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Robust Adaptive Beamforming Based on Interference-Plus-Noise
Covariance Matrix Reconstruction Method

Yang Bi1, 2, *, Xi’an Feng1, and Tuo Guo3

Abstract—Aiming at the problem of look direction error in the desired signal, a robust adaptive
beamforming method based on covariance matrix reconstruction is proposed. The sparse Bayesian
learning (SBL) is performed to acquire the true signal direction and the spatial spectrum simultaneously.
Furthermore, the SBL spatial spectrum is used to reconstruct the interference-plus-noise covariance
matrix. Compared with other reconstruction algorithms, this approach can realize the position
estimation without any optimization procedures. Theoretical analysis, simulation results, and water
pool experiments demonstrate the effectiveness and robustness of the proposed algorithm.

1. INTRODUCTION

When the array element covariance matrix is accurately known and the steering vector (SV) is accurate,
the adaptive beamformer is an optimal spatial filter based on the maximization of the output signal-to-
interference-noise ratio (SINR) criterion. However, in the actual underwater acoustic signal processing
environment, the number of sampling snapshots is limited, and the signal-of-interest (SOI) is always
present in the training data. Furthermore, there may also be a look direction mismatch problem.
These problems will cause the performance of the beamformer to be seriously degraded, thereby greatly
reducing the robustness of the beamformer. In response to these problems, many robust adaptive
beamforming algorithms were proposed based on interference-plus-noise covariance matrix (INCM)
reconstruction [1–4]. In [1], the proposed algorithm eliminates the effects of expected signal components
by reconstructing the INCM and adopts solving quadratic constraint quadratic programming to modify
the steering vector. The integration in [1] can be regarded as linear, and the method in [2] modifies the
linear integration area into annular volume with high computation complexity. In [3], a sparse INCM
reconstruction algorithm has been proposed which makes explicit use of sparsity of source distribution,
but it still cannot cope with array calibration errors. In [4], a spatial power sampling method is proposed
to reconstruct the INCM. For these reconstruction-based algorithms, the desired signal direction-of-
arrival (DOA) must be found firstly by a low-resolution DOA estimation algorithm. Then, the INCM
can be reconstructed by adopting Capon spatial spectrum. Hence, two DOA estimation algorithms are
employed during this process. Besides, the accuracy of Capon spatial spectrum degrades severely when
coherent interference exists.

In order to solve the above problems, some modified algorithms have been proposed in [5–7]. In [5],
a new estimator for the INCM based on interference SV and power estimation is presented, and a
quadratic convex optimization problem with new inequality constraint is established to estimate the
steering vector of the desired signal. In [6], subspace methods are developed for RAB. The proposed
methods utilize the orthogonality of interference subspace to reconstruct the INCM. In [7], the desired
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signal steering vector is estimated by minimizing the sine value of the angle between the presumed desired
signal steering vector and the eigenvectors of sample covariance matrix. The sample covariance matrix
is reconstructed by mitigating the effects of noise eigenvalues and desired signal on the performance of
adaptive beamformer.

However, these modified algorithms should jointly deal with the covariance matrix uncertainty and
SV mismatch, which has high computational complexity and could not effectively reconstruct the INCM.
Therefore, in this paper a new robust adaptive beamforming method based on INCM reconstruction
is proposed. This method introduces sparse Bayesian learning (SBL) algorithm, with high accuracy of
DOA and power estimation, in the INCM reconstruction process. Due to the superior DOA estimation
accuracy of the SBL algorithm, the SV estimation procedure adopted in [5–7] is no longer necessary in
this method. The algorithm uses the SBL algorithm to determine the true signal direction and spatial
spectrum, then uses the SBL algorithm to determine the desired signal orientation from the received
signal and reconstructs the interference noise covariance matrix to obtain the optimal weight required
for beamforming. Simulation results and water pool experiments prove that the proposed algorithm
could effectively solve the problem when the incident signal contains expected signal components.

