. Radial Component The radial component of the magnetic flux density is

Bρ =
μ0NtI0ρR3

4κL5
01

∞∑
n=0

(4n + 3)(4n + 1)!!
(2n + 3)(n + 1)!n!

(
Rρ

2L2
01

)2n
{

zFA0 − (z − L)
( r

R

)2n+3
(

L01

L11

)4n+5

FAL

− R

(2n + 4) κL2
01

×
[
a1Re [GA0] − b1

χ
Im [GA0]

+
(

R − Lκ

R

)( r

R

)2n+3
(

L01

L11

)4n+7(
a2Re [GAL] − b2

χ
Im [GAL]

)]}
, (26)

where

a1 = R(R − κz) − z(z + κR) + ρ2, (27)

b1 = R3κ + z3κ2 − R2z(−2 + κ2) + zρ2(2 + κ2) + Rκ(−3z2 + ρ2), (28)

a2 = −(R − 2κL) [R − κ(z − L)] + (z − L) [(z − L) + κR] − κ2L2 − ρ2, (29)

b2 = −R3κ − z3κ2 + R2z(−2 + κ2) − L2κ(R − zκ)(1 + κ2) − zρ2(2 + κ2)
−Rκ(−3z2 + ρ2) + 2L(1 + κ2)(R2 − Rzκ + ρ2). (30)

b. Axial Component The axial component of the magnetic flux density is given by

Bz =
μ0NtI0R

3

4κL5
01

∞∑
n=0

(4n + 1)!!
(2n + 3)(n + 1)!n!

(
Rρ

2L2
01

)2n{[
(2n + 2)L2

02 + ρ2
]
FA0 −

( r

R

)2n+3

×
(

L01

L11

)4n+5 [
(2n + 2)L2

12 + ρ2
]
FAL − (4n + 3) ρ2

(2n + 4) κ

[
R

L2
01

(
a1Re [GA0] − b1

χ
Im [GA0]

)
−
( r

R

)2n+3
(

L01

L11

)4n+5(R − Lκ

L2
11

)(
a2Re [GAL] − b2

χ
Im [GAL]

)]}
, (31)

where

a1 = 2(z + Rκ), (32)

b1 = (z + Rκ)2 − χ2, (33)

a2 = 2
[
(z + Rκ) − L(1 + κ2)

]
, (34)

b2 =
[
(z + Rκ) − L(1 + κ2)

]2 − χ2. (35)

For both the radial and axial components of the magnetic flux density, the following expressions are
needed.

χ =
√

(R − κz)2 + (1 + κ2)ρ2, (36)

L01 =
√

R2 + z2 + ρ2, (37)

L11 =
√

(R − Lκ)2 + (z − L)2 + ρ2, (38)

L02 =
√

R2 + z2 − ρ2, (39)

L12 =
√

(R − Lκ)2 + (z − L)2 − ρ2, (40)
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and

FAL = FA

[
1, 2n+

3
2
, 2n+

3
2
, 2n + 4,

x1

x1 − 1
,

y1

y1 − 1

]
, (41)

FA0 = FA

[
1, 2n+

3
2
, 2n+

3
2
, 2n + 4,

x2

x2 − 1
,

y2

y2 − 1

]
, (42)

GAL = GA

[
2, 2n+

3
2
, 2n+

5
2
, 2n + 5,

x1

x1 − 1
,

y1

y1 − 1

]
, (43)

GA0 = GA

[
2, 2n+

3
2
, 2n+

5
2
, 2n + 5,

x2

x2 − 1
,

y2

y2 − 1

]
. (44)

Also,

x1 =
(R − Lκ)

(
1 + κ2

)
(R − κz) + iκχ

, (45)

y1 =
(R − Lκ)

(
1 + κ2

)
(R − κz) − iκχ

, (46)

x2 =
R
(
1 + κ2

)
(R − κz) + iκχ

, (47)

y2 =
R
(
1 + κ2

)
(R − κz) − iκχ

. (48)

Equations (41) through (44) are defined as Appell hypergeometric functions [6, 24, 25] and are expressed
in Mathematica [5] as AppellF1. Also, i =

√−1. Although the denominators in Eqs. (45) through (48)
are complex-valued functions, all magnetic field computations evaluate to real quantities.

