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Abstract—The performance of direction-of-arrival (DOA) estimation algorithms degrades when a
partly calibrated array is adopted due to the existing unknown gain-phase uncertainties. In addition, the
spatial discretized searching grid also limits the performance improvement and effectiveness of subspace-
based DOA estimation algorithms, especially when the true angles do not lie on the grid points which
is referred to the off-grid problem alike. In this paper, a self-calibration DOA estimation algorithm is
proposed which solves the array calibration and off-grid problems simultaneously. Firstly, the signal
model for a partly calibrated array with gain-phase uncertainties is established. To suppress the off-
grid errors, an optimization problem for joint parameters estimation is constructed by substituting the
approximation of the steering vector into a newly constructed objective function. The alternative
minimization (AM) algorithm is employed to calculate the joint DOA and gain-phase uncertainty
estimations. Within each iteration step of the optimization problem, a closed-form solution is derived
that guarantees the convergence of the proposed algorithm. Furthermore, the Cramér-Rao bound (CRB)
for the partly calibrated arrays with unknown gain-phase uncertainties is also derived and analyzed in
the paper. Simulation results demonstrate the effectiveness of the proposed algorithm.

1. INTRODUCTION

Array signal processing, including direction-of-arrival (DOA) [1, 2], beamforming [3, 4], and imaging [5],
has received intense attention in the past decades. DOA estimation is an essential technique, so is widely
used in applications of radar, sonar, wireless communications, and radio imaging. In recent years, various
DOA estimation algorithms have been proposed, including the Capon algorithm, maximum likelihood
(ML) algorithms, multiple signal classification (MUSIC) algorithm, and the estimation of parameters
via the rotational invariance technique (ESPRIT). In addition, advanced with the recently developed
sparse signal reconstruction (SSR) scheme, several DOA algorithms have been proposed by exploiting
the spatial sparse property [6–8].

Unfortunately, antenna arrays usually suffer from imperfections including the gain-phase
uncertainties, mutual couplings, and antenna position errors in practice [9–11]. Thus, DOA estimation
performance, especially for the antenna sensitive algorithms, will be significantly degraded with the array
imperfections. To address this practical problem, the partly calibrated array model was established
in [11], where unknown array errors are estimated jointly with the DOAs using the same data. In
addition, several algorithms [12–16] have been developed to suppress the effects of antenna imperfections
and improve the estimation performance by taking into account the array model errors. The algorithm
in [12] constructed the MUSIC spectrum search function by considering the gain-phase uncertainties:
two subsets of parameters are then estimated through a two-step iterative operation. In [13], a new
cost function was constructed by minimizing the consistency between the manifold matrix and signal
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subspace. Unfortunately, the algorithms proposed in [12, 13] are extremely computationally complex and
failed to guarantee convergence. The DOA estimation algorithm for partly calibrated array developed
in [14] overcame the suboptimal performance and worked even with large phase errors. By considering
the existence of gain-phase uncertainties in the array rotational invariance, an ESPRIT-like algorithm
was developed in [15] which simultaneously provided closed-form expressions of the DOA and gain-
phase uncertainties. The authors in [16] proposed a self-calibration approach with perturbed arrays
by using redundancies in the virtual array. Recently, similar works considering gain-phase errors and
self-calibration are also be done in [17, 18] under different scenarios.

In a more challenging scenario, the spectrum searching based DOA estimation algorithms, including
the MUSIC and Capon algorithms, also suffer from off-grid problem as faced in the SSR-based DOA
estimation algorithms [19–21]. It is because the spectrum searching based DOA estimation algorithms
require a pre-specified discretized spatial grid with a finite number of elements, and they are derived
under the assumption that the true DOAs fall on the grid points. However, the above assumption may
not be always guaranteed in practice which will trigger off-grid errors. In order to address this problem,
a Taylor expansion model was established to approximate the real steering vector [19]. Moreover, to
further suppress the off-grid errors, a gridless convex optimization problem was formulated in [20] to
achieve accurate DOA estimation. A dense grid or grid refinement was proposed in [21]. Unfortunately,
it will straightforwardly lead to heavy computational complexity which makes it difficult to implement
in practical applications. Thus, necessary operation should be taken to address this problem.