The rest of this paper is organized as follows. The data model of array output and some necessary
background about adaptive beamformer are described in Section 2. In Section 3, a novel INCM
reconstruction method is proposed. The SBL algorithm is introduced in the INCM reconstruction
process. Simulation results are presented in Section 4. Water pool experiments are reported in Section 5.
Finally, some conclusions are drawn in Section 6.

2. ARRAY DATA MODEL AND PROBLEM FORMULATION

Assume an array of M isotropic sensors spaced half-wavelength d apart. There are Q underwater
acoustic target signals, of which a desired signal is incident from direction θ0 and P interference signals
with direction θj , j = 1, 2, · · · , P . M and Q satisfy M > Q. The array observation vector x(k) can be
modeled as,

x (k) = xs (k) + xj (k) + xn (k) (1)
where xs(k), xj(k), and xn(k) are the desired signal, interference, and Gaussian white noise components,
respectively.

The covariance matrix of the signal received by the array is,

R = E
[
x (k)x (k)H

]
= E

{
[xs (k) + xj (k) + xn (k)] [xs (k) + xj (k) + xn (k)]H

}

= E
[
xs (k) xH

s (k)
]
+ E

[
xj (k)xH

j (k)
]
+ E

[
xn (k) xH

n (k)
]

= Rs + Rj + Rn = Rs + Rj+n (2)

where (·)H denotes the Hermitian transpose, and Rs, Rj, Rn, Rj+n are the covariance matrix of the
desired signal, interference, noise, and interference-plus-noise, respectively.

Rs = σ2
0a (θ0) aH (θ0) (3)

Rj+n =
P∑

j=1

σ2
j a (θj) aH (θj) + σ2

nI (4)

where σ2
0 is the power of the desired signal, a(θ0) the steering vector of the desired signal, θj the direction

of the jth interference signal, a(θj) the corresponding steering vector, σ2
j the corresponding power of

the interference signal, and σ2
n the noise power.

According to the maximum output signal to interference and noise ratio (MSINR) criterion:

max
ω

SINR = max
ω

ωHRsω

ωHRj+nω
(5)

The optimal weight ω can be obtained by the above formula under the criterion of the MSINR.
In an ideal situation, that is, under the constraint that the desired signal passes without distortion,
Equation (5) turns to, {

min ωHRj+nω

s.t. ωHa (θ0) = 1
(6)
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This is the Capon beamformer. The optimal beamformer weight vector can be obtained as,

ωopt =
R−1

j+na (θ0)

aH (θ0) R−1
j+na (θ0)

(7)

According to the determined optimal weight, the output power of the Capon beamformer can be
obtained as,

P = ωH
optRj+nωopt =

1
aH (θ0) R−1

j+na (θ0)
(8)

In an ideal situation, the optimal weights obtained by R and Rj+n are equivalent [8]. The output
power of Capon beamformer can be obtained as,

P = ωH
optRωopt =

1
aH (θ0)R−1a (θ0)

(9)

In practical applications, Rj+n is difficult to obtain, so the sample covariance matrix R̂ is usually
used to obtain the optimal value,

R̂ =
1
N

N∑
i=1

x (i)xH (i) (10)

where N is the number of snapshots.
Then the optimal beamformer weight vector can be obtained as,

ωcapon =
R̂−1a (θ0)

aH (θ0) R̂−1a (θ0)
(11)

3. PROPOSED ALGORITHM

In this paper, a new INCM reconstruction approach based on SBL is proposed. The basic idea of the
proposed adaptive beamformer is to make full use of the SBL spatial spectrum to revise SOI DOA and
reconstruct Rj+n.

Firstly, the SBL is performed to acquire the true signal direction and the spatial spectrum
simultaneously. Secondly, the SBL algorithm is used to reconstruct the interference-plus-noise covariance
matrix, then the optimal weight can be obtained.