2.2. Conical Coil Model

The conical coil model is illustrated in Fig. 2 as viewed from the x axis. Also, the current is flowing in a
purely azimuthal direction. The chosen model assumes that the pitch of each coil is zero. Although each

R

r

α

z

y

Figure 2. Thin conical coil.
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coil must have a cross-sectional area, the authors assume that this has a negligible effect as previously
discussed in the introduction of this article.

The magnetic flux density produced by a tightly-wound conical coil is found by revisiting Eq. (18)
or Eq. (19), and Eq. (21) or Eq. (22). The radial and axial components of the magnetic flux density in
terms of toroidal harmonics are

Bρ =
μ0I0

2πρ
3
2

{
z

√
R
(
1 − k2

coil0

)2

[
2k2

coil0Q− 1
2
(ξcoil0) − kcoil0

(
1 + k2

coil0

)
Q 1

2
(ξcoil0)

]

+
M−1∑
m=1

(z − mh)√
R − mΔ

(
1 − k2

coil

)2 [2k2
coilQ− 1

2
(ξcoil) − kcoil

(
1 + k2

coil

)
Q 1

2
(ξcoil)

]}
, (49)

and

Bz =
μ0I0

√
ρ

π

⎧⎪⎨⎪⎩ R
3
2

l42coil0

(
1 − k2

coil0

)2

[
(Rξcoil0 − ρ) Q− 1

2
(ξcoil0) + (ρξcoil0 − R)Q 1

2
(ξcoil0)

]

+
M−1∑
m=1

(R − mδ)
3
2

l42coil

(
1−k2

coil

)2 ([(R−mΔ)ξcoil−ρ]Q− 1
2
(ξcoil)+[ρξcoil − (R − mδ)] Q 1

2
(ξcoil)

)}
. (50)

Likewise, the same components can be written in terms of elliptic integrals as follows:

Bρ =
μ0I0

πρ

⎧⎨⎩ z

l2coil0

(
1 − k2

coil0

) [1 + k2
coil0

1 − k2
coil0

E
(
k2

coil0

)− K
(
k2

coil0

)]
+

M−1∑
m=1

z − mh

l2coil

(
1 − k2

coil

) ×
[
1 + k2

coil

1 − k2
coil

E
(
k2

coil

)− K
(
k2

coil

)]}
, (51)

Bz =
μ0I0

π

⎧⎪⎨⎪⎩
⎡⎢⎣ l22coil0

− R2

l32coil0

(
1 − k2

coil0

)K
(
k2

coil0

)− z2 + ρ2 − R2

l32coil0

(
1 − k2

coil0

)2 E
(
k2

coil0

)⎤⎥⎦
+

M−1∑
m=0

([
l22coil

− (R − mδ)2
]

l32coil

(
1 − k2

coil

) K
(
k2

coil

)− (z − mh)2 + ρ2 − (R − mδ)2

l32coil

(
1 − k2

coil

)2 E
(
k2

coil

))}
, (52)

where

ξcoil =
ρ2 + (R − mδ)2 + (z − mh)2

2ρ (R − mδ)
, (53)

and
kcoil =

l1coil

l2coil

. (54)

The expressions for l1coil
and l2coil

are given by Eqs. (23) and (24) with ρ′ replaced with R − mδ, and
z′ replaced with mh. Also, the authors define the following quantities as