In this paper, a self-calibration algorithm with gain-phase error array is proposed for robust DOA
estimation which addresses the array calibration and off-grid problem simultaneously. By considering
the gain-phase uncertainties, the signal model for the partly calibrated array is first established.
Utilizing the orthogonality between the signal and noise subspaces, a novel objective function is
constructed. To suppress the effect of off-grid error, the objective function is modified by adopting the
approximation of the steering vector. Then, the alternating minimization (AM) algorithm is employed
to iteratively estimate the three subsets of unknown parameters, i.e., DOAs, off-grid errors, and gain-
phase uncertainties. Thus, the array is self-calibrated with the estimated gain-phase uncertainties which
improves the performance of the DOA estimation. In order to theoretically analyze the performance,
the Cramér-Rao bound (CRB) is derived which considers the interaction of DOA as well as gain-phase
errors. The superior performance of the proposed algorithm is demonstrated through the simulation
results.

The main contributions of this paper are summarized as follows: 1) A novel objective function
is constructed for joint estimation of DOA and gain-phase uncertainties. 2) A closed-form solution of
the off-grid errors is derived which guarantees the convergence of the proposed algorithm, and the AM
algorithm is employed as an efficient solver.

The rest of paper is organized as follows. In Section 2, the signal model of the partly calibrated
array used in this paper is introduced. The proposed novel off-grid calibration algorithm is given in
Section 3. Then, the derivation of the CRBs and simulation results are provided in Section 4. The
conclusions are summarized in Section 5.

Notations: Upper-case (lower-case) bold characters are used to denote matrices (vectors). IM is
the M ×M identity matrix and 1M is an M ×1 all-one vector. C

M×N (CM ) denotes the M ×N (M ×1)
matrix (vector) in the complex value domain. trace{A} is the trace of matrix A. ‖x‖1 and ‖x‖2 stand
for the �1-norm and �2-norm of vector x, respectively. (·)T , (·)∗ and (·)H denote the transpose, conjugate
and Hermitian operations of a matrix or a vector, respectively. E[·] is the statistic expectation operator.
diag{x} stands for a diagonal matrix that uses the elements of x as its diagonal elements. �{·} is the
real part of a matrix or vector. ◦ denotes the Schur-Hadamard product.

2. PARTLY CALIBRATED ARRAY SIGNAL MODEL

Consider a uniform linear array (ULA) consisting of M omni-directional antennas with inter-sensor
spacing d = λ/2, where λ stands for the wavelength of received signal. We assume that there are K
uncorrelated far-field sources impinging on the array from distinct directions θ = [θ1, . . . , θK ]T , where
θk ∈ [−π

2 , π
2 ]. Thus, the complex-valued baseband received signal vector at time index t can be expressed
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as

x(t) =
K∑

k=1

a(θk)sk(t) + n(t) = As(t) + n(t), (1)

where a(θk) = [1, e−j2πd/λ sin(θk), . . . , e−j2π(M−1)d/λ sin(θk)]T ∈ C
M is the steering vector corresponding

to the kth source. A = [a(θ1), . . . ,a(θK)] ∈ C
M×K is the manifold matrix of sensors array, and

s(t) = [s1(t), . . . , sK(t)]T ∈ C
K is the source signal vector. Herein, n(t) denotes the noise term which

obeys the Gaussian distribution with zero mean and variance matrix σ2
nIM , and we assume that the

source signals and the noise term are uncorrelated.
The signal model in Eq. (1) is established under the assumption that the array is fully calibrated. In

practice, some antennas of the array may not be fully calibrated and there exist gain-phase uncertainties
in the array response. This kind of array is referred as partly calibrated array. Without loss of generality,
we assume that the first Mc antennas are well calibrated, whereas the last M − Mc antennas are
uncalibrated with unknown gain and phase uncertainties. For analysis convenience, we further assume
that the gain and phase uncertainties are time-invariant and angle-independent. In this case, the
received signal vector x̄(t) of the partly calibrated array can be rewritten as