3.1. SBL Algorithm

We establish a DOA estimation model for underwater acoustic targets in the SBL framework and
then determine the values of hyper parameters to determine the maximum posterior probability of
underwater acoustic target signal sources, that is, to achieve DOA estimation of the target signal
sources. Simultaneously, the spatial spectrum required for the reconstruction of the covariance matrix
can be determined, and the orientation of the desired signal can be determined from the received signal
using the SBL algorithm.

Under the same array element condition, Equation (1) can also be expressed by steering
vector [9, 10],

X = A (θ)S + N (12)

where X = [x1, · · · , xK ] ∈ C
M×K is the observation matrix of measurement vector; S = [s1, · · · , sK ] ∈

C
Q×K is the unknown source matrix; and N = [n1, · · · , nK ] ∈ C

M×K is the unknown noise matrix.
Among them, A(θ) = [a(θ1), a(θ2), · · · , a(θQ)] ∈ C

M×Q, a(θq) =
[
1, · · · , e−j(m−1)ωd

c
sin θq

]
, where a(θq)

is the steering vector of the incident signal from the direction of θq, c the sound speed, d the element
spacing, and ω the signal frequency [11, 12].
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Using Bayesian inference to solve the linear problem in Eq. (12) involves determining the posterior
distribution of the complex source amplitudes S from the likelihood and a prior model. Equation (12)
is sparse decomposed as [13, 14],

X = ADS̃ + N (13)
AD = [a (θ1) , a (θ2) , · · · , a (θQ)] ∈ C

M×Q (14)

where AD is the overcomplete dictionary, and S̃ is the row sparse vector. The objective function of S̃
is determined by,

L
(
S̃|X

)
=

∥∥∥X − ADS̃
∥∥∥2

2
+ λ

∥∥∥S̃
∥∥∥

p, 2
(15)

The intermediate parameter Υ = [γ1, · · · , γQ]T is introduced to represent the source power of the
incident signal in the direction set θQ, and assume that,

p
(
S̃; Υ

)
∼ CN(0,Γ) (16)

where N(0,Γ) is a zero-mean Gaussian distribution with variance Γ, Γ = diag(Υ). Assuming that the
observation noise is also Gaussian distribution, the posterior probability of S̃ about X obtained by
Bayesian probability theory is as follows [15],

p
(
S̃|X; Υ, σ2

)
∼ CN(μS,Σs) (17)

Among them,

μS = ΓAH
DΣ−1

x X (18)

Σs =
(

1
σ2

AH
DAD + Γ−1

)−1

(19)

Σx = σ2I + ADΓAH
D (20)

Σ−1
x = σ−2I − σ−2AD

(
1
σ2

AH
DAD + Γ−1

)−1

AH
Dσ−2 (21)

Therefore, when the posterior probability of S̃ with respect to X reaches the maximum value
conditioned on Υ and σ2, the spatial spectrum estimate of the target signal can be obtained. The
likelihood function of X with respect to Υ and σ2 is,

p
(
X|Υ;σ2

)
= |πΣx|−N exp

{−tr
(
XHΣ−1

x X
)}

(22)

The objective function obtained from Equation (22) is,

L
(
Υ, σ2

)
= ln |Σx| + tr

(
Σ−1

x Sx

)
(23)

where Sx = 1
LXXH .

The above formula can be optimized by using [16] as,

γ(new)
q =

γold
q√
L

∥∥XHΣ−1
x a (θq)

∥∥
2

/√
a (θq)

H Sxa (θq) (24)

M = {q ∈ N |The largest M peaks in γ} = {q1, · · · , qM}
AM =

(
aq1

, · · · , aqM

)
(25)

(
σ2

)new =
1

N − M
tr

((
IN − AMA+

M

)
Sx

)
(26)
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3.2. INCM Reconstruction

When the number of snapshots is limited and the look direction mismatches exist in the expected signal
steering vectors, the interference plus noise covariance matrix is replaced by R̂ of Equation (10), and
the performance of adaptive beamforming degrades seriously. Therefore, it is necessary to reconstruct
the interference plus noise covariance variance matrix.