δ =
R − r

M − 1
, (55)

and
h =

L

M − 1
, (56)

where M = NtL is the total number of coils assumed to be an integer value. Of course, this requires
the reader to choose a length L which forces NtL to be whole number. This requirement is only made
in order to make a direct comparison to that of the conical current sheet.
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The index m = 0 corresponds to the location of the first circular coil at a radius R at the base of
the frustum at the z = 0 plane, and the index m = M −1 corresponds to the location of the last circular
coil at a radius r at the top of the frustum at z = L. Therefore, ξcoil0, kcoil0 , and l2coil0

are those values
of ξcoil, kcoil, and l2coil

evaluated at m = 0. The symbol, δ, represents the change in the radial length of
each coil from R to r as m goes from 0 to M − 1 for a total of M coils. Also, h is the change in height
of the observation point for each coil above the z = 0 plane.

The defining equations for δ and h are used so as to make a more reasonable comparison between
the conical current sheet and the conical coil while maintaining a uniform current I0. The authors
are not attempting to find an equivalent current density of the conical coil which will yield the same
magnetic field at some observation point as that produced by conical current sheet. The main idea is
to simply make a direct comparison between the two structures while maintaining the same number of
turns per unit length, Nt, for both the conical current sheet and the conical coil [7]. However, one may
devise alternative ways to make comparisons which may depend on the type of application.

The authors have also assumed that each coil completes a full turn. In other words, when comparing
the magnetic field from a conical coil to that of a conical current sheet, the authors have assumed that
the conical coil is made up of M complete coils. Remember, the above formulas were ultimately derived
from Eqs. (12) and (13) leading to the expressions given by Eq. (18) or Eq. (19), and Eq. (21) or
Eq. (22), and where all integrations were replaced with summations. The azimuthal integration for all
expressions was from 0 to 2π. If a partial turn of a coil is to be considered then one would need to change
the upper limit of 2π to a value which corresponds to the non-integral turn of a coil. This, of course,
can easily be done. However, all derived expressions would no longer be azimuthally symmetric. In
other words, there would be a φ variation in the mathematical expressions for the magnetic field. This
would result in a Bφ component. This φ component would come from that coil with the non-integral
turn. Of course, one could always add this separately using superposition.

3. NUMERICAL AND GRAPHICAL ANALYSIS

A number of numerical examples are given to test the mathematical expressions developed in Section 2.
The authors will work with the magnetic field intensity, H, instead of the magnetic flux density,
B, for all subsequent analysis in order to keep the numerical values at a more reasonable size. The
units of magnetic field intensity used for all examples is A/m. A series of tables illustrating various
computational results as well as various plots will be developed in this section. Also, the current I0 will
be set to unity for all examples.

Equations (15), (18), and (19), within the Mathematica [5] environment, give excellent numerical
results for the radial component of the magnetic flux density. The numerical integration of these three
equations appear to be extremely robust. The same holds true for the axial component of the magnetic
flux density given by Eqs. (16), (21) and (22). The authors will choose both Eqs. (18) and (21) as the
benchmark for comparison in all subsequent numerical analysis.

The numerical integration of Eqs. (18) and (21) will produce a single value and it is independent
of the index n as illustrated in column 1 in each table developed in this section. Also, nmax, in column
2 of each table is the maximum value of the index used in the summation of Eq. (26) or Eq. (31). The
percent difference used in column 4 is the absolute value of the difference between column 1 and column
3 divided by the absolute value of column 1, where the result is given as a percentage. As the index n
increases, the %� can be made as small as desired. In general, the closer the observation point is to
the magnetic source, the more terms in the series of Eq. (26) or Eq. (31) will be required to reduce the
%� to a desired value. This is not unusual.

As the observation point moves farther from the magnetic source, fewer and fewer terms in the
series solution of Eq. (26) or Eq. (31) will be needed. This is also not at all surprising. The authors
will illustrate the numerical equivalence for a number of equations given in Section 2 as well as their
analytical counterparts given by Eqs. (26) and (31). Our aim is to give the reader multiple options
in modeling conical current sheets and thin and tightly-wound conical coils. Depending upon the
application, one formulation may be more advantageous than another.
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3.1. Example 1

Consider the conically-shaped current sheet of Fig. 1 with the following geometric data.