x̄(t) = Γ(γ)As(t) + n(t)
= Ās(t) + n(t), (2)

where Γ(γ) = diag(γ) with the gain-phase uncertainties vector γ = [1T
Mc

, ρ1e
jϕ1, . . . , ρM−Mce

jϕM−Mc ]T .
ρm and ϕm are the gain and phase error of the mth antenna, respectively, m ∈ {1, . . . ,M − Mc}.
Ā = Γ(γ)A(θ) is the manifold matrix of the partly calibrated ULA. To the end, the corresponding
sampling covariance matrix is evaluated using T collected samples, expressed as,

ˆ̄R =
1
T

T∑
t=1

x̄(t)x̄H(t). (3)

The eigendecomposition of ˆ̄R can be denoted as
ˆ̄R = ˆ̄Es

ˆ̄Λs
ˆ̄EH

s + ˆ̄En
ˆ̄Λn

ˆ̄EH
n . (4)

where Λs and Λn are diagonal matrices consisting of K largest eigenvalues and M − K smallest
eigenvalues, respectively. The terms Ēs ∈ C

M×K and Ēn ∈ C
M×M−K are the corresponding

eigenvectors, which spans the signal subspace and the noise subspace, respectively. Thus, the DOAs
can be achieved by finding the K peaks of the following spectrum function

PMUSIC =
1

āH(φl) ˆ̄En
ˆ̄EH

n ā(φl)
, (5)

with ā(φl) = Γ(γ)a(φl), where φl is the lth element of Θ, and Θ = [φ1, . . . , φL] is the L-element
uniformly discretized spatial grid with step size τ in the range of [−π/2, π/2].

3. THE PROPOSED ALGORITHM

By taking into account the partly calibrated array model, the joint DOA and gain-phase uncertainties
estimation can be achieved by solving the following optimization problem

(θ̂, γ̂) = arg min
φl∈Θ,γ

āH(φl) ˆ̄En
ˆ̄E

H

n ā(φl) =
∥∥∥āH(φl) ˆ̄En

∥∥∥2

2

s.t. γm = 1, m = 1, 2, . . . ,Mc,

(6)

where γm is the mth element of γ, and the constraint function is achieved based on the assumption
that the first Mc sensors are fully calibrated.

According to the MUSIC spectrum function in Eq. (5), the performance of the conventional MUSIC
algorithm relies on the division of the discretized spatial grid and assumes that the DOAs locate on the
discretized grid points. In practice, this on-grid assumption is not always guaranteed which is referred



4 Wei et al.

as off-grid problem. Under the off-grid scenario, the true DOAs do not lie on the grid points, i.e.,
θk /∈ Θ, k = 1, . . . ,K. In this case, the conventional MUSIC algorithm will never achieve accurate
DOA estimation and suffers from degraded estimate performance. To suppress the effect of the off-grid
problem, a dense grid or the grid refinement operation is necessary to reduce the off-grid error. However,
the dense grid or grid refinement worsens the computational complexity. In addition, the true DOAs are
selected from the continuous space domain, so the grid refinement operation cannot solve the off-grid
problem for the MUSIC algorithm fundamentally. To suppress the off-grid errors, the approximation of
the steering vector a(θk), by utilizing the first order Taylor series expansion, can be expressed as,

a(θk) ≈ a(φlk , βk) = a(φlk) + b(φlk)βk, (7)
where φlk is the grid point closest to the true DOA θk, and βk is the corresponding off-grid error which
is defined as βk = θk − φlk . Moreover, βk is in the range of [−τ/2, τ/2] with τ being the searching step.
The vector b(φlk) is the derivative of a(φlk), i.e., b(φlk) = ∂a(φlk)/∂φlk . Compared with a(φlk), the
model error of a(φlk , βk) is smaller, and the off-grid error can be consequently suppressed.