Using the SBL spatial spectrum obtained by Eq. (24), the interference-plus-noise covariance matrix
can be reconstructed as [17],

R̂j+n =
∫

Θ̄
P̂ (θ)a (θ) aH (θ) dθ (27)

where a(θ) is the steering vector associated with the direction θ based on the known array structure.
Θ̄ is the complement sector of Θ. That is to say, Θ ∪ Θ̄ covers the whole spatial domain, and Θ ∩ Θ̄ is
empty. The main requirement is that the signal’s direction is in Θ while the interferers are not. Hence,
R̂j+n collects all information on interference and noise in the out-of-sector Θ̄. Consequently, the effect
of the desired signal is removed from the reconstructed covariance matrix, as long as the desired signal’s
direction is located inside Θ. Θ can be obtained by SBL algorithm, then the interference-plus-noise
covariance matrix can be reconstructed as,

R̂j+n =
∑

θ
k
∈Θ̄

P̂ka (θk) aH (θk) (28)

where P̂k is acquired through the SBL algorithm. Besides, due to the superior DOA estimation accuracy
of the SBL algorithm, the SV estimation procedure adopted in other literature is no longer necessary
in this method when SOI DOA mismatch exists.

3.3. Algorithm Flow

Based on the above analysis, the algorithm can be summarized as,
Step 1: Determine the true signal direction Θ and spatial frequency spectrum P̂k by using the SBL

algorithm.
Step 2: Reconstruct the interference-plus-noise covariance matrix R̂j+n in Eq. (28) based on Θ and

P̂k.
Step 3: Calculate the adaptive beamformer weight in Eq. (11) based on R̂j+n and a(θ0),

ωRec =
R̂

−1

j+na(θ0)

aH (θ0)R̂
−1
j+na(θ0)

.

4. SIMULATION RESULTS

Five sets of simulation experiments were carried out to verify the effectiveness of the proposed algorithm
in this paper. In our simulation, we assume a uniform linear array of 20 isotropic sensors and half-
wavelength space. The desired signal and four interferences impinge on the array from directions 10◦,
−65◦, −35◦, 50◦, and 60◦, respectively. The presumed direction of the desired signal is 10◦. In all the
simulations, the interference-to-noise ratio is fixed at 0 dB. Additive noise is modeled as independent
complex Gaussian noise with zero mean and unit variance. The number of snapshots is 40000, and for
each scenario 100 Monte-Carlo runs are performed.

The output SINR of the beamformer can be expressed as [18],

SINR =
σ0

∣∣WHa0(θ0)
∣∣

WHRj+nW
=

σ0

∣∣WHa0(θ0)
∣∣

WH(Rj + Rn)W
=

σ0

∣∣WHa0(θ0)
∣∣

WH

⎛
⎝ P∑

j=1

σja(θj)aH(θj) + σnI

⎞
⎠W

(29)

where σ0, σj, σn are the power of the desired signal, interference, and noise, respectively; I is the
identity matrix; P is the number of interference signals. The design goal of the optimal beamformer is
to maximize the SINR, so the SINR becomes an important indicator for evaluating the beamformer.
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4.1. Performance of the SBL Algorithm for DOA Estimation

In the first simulation, the SBL algorithm for DOA estimation was examined. When there are 5 signal
sources in space, the comparison performance of the SBL algorithm for DOA estimation with MVDR
algorithm is shown in Figure 1.

As can be seen from Figure 1, the incident angles of the signal source estimated by SBL are −65◦,
−35◦, 10◦, 50◦, 60◦, which are the same as the assumed incident signal. Therefore, the SBL method can
achieve high-resolution and reliable DOA estimation. Compared with the MVDR algorithm, although
two sources are closely spaced, the SBL algorithm still has a better resolution.
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Figure 1. DOA estimation of SBL algorithm.
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Figure 2. Beam pattern after INCM reconstruc-
tion.