L = 1.0 inch = 0.0254 m R = 3.0 inches = 0.0762 m
r = 1

4 inch = 0.00635 m Nt = 25 turns
in = 984.25 turns

m

Find the radial component, Hρ, of the magnetic field intensity at an observation height of z = 1.25 in
or 0.03175 m and at an observation radius of ρ = 0.125 in or 0.003175 m. Employ numerical integration
on Eq. (18) and compare the results to those obtained from a direct evaluation of Eq. (26). The results
are tabulated in Table 1.

Table 1. Comparison between numerical integration of Eq. (18) and its analytical counterpart given
by Eq. (26).

Numerical
Integration

μ−1
0 × Eq. (18)

nmax
Hρ = Bρ

μ0

μ−1
0 × Eq. (26)

%�

30.575933 0 27.199708 11.0421
· 2 30.501109 0.24471
· 4 30.573828 0.00688
· 6 30.575868 0.00021

30.575933 8 30.575931 6.89009 × 10−6

Now, find the axial component, Hz, of the magnetic field intensity at an observation height of
z = 1.25 in or 0.03175 m and at an observation radius of ρ = 0.125 in or 0.003175 m. Employ numerical
integration on Eq. (21) and compare the results to those obtained from a direct evaluation of Eq. (31).
The results are tabulated in Table 2.

Table 2. Comparison between numerical integration of Eq. (21) and its analytical counterpart given
by Eq. (31).

Numerical
Integration

μ−1
0 × Eq. (21)

nmax
Hz = Bz

μ0

μ−1
0 × Eq. (31)

%�

279.736832 0 265.074994 5.2413
· 2 279.527348 0.0749
· 4 279.731709 0.0018
· 6 279.736685 0.0001

279.736832 8 279.736827 1.6330 × 10−6

3.2. Example 2

Figures 3 and 4 compare two plots of the radial component of the magnetic field intensity, Hρ, as a
function of the axial variable, z. The geometric data used is that from Example 1. The observation
radius chosen is ρ = 0.125 in or 0.003175 m. Eq. (18) is compared to Eq. (26). The maximum value of the
index used in Eq. (26) in Fig. 3 is nmax = 0. This value of n at an observation radius of ρ = 0.003175 m
and at a height of z = 0.03175 m corresponds to a %Δ of about 11.0% as seen from Table 1. The
maximum value of the index used in Eq. (26) in Fig. 4 is nmax = 2. This value of n at an observation
radius of ρ = 0.003175 m and at a height of z = 0.03175 m corresponds to a %Δ of about 0.24% as seen
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Figure 3. Hρ at ρ = 0.003175 m versus the axial height, z. The maximum index used in Eq. (26) is
n = 0.

Figure 4. Hρ at ρ = 0.003175 m versus the axial height, z. The maximum index used in Eq. (26) is
n = 2.

from Table 1. A detailed error analysis would need to be performed if one were more interested in how
Eqs. (18) and (26) compare as the index n increases.

Figures 5 and 6 compare two plots of the axial component of the magnetic field intensity, Hz, as
a function of the radial variable, ρ. Once again, the geometric data used is that from Example 1. The
observation height is chosen to be z = 1.25 in or 0.03175 m. Eq. (21) is compared to Eq. (31). The
maximum value of the index used in Eq. (31) in Fig. 5 is nmax = 0. This value of n at an observation
height of z = 0.03175 m and at an observation radius of ρ = 0.003175 m corresponds to a %Δ of about
5.2% as seen from Table 2. The maximum value of the index used in Eq. (31) for Fig. 6 is nmax = 8.
This value of n at an observation height of z = 0.03175 m and at an observation radius of ρ = 0.003175 m
corresponds to a %Δ of about 1.6 × 10−6% as seen from Table 2.
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Figure 5. Hz at z = 0.03175 m versus the observation radius, ρ. The maximum index used in Eq. (31)
is n = 0.