By substituting the steering vector approximation of a(θk) into the optimization problem in (6),
the optimization problem can be further expressed as

(φ̂, β̂, γ̂) = arg min
φl∈Θ,γ

∥∥∥[Γ(γ)a(φl, βl)]H ˆ̄En

∥∥∥2

2

s.t. Wγ = 1Mc ,

(8)

where φ̂ = [φ̂l1 , . . . , φ̂lK ]T and β̂ = [β̂1, . . . , β̂K ]T . φ̂lk is the coarse DOA estimation of the kth source by
finding the kth peak with the discretized grid Θ, and β̂k is the corresponding off-grid error estimation.
Thus, accurate DOA estimation can be calculated as

θ̂ = φ̂ + β̂. (9)
In addition, γ̂ is the estimated gain-phase uncertainties vector and W = [IMc,0Mc×(M−Mc)], and
0Mc×(M−Mc) represents the Mc × (M − Mc) matrix where all entries are zero.

According to the uncorrelated property, the off-grid errors for different sources can be estimated
separately. In this case, the optimization problem in Eq. (8) is converted into K sub-problems

min
γ,βk

f (γ, βk)=γHP1k
γ + 2βk�{γHP2k

γ}+ βk
2γHP3k

γ

s.t. Wγ = 1Mc ,
(10)

where

P1k
= ( ˆ̄En

ˆ̄EH
n ) ◦ (a(φlk)aH(φlk))T

P2k
= ( ˆ̄En

ˆ̄EH
n ) ◦ (a(φlk)bH(φlk))T

P3k
= ( ˆ̄En

ˆ̄EH
n ) ◦ (b(φlk)bH(φlk))T ,

(11)

k = 1, 2, . . . ,K. The detailed derivations of Eq. (10) can be found in Appendix A. Note that the coarse
DOA estimation φ̂lk in Eq. (11) is obtained by finding the kth peak of MUSIC spectrum, and it has
large estimation error due to the existence of the gain-phase uncertainties and off-grid error. Thus,
to further improve the DOA estimation performance, the gain-phase uncertainties and off-grid errors
should be further estimated.

It is well known that the AM algorithm [22] is an effective tool to solve the optimization problem
involved several different subsets of variables, which is employed to solve the optimization problem in
Eq. (10) in this paper. Without loss of generality, the off-grid errors are estimated first by fixing the
gain-phase uncertainties. Hence, the objective function in Eq. (10) can be converted to a quadratic
function with respect to βk, i.e.,

f(βk) = (γHP3k
γ)βk

2 + (2�{γHP2k
γ})βk + γHP1k

γ. (12)

Obviously, the optimal solution of β̂k can be expressed in closed-form as

β̂k = −�{γHP2k
γ}

γHP3k
γ

. (13)



Progress In Electromagnetics Research M, Vol. 99, 2021 5

To further estimate the gain-phase uncertainties, βk is fixed. Note that �{γHP2k
γ} =

(γHP2k
γ + γHPH

2k
γ)/2, and the optimization problem in Eq. (10) can be rewritten as

min
γ

γHQkγ

s.t.Wγ = 1Mc ,
(14)

with Qk = P1k
+βk(P2k

+PH
2k

)+β2
kP3k

. The optimization problem in Eq. (14) can be solved effectively
using the Lagrange multiplier method, and the corresponding Lagrangian function is formulated as
follows

L(γ,u) = γHQkγ + uH(WHγ − 1Mc), (15)

where u is the Lagrange multiplier vector. Let the partial derivative of L(γ,u) with respect to γ be
zero, and the first-order necessary condition for optimal solution can be expressed as QT

k γ∗+W∗u∗ = 0.
To the end, we have,

γ = −Q−H
k Wu. (16)

By substituting Eq. (16) into the constraint function of Eq. (14), the Lagrange multiplier u can be
determined. Thus, the optimal solution of Eq. (14) can be expressed by

γ̂k = Q−H
k W(WHQ−H

k W)−11Mc . (17)