Figure 6. Hz at z = 0.03175 m versus the observation radius, ρ. The maximum index used in Eq. (31)
is n = 8.

The next example will illustrate a comparison between the conical current sheet and the conical
coil for the same turns per unit length, Nt, and the same current, I0.

3.3. Example 3

The geometric data from Example 1 are used for this example. Fig. 7 compares the plots of Eqs. (18)
and (49) for radial observation point of ρ = 0.125 in or 0.003175 m as a function of the axial variable, z.
Fig. 8 compares the plots of Eqs. (21) and (50) for axial observation height of z = 1.25 in or 0.03175 m
as a function of the radial variable, ρ. The data given for Example 1 yields a total of 25 coils.

Example 3 compares the conical current sheet model to the conical coil model. One should not
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Figure 7. Hρ at ρ = 0.003175 m versus the axial height, z.

Figure 8. Hz at z = 0.03175 m versus the observation radius, ρ.

expect both plots to be identical since the current sheet model takes into account a continuum of source
values through the integration of the z′ source variable, whereas the coil model takes into account only
a finite number of coils through a finite summation process. What is certainly shown is that if one were
interested in computing the magnetic field from a conical current sheet, it may be advantageous to use
the coil model to get a good idea of the shape of the magnetic field. The coil model has the advantage
that no integrations need to be performed and only a finite sum is needed.

The main difference in the value of the magnetic field due to the conical current sheet versus the
conical coil will be at those observation points where a larger magnetic field gradient exists. The coil
model and the current-sheet model may produce very similar magnetic field values depending upon
where the observation point is located.

If one is designing a conical coil then one would want to directly employ the conical coil equations
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given that the assumptions stated in the introduction section of this article are deemed acceptable. If
a conical coil is designed, and if the pitch of the coil becomes relevant, then the conical coil model
introduced in this article must be modified to include the helical structure of the coil [2]. Modeling the
helical structure of the coil can be done, but the mathematics becomes more involved.

4. CYLINDRICAL CURRENT SHEET

The magnetic field produced by a conical current sheet can be employed to find the magnetic field from
a finite cylindrical current sheet. This allows for a direct comparison with published results, and is just
another validation of the equations developed in Section 2. Consider the ideal geometric model chosen
for a thin and cylindrically-shaped current sheet illustrated in Fig. 9. This model is the limiting case as
α → π

2 for the conically-shaped current sheet shown in Fig. 1. This implies that r → R in the conical
current sheet model.

Figure 9. Cylindrical current sheet.

4.1. Magnetic Flux Density in Integral Form

In the limiting case as κ → 0 or as r → R, the mathematical expressions in Section 2 will degenerate
to those of a thin cylindrical current sheet or an infinitely-thin cylindrical coil. For example, consider
the radial component of the magnetic flux density given by Eq. (18) as κ → 0.

Bρ =
μ0NtI0

2π
√

Rρ
3
2

L∫
0

(z − z′)
(1 − k2)2

{
2k2Q− 1

2
(ξ) − k

(
1 + k2

)
Q 1

2
(ξ)
}

dz′, (57)

where ξ is given by

ξ =
ρ2 + R2 + (z − z′)2

2ρR
. (58)

Likewise, the axial component of the magnetic flux density given by Eq. (21) as κ → 0 is given by

Bz =
μ0NtI0R

3
2
√

ρ

π

L∫
0

1
l42(1 − k2)2

{
(Rξ − ρ)Q− 1

2
(ξ) + (ρξ − R)Q 1

2
(ξ)
}

dz′. (59)
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In Eqs. (58) and (59), k is given by Eq. (25) with l1 and l2 given by Eqs. (23) and (24) but with ρ′
replaced by R. All other expressions for the magnetic flux density due to a thin conical current sheet,
developed in Section 2.1, can be rewritten for the thin cylindrical current sheet by letting κ → 0.

4.2. Magnetic Flux Density in Non-Integral Form

When κ → 0, the vector potential given by Eq. (14) can be directly integrated in terms of complete
elliptic integrals of the first, second and third kind. This yields the following magnetic vector potential.

Aφ =
μ0NtI0

2π

√
R

ρ

{
zk0

[(
k2

0 + β2
(
1 − k2

0

)
β2k2

0

)
K(k2

0) −
E(k2

0)
k2

0

+
β2 − 1

β2
Π
(
β2, k2

0

)]

− (z − L)kL

[(
k2

L + β2
(
1 − k2

L

)
β2k2

L

)
K(k2

L) − E(k2
L)

k2
L

+
β2 − 1

β2
Π
(
β2, k2

L

)]}
, (60)

where

β2 =
4Rρ

(ρ + R)2
, (61)

k2
0 =

4Rρ

(R + ρ)2 + z2
, (62)

k2
L =

4Rρ

(R + ρ)2 + (z − L)2
. (63)

The function Π(·) is defined as the complete elliptic integral of the third kind, and this is expressed in
Mathematica [5] as EllipticP i. One caveat in the application of Eq. (60) is that when the observation
radius ρ = R or β2 = 1, which results in two evaluations of the elliptic integral of the third kind, the
elliptic integral of the third kind becomes undefined. However, in the limit as ρ → R, (β2 − 1)Π(β2, k2

0)
and (β2−1)Π(β2, k2

L) both are finite and approach zero. As long as the source point and the observation
point are not coincident, the magnetic field is non-singular. When evaluating the elliptic integral of the
third kind for circular intervals of the parameter, β2, it is usually rewritten in terms of the Heuman
lambda function. The details of this can be found in Byrd and Friedman [26]. The authors chose not
to employ this technique. However, a number of authors cited in this article have taken this approach.

Employing Eq. (60) and the [∇×A]z yields the radial component of the magnetic flux density, Bρ,
given by [27]

Bρ = −∂Aφ

∂z
,

=
μ0NtI0

π

√
R

ρ

{
2 − k2

L

2kL
K
(
k2

L

)− 2 − k2
0

2k0
K
(
k2

0

)
+

E
(
k2

0

)
k0

− E
(
k2

L

)
kL

}
. (64)

An alternate form for the radial component of the magnetic flux density can be written as follows:

Bρ =
μ0NtI0R

2ρ

4

⎧⎪⎪⎨⎪⎪⎩
FG

[{
3
4
,
5
4

}
, {2} ,

1
ξ2
L

]
(R2 + (z − L)2 + ρ2)

3
2

−
FG

[{
3
4
,
5
4

}
, {2} ,

1
ξ2
0

]
(R2 + z2 + ρ2)

3
2

⎫⎪⎪⎬⎪⎪⎭ , (65)

where FG(·) is the generalized hypergeometric function [28], and it is expressed in Mathematica [5] as
HypergeometricPFQ. Also, the following expressions in Eq. (65) are defined as

ξL =
R2 + (z − L)2 + ρ2

2Rρ
, (66)

and

ξ0 =
R2 + z2 + ρ2

2Rρ
. (67)
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Equation (65) is not in a form often found in the literature. Often one finds elliptic integral expressions
when dealing with cylindrical geometries. Eqs. (64) and (65) are both valid for all observation points
external to the current source. Eq. (64) matches that found by Conway [29]. Both expressions given by
Eqs. (64) and (65) yield identical numerical results in Mathematica [5]. However, whether (64) or (65)
is more numerically robust has not been addressed by the authors. Eqs. (64) and (65) are not unique.
One can find other expressions which are mathematically equivalent. In fact, the interested reader may
want to express the elliptic integral formulations for the radial and axial magnetic field components in
terms of toroidal harmonics.