To the end, βk and γk are alternatively iterated until the convergence conditions are achieved.
Once the iterative process is converged, the joint estimations of DOA and gain-phase uncertainties
can be obtained. Note that the gain-phase uncertainties γk can be calculated using K different DOA
estimations separately, and the estimation of γ̂ is achieved by averaging the K estimations, i.e.,

γ̂ =
K∑

k=1

γk/K. (18)

In addition, the gain and phase estimations can be respectively obtained as follows{
ρ̂l = |γ̂(Mc + l)|
ϕ̂l = ∠ (γ̂(Mc + l))

, l = 1, . . . ,M − Mc. (19)

where ρ̂ = [ρ̂1, . . . , ρ̂M−Mc ]T and ϕ̂ = [ϕ̂1, . . . , ϕ̂M−Mc ]T . For simplification, the main steps of the
proposed off-grid calibration algorithm which is referred as OGCA are summarized in Algorithm 1.

Algorithm 1. Off-Grid Calibration Algorithm

Initialization the gain-phase uncertainties matrix Γ(γ) = IM , i = 0, k = 1;
Step 1 Obtain coarse DOA estimation φ̂ by finding the K peaks of the conventional MUSIC spectrum;
Step 2 Let Γ(γ(i)

k ) = IM ;
Step 3 Fix γ

(i)
k , optimize β

(i)
k according to (13);

Step 4 Fix β
(i)
k , update γ

(i+1)
k with (17);

If ||β(i)
k − β

(i−1)
k ||2 ≤ ε1 and ||γ(i)

k − γ
(i)−1
k ||2 ≤ ε2 (ε1 and ε2 are thresholds), the iteration is

terminated. Otherwise, let i = i + 1, and repeat Step 3 and 4.
Step 5 Let k = k + 1, i = 0.
Repeat Step 2 to Step 5 until all K off-grid errors β̂ are obtained.
Step 6 Calculate the accurate DOA estimation and the gain-phase uncertainties estimation through
(9) and (18), respectively.

Remark: From Eq. (16), it is clear that the matrix Qk should be a nonsingular or full-rank matrix.
Otherwise, the estimation performance of γ will be heavily degraded. In order to avoid the singular
case of matrix Qk, the diagonal loading method [23] can be adopted, that is, QDLk

= Qk +δI where δ is
the small diagonal loading factor. Indeed, the matrix Qk is nonsingular within the extensive experience
that we have made. Thus, the diagonal loading method is not necessary in general.
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Convergence analysis: Actually, the objective function f(γ, βk) in Eq. (10) is monotonically
non-increasing in each iteration, i.e., f(γ̂(i+1), β̂

(i+1)
k ) ≤ f(γ̂(i), β̂

(i+1)
k ) ≤ f(γ̂(i), β̂

(i)
k ), where γ̂(i) and

β̂
(i)
k denote the parameter estimations for the ith iteration. Furthermore, the objective function is non-

negative. Therefore, the convergence of proposed iterative algorithm can be obviously guaranteed with
these two properties [22]. In addition, compared with the similar iterative algorithm in [19, 22], the
closed-form solution is obtained in each sub-optimization problem, which can significantly reduce the
computational complexity.

Complexity analysis: Besides the eigendecomposition with O(M3) complexity, the proposed
algorithm contains two loops: the number of iterations in outer loop is equal to the number of
sources K, and Nin denote the number of iterations in inner loop. In each iteration, the closed-form
formulations (13) and (17) are computed with complexity O(M2) and O(M3), respectively. Specifically,
the dimensions of Pik , (i = 1, 2, 3) and Qk are M ×M , and the most expensive complexity is the inverse
operation with O(M3) flops in Eq. (17). Consequently, the whole computational complexity of proposed
algorithm is given by O(KNinM3).

4. SIMULATION RESULTS AND DISCUSSION

In this section, the closed-form expressions for CRBs are derived which consider the effect of gains and
phases uncertainties. Simulation results are then provided to evaluate the performance of proposed
algorithm by comparing the conventional MUSIC algorithms and CRBs.

4.1. CRBs Analysis

In this subsection, the CRBs are derived under the assumption that the received signal vectors of the
partly calibrated array follow the zero-mean and statistically independent Gaussian distribution. In
addition, three unknown parameter vectors including the DOAs θ, gains ρ, and phases φ are denoted
as θ = [θ1, . . . , θK ]T , ρ = [ρ1, . . . , ρM−Mc ]T and ϕ = [ϕ1, . . . , ϕM−Mc ]T , respectively. Compared to the
existing CRBs expression [15], the derived CRBs consider the interaction between different unknown
parameters.

With T snapshots of received signal, the elements of FIM with respect to the unknown parameter
vector z = [θT ,ρT ,ϕT ]T are given by [13]

Fij = T trace
{
R−1 ∂R

∂zi
R−1 ∂R

∂zj

}
, (20)

where R is the covariance matrix of signal vector x(t); zi and zj denote the ith and jth elements of z,
respectively. As it is known, the CRBs are equal to the corresponding diagonal elements of the inverse
of the FIM, F Δ= [Fij ]. Therefore, the next step is to calculate the block elements of FIM, i.e., Fij. The
DOA-DOA block of the FIM is given by

Fθθ = 2�
{

(RsĀHR−1ĀRs) ◦ ( ˙̄AHR−1 ˙̄A)T + (RsĀHR−1 ˙̄A) ◦ (RsĀHR−1 ˙̄A)T
}

, (21)

where

˙̄A =
K∑

k=1

∂Ā
∂θk

= Γ(γ)
K∑

k=1

∂A
∂θk

. (22)

The DOA-gain block is calculated as

Fθρ = 2�
{[

(RsĀHR−1) ◦ (CARsĀHR−1 ˙̄A)T + (RsĀHR−1ĀRsAHCH) ◦ (R−1 ˙̄A)T
]
HT

}
, (23)

where C = diag([1T
Mc

,ϕT ]) and H is an (M − Mc) × M selection matrix with the (i, j)th element

[H]i,j =
{

1, if j = i + Mc

0, otherwise.
(24)
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The DOA-phase block is expressed as

Fθφ = 2�
{

j
[
(RsĀHR−1) ◦ (ĀRsĀHR−1 ˙̄A)T − (RsĀHR−1ĀRsĀH) ◦ (R−1 ˙̄A)T

]
HT

}
. (25)

The gain-gain block is given as

Fρρ = 2�{
H[(CARsĀHR−1) ◦ (CARsĀHR−1)T

+(CARsĀHR−1ĀRsAHCH) ◦ (R−1)T ]HT
}

. (26)

The gain-phase block is given by

Fρφ = 2�{
jH[(CARsĀHR−1) ◦ (ĀRsĀHR−1)T − (CARsĀHR−1ĀRsĀH) ◦ (R−1)T ]HT

}
. (27)

At last, the phase-phase block can be expressed as

Fφφ = 2�{
H[(ĀRsĀHR−1ĀRsĀH) ◦ (R−1)T − (ĀRsĀHR−1) ◦ (ĀRsĀHR−1)T ]HT

}
. (28)

4.2. Simulation Results and RMSE Analysis

Without loss of generality, a partly calibrated ULA with M = 10 antennas is considered in this
subsection. In addition, we assume that there are three (K = 3) far-field uncorrelated narrow-band
signals impinging on the array. In order to demonstrate the superior performance of the proposed
algorithm, the true DOAs of the three sources come from different directions −15.4423◦ , 0.3846◦, and
25.5828◦, respectively. In the following simulations, the first five sensors are assumed to be calibrated
i.e., Mc = 5, and the last five sensors are uncalibrated with unknown gain-phase uncertainties given by
0.8ejπ/5, 1.25e−jπ/3, 1.53e−jπ/5, 0.75ejπ/4, and 1.36e−jπ/10. The signal to noise ratio (SNR) used in this
paper is defined as

SNR = 10 log
(
E[‖s(t)‖2

2]/E[‖n(t)‖2
2]

)
. (29)

To evaluate the DOA estimation performance, the root mean square error (RMSE) used in this paper
is defined as

RMSEθ =

√√√√ 1
KP

P∑
p=1

K∑
k=1

(θ̂p,k − θk)
2
. (30)

where θ̂p,k is the estimation of DOA θk within the pth Monte Carlo trial, and P is the total number of
the Monte Carlo trials and P = 1000. All simulations in this paper are operated via Matlab 2014a on
a laptop platform with Windows 10 operation system.