Employing Eq. (60) and the [∇×A]ρ [30] yields the axial component of the magnetic flux density,
Bz, given by

Bz =
1
ρ

∂(ρAφ)
∂ρ

,

=
μ0NtI0

4π
√

Rρ

{
zk0

[
K(k2

0) +
R − ρ

R + ρ
Π
(
β2, k2

0

)]− (z − L)kL

[
K(k2

L) +
R − ρ

R + ρ
Π
(
β2, k2

L

)]}
. (68)

Alternatively, Bz can be put into the following mathematical form given by [27]

Bz =
μ0NtI0

4

{
zk0

π
√

ρR
K(k2

0) − (z−L) kL

π
√

ρR
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(
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)
K(1 − k2

L)
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2K(k2
L)Z
(
φL, 1 − k2

L

)
π
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, (69)

where

φ0 = tan−1

(∣∣∣∣ z

R − ρ

∣∣∣∣) , (70)

φL = tan−1

(∣∣∣∣ z − L

R − ρ

∣∣∣∣) . (71)

Also, F(φ, 1−k2) and Z(φ, 1−k2) are the incomplete elliptic integral of the first kind and the Jacobi zeta
function, respectively. In Mathematica [5], the incomplete elliptic integral of the first kind is written as
EllipticF , and the Jacobi zeta function is written as JacobiZeta. The numerical evaluation of Eq. (69)
does not require a limit as ρ → R to evaluate the axial component of the magnetic field at ρ = R.

Equation (68) is a simpler-looking mathematical expression than Eq. (69) and yields identical
results for all observation points. Also, Eq. (68) does not need to introduce the incomplete elliptic
integral of the first kind or the Jacobi Zeta function, both of which can be rewritten in terms of the
Heuman lambda function [26, 29]. In general, if a physical geometry exhibits some sort of symmetry
about an axis, the mathematical expression for the magnetic field off the symmetry axis becomes much
more complex, and its mathematical description usually requires the application of special functions.

Equations (68) and (69) agree numerically with the axial component of the magnetic flux density,
Bz, published in Conway [29]. However, Conway [29] derives the axial component of the magnetic flux
density in terms of the complete elliptic integral of the first kind and the Heuman lambda function for
distinct observation regions. Using our notation, Conway [29] derives expressions for Bz valid for z < 0,
for 0 < z < L and for z > L. However, Eqs. (68) and (69) are single mathematical expressions valid at
all observation points external to the current source.

Recently, a number of authors have reintroduced methods for analytically evaluating the magnetic
field and the inductance from circular cylindrical structures [31–49]. These same methods prove
fruitful for developing the mathematical expressions needed for finding the magnetic field from conical
structures. With the advent of powerful mathematical programs such as Mathematica [5], much of the
algebraic intensive work necessary to handle the complex mathematics associated with magnetic field
computations off the symmetry axis becomes much more accessible.

4.3. Numerical Analysis

Consider the cylindrically-shaped current sheet with the following data.
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L = 1.0 inch = 0.0254 m
R = 3.0 inches = 0.0762 m
Nt = 25 turns

in = 984.25 turns
m

Find the radial component, Hρ, of the magnetic field intensity at an observation radius of
ρ = 0.125 in or 0.003175 m and for various observation heights. Employ numerical integration on
Eq. (57) and compare the results to those obtained from a direct evaluation of Eqs. (64) and (65). The
results are tabulated in Table 3.

Table 3. Comparison between numerical integration of Eq. (57) and its analytical counterpart given
by Eq. (64) or Eq. (65).