In order to examine the performance of the proposed algorithm, the RMSE curves versus
SNR of different DOA estimation and calibration algorithms are provided in Fig. 1. OGSBI and
SURE IR algorithms refer to the off-grid sparse Bayesian inference [19] and super-resolution iterative
reweighted [24], respectively. The yellow squared line is referred to simultaneous orthogonal matching
pursuit with total least squares (SOMP TLS) [25]. The CRB curve is calculated with joint DOA and
gain-phase estimation. In this simulation, the discretized grid is in the range of −90◦ to 90◦ with the step
size τ = 1◦. Note that the OGSBI and SURE IR algorithms can tackle the off-grid problem effectively;
however, they cannot address the gain-phase uncertainties. On the other hand, the SOMP TLS is robust
to the uncertainties; yet the off-grid error will cause a degradation of DOA estimation heavily. From
these simulation results, the proposed self-calibration algorithm shows superior performance to the other
approaches in the case of partly calibrated ULAs, especially with high SNRs. It is because the proposed
algorithm can address the off-grid problem and gain-phase errors simultaneously. The performance of
the conventional MUSIC algorithm achieves a floor RMSE curve even with the increasing of SNR, and
the reason is that the existence of the off-grid error constrains the performance improvement. Note that
the proposed algorithm has a poor performance compared to MUSIC, OGSBI, and SURE IR algorithms
at the period of lower SNR. The reason for this phenomenon is that when SNR is low, there exist larger
biases in coarse DOA estimation while the errors will be accumulated during the AM iteration process
with the negative impact of array uncertainties.

In addition, Fig. 2 depicts the RMSE comparison of DOA estimations versus the number of
snapshots. In this simulation, the SNR is set as 10 dB while the step size of the discretized grid is
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Figure 1. RMSE comparison versus SNR with
different algorithms (T = 500).
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Figure 2. RMSE of DOA estimation versus the
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Figure 3. RMSE of DOA estimation versus step sizes with different SNR settings (T = 500).

τ = 1◦. The number of snapshots is varied from 50 to 1000. Since the proposed self-calibration
algorithm can suppress the effect of off-grid error and gain-phase uncertainties at the same time, the
proposed algorithm presents a better performance than the other algorithms whenever the number of
snapshots changes.

As analyzed previously, the step size of the searching grid has a fundamental effect on the
performance of conventional MUSIC. In order to examine the robustness of the proposed algorithm
with different step sizes, the RMSE curves of DOA estimation are illustrated in Fig. 3. As shown in
Fig. 3, the proposed algorithm still exhibits an acceptable result even when the step size τ = 5◦.

Figures 4 and 5 give the RMSE of gain-phase estimation versus SNR and the number of snapshots,
respectively. In this two simulations, the step size is set as 3◦. It shows that the proposed algorithm
also has good performance on gain-phase estimation.

To further verify the convergence of the proposed algorithm, the values of the cost function in
Eq. (10) versus iteration number at different SNRs are plotted in Fig. 6. It can be seen that the
proposed DOA estimation algorithm always guarantees convergence within about 60 iterations.

In examining the resolution performance, the RMSE comparison of the proposed algorithm,
MUSIC, SOMP TLS, OGSBI, and SURE IR algorithms is plotted in Fig. 7. In this simulation, two
targets with different angle separations varying from 2.4◦ to 18◦ are considered. From Fig. 7, we can
see that the RMSE values of all algorithms decrease with the increase of separation angle. Nevertheless,
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the proposed algorithm still achieves a better DOA estimation performance.
Finally, in order to verify the efficiency of the proposed self-calibration algorithm, the CPU running

time of all test algorithms is compared in Fig. 8, where the curves are averaged in 50 Monte Carlo runs.
It is obvious that the SURE IR involves heave computational load, due to the severe non-convexity
and pruning operation. On the other hand, the proposed method shows better efficient estimation
performance with the benefit of the convergence, although the iterative process is adopted. For intuitive,
the CPU running time is averaged among all different SNRs and listed in Table 1.

Table 1. Detailed CPU running time of respective algorithms averaged among all SNR settings.

Algorithms MUSIC SOMP TLS OGSBI SURE IR Proposed

Running Time(s) 0.2029 0.3414 0.5406 27.1389 0.2905

5. CONCLUSION

This paper proposes a novel self-calibration algorithm that offers robust DOA estimation even with
partly calibrated arrays. By utilizing the Taylor series expansion, the approximation of the steering
vector is achieved which can suppress the off-grid error effectively. With the fact that the signal and
noise subspaces are orthogonal to each other, a novel objective function is constructed which considers
the gain-phase uncertainties. Thus, the joint estimation of DOA, gain-phase uncertainties, and off-
grid errors can be iteratively estimated by solving the constructed objective function through the AM
algorithm. At last, the CRB for partly calibrated array with unknown uncertainties is also derived
which considers the interaction between different unknown parameters. Simulation results show the
convergence performance and the effectiveness of the proposed algorithm.
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APPENDIX A. DERIVATION OF (10)

In this appendix, we provide the formula derivation of the optimization problem in Eq. (8). At first,
the objective function in in Eq. (8) can be expanded according to the definition of �2-norm∥∥∥[Γ(γ)a(φl, βl)]H ˆ̄En

∥∥∥2

2
=

∥∥∥[Γ(γ)(a(φlk ) + βkb(φlk))]H ˆ̄En

∥∥∥2

2

= aH(φlk)ΓH(γ) ˆ̄En
ˆ̄EH

n Γ(γ)a(φlk) + 2βk�{bH(φlk)ΓH(γ) ˆ̄En
ˆ̄EH

n Γ(γ)a(φlk)}
+ β2

kb
H(φlk)ΓH(γ) ˆ̄En

ˆ̄EH
n Γ(γ)b(φlk)

(a)
= trace{aH(φlk)ΓH(γ) ˆ̄En

ˆ̄EH
n Γ(γ)a(φlk)}

+ 2βktrace{�{bH(φlk)ΓH(γ) ˆ̄En
ˆ̄EH

n Γ(γ)a(φlk)}
+ β2

ktrace{bH(φlk)ΓH(γ) ˆ̄En
ˆ̄EH

n Γ(γ)b(φlk)}
(b)
= trace{a(φlk)aH(φlk)ΓH(γ) ˆ̄En

ˆ̄EH
n Γ(γ)}

+ 2βktrace{�{a(φlk)bH(φlk)ΓH(γ) ˆ̄En
ˆ̄EH

n Γ(γ)}
+ β2

ktrace{b(φlk)bH(φlk)ΓH(γ) ˆ̄En
ˆ̄EH

n Γ(γ)}
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(c)
= γH( ˆ̄En

ˆ̄EH
n ) ◦ (a(φlk)aH(φlk))T γ + 2βk�{γH( ˆ̄En

ˆ̄EH
n ) ◦ (a(φlk)bH(φlk))T γ}

+ β2
kγH( ˆ̄En

ˆ̄EH
n ) ◦ (b(φlk)bH(φlk))T γ

= γHP1k
γ + 2βk�{γHP2k

γ} + βk
2γHP3k

γ,
(A1)

where (a) and (b) follow the trace properties a = trace(a) with a constant variable and trace{AB} =
trace{BA}, respectively. In addition, (c) is derived based on the following identity

trace
{
Mdiag(uH)Ndiag(u)

}
= uH(N ◦ MT )u, (A2)

where M and N are m × m matrices and u = [u1, u2, . . . , um]T . Thus, the derivation of Eq. (10) is
finalized.
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