ρ z

Numerical
Integration

μ−1
0 × Eq. (57)

Hρ=
Bρ

μ0

μ−1
0 × Eq. (64)

Hρ=
Bρ

μ0

μ−1
0 × Eq. (65)

0.003175 0.03175 2.08795 2.08795 2.08795
· 0.02540 1.50290 1.50290 1.50290
· 0.01270 0.00000 0.00000 0.00000
· 0.00000 −1.50290 −1.50290 −1.50290
· −0.0127 −2.50901 −2.50901 −2.50901
· −0.0254 −2.85197 −2.85197 −2.85197

0.003175 −0.03175 −2.81753 −2.81753 −2.81753

Find the axial component, Hz, of the magnetic field intensity at an observation radius of ρ = 0.125 in
or 0.003175 m and for various observation heights. Employ numerical integration on Eq. (59) and
compare the results to those obtained from a direct evaluation of Eqs. (68) and (69). The results are
tabulated in Table 4.

Table 4. Comparison between numerical integration of Eq. (59) and its analytical counterpart given
by Eq. (68) or Eq. (69).

ρ z

Integration
Numerical

μ−1
0 × Eq. (59)

Hz=
Bρ

μ0

μ−1
0 × Eq. (68)

Hz=
Bρ

μ0

μ−1
0 × Eq. (69)

0.003175 0.03175 148.53662 148.53662 148.53662
· 0.02540 155.78791 155.78791 155.78791
· 0.01270 162.00945 162.00945 162.00945
· 0.00000 155.78791 155.78791 155.78791
· −0.0127 139.26380 139.26380 139.26380
· −0.0254 117.36434 117.36434 117.36434

0.003175 −0.03175 105.97456 105.97456 105.97456

5. DISCUSSION AND CONCLUSION

Mathematical expressions for the magnetic field from a conical current sheet and a tightly-wound
conical coil are found and compared. Also, mathematical expressions for the cylindrical current sheet
are developed from the limiting case of the conical current sheet. The authors then compared the



18 Smith et al.

mathematical expressions for the cylindrical current sheet to published results. The components of the
magnetic field produced by a cylindrical current sheet yield exact mathematical expressions in terms of
known special functions as is shown by Eqs. (64), (65), (68) and (69). However, for the conical current
sheet, an infinite series solution in terms of Appell hypergeometric functions is found. Whether this
series is summable in terms of some set of special functions has currently eluded the authors. Searching
for a non-series solution to this problem may indeed be a worthwhile future research topic.

The main goal of this article is to develop a number of formulations which may be of interest to
those who are either designing conical magnetic structures for the purpose of generating a magnetic
field or for the purpose of optimization. Optimization methods can be expedited more readily when
analytical expressions are available. It is not the intention of the authors to write a compendium of all
possible forms for the solution of the magnetic field due to a conical current sheet, but to introduce a
few expressions which may be used as a starting point for those who wish to design or analyze such
structures.

There is a cost in computing values for special functions such as hypergeometric functions, elliptic
integrals, Bessel functions, etc., as well as infinite series formulations, and this cost may be too great
if one is interested in very fast and accurate computations. In general, what one tries to accomplish
with any powerful numerical technique is speed and accuracy, and to limit the number of floating point
operations. The authors have made no attempt to venture into the details of this important subject.
What the authors have done is to numerically validate each mathematical expression introduced in this
article. Although speed of computation is important, the authors’ main interest was in the accuracy
of the mathematical expressions. However, a number of integral expressions are developed for both
conical current sheets and cylindrical current sheets and have proven to be numerically robust within
the Mathematica [5] environment. For example, the reader will find that Eqs. (15), (16), (18), (19),
(21), (22), (57), and (59) are quite robust when numerically evaluated by employing Mathematica’s [5]
intrinsic numerical integration algorithm. If speed and accuracy is the main purpose, then these
equations perform well.

For the conical current sheet, application of Eqs. (26) and (31) should not be employed for purely
numerical analysis. As with most purely analytical solutions, their real utility is often found not for their
application in numerical analysis, but for their application in parametric studies such as optimization.
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