4.2. Performance of the SBL Algorithm for INCM

This paper proposes an INCM reconstruction method based on the SBL algorithm. The true signal
direction and spatial spectrum are acquired by the SBL algorithm. They are Θ and P̂k required by
INCM algorithm. R̂j+n is calculated using Equation (29). Figure 2 is the beam pattern after INCM
reconstruction.

It can be seen from Figure 2 that the useful signal in the 10◦ azimuth is completely removed in
the reconstructed beam pattern, leaving only the interference signal in four azimuths. Therefore, the
INCM reconstruction method based on the SBL algorithm proposed in this paper can better realize the
separation of useful signals, ensure that the incident signal does not contain useful signal components,
and eliminate the influence of expected signal components.

4.3. Analysis of Output SINR under Different Input SNR

When the input SNR changes from −10 dB to 30 dB, the output SINR of the proposed method, compared
with the reconstruction-estimation beamformer (REB) and the theoretical optimal one are shown in
Figure 3. It can be seen from Figure 3 that that the performance of the proposed beamformer is close
to the optimal output SINR in a large range from −10 to 30 dB.

4.4. Analysis of Output SINR under Different Snapshot Number

When the input signal SNR is fixed at 0 dB, and the number of snapshots changes from 1000 to 40000, the
comparison of the output SINR of three different methods with the change of the number of snapshots
is shown in Figure 4. It can be seen that the algorithm in this paper can achieve convergence when
the number of snapshots is about 12000, and its output SINR is closer to the optimal value, and the
performance is better.
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4.5. Analysis of Output SINR with Angle of Mismatch

When the input signal SNR is fixed at 0 dB, the number of snapshots is 40000, and the mismatch angle
of the desired signal changes from −5◦ to 5◦. The output SINR change curves of the three methods
are compared as shown in Figure 5. It can be seen that when the angle deviation of the desired signal
steering vector is large, the algorithm in this paper is still close to the optimal output SINR. Thus, it has
been demonstrated that the performance of the proposed beamformer against DOA errors is obviously
better than that of REB.

5. WATER POOL EXPERIMENTS

The algorithm in this paper was verified by pool experiments in an anechoic pool. The Layout of the
water pool experiment is shown in Figure 6. The water pool was 20 m long, 8 m wide, and 7 m deep. The
water depth was approximately 6.7 m. The pool was a straight-wall reinforced concrete structure, and
the tapered rubber wedge was used in the silencing unit. Units were arranged on six surfaces of the pool
at equal intervals to eliminate reflected sound and simulate the marine environment. The 10-element
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Figure 6. Layout of the water pool experiment.

linear array was placed at a depth of 2.5 m. The array element spacing is 0.12 m. The incident signal is
two far-field narrowband and uncorrelated CW signals. The desired signal and interference signal are
from directions 11.3◦ and −11.3◦, respectively. They are at the same depth as the receiving array.

At the transmitting end, firstly, the signal generator generates two independent CW signals. Then
the signals are driven amplified by the power amplifier. Furthermore, the two transmitting transducers
receive the amplified electrical signals and convert them into acoustic signals for transmission. At the
receiving end, the linear array receives weak acoustic signals, then the signals are processed by the filter
amplifier and data acquisition equipment, respectively.

In the experiment, the sampling frequency is 40 kHz, and the sound velocity of the pool is set to
1490 m/s. Figure 7 is the scene graph of the pool experimental, and Figure 8 is the 10-element linear
array.

Figure 7. Scene graph of the water pool
experiment.

Figure 8. The 10-element linear array.

The results of the DOA estimation of SBL algorithm and the beam pattern after INCM
reconstruction are shown in Figure 9 and Figure 10, respectively. As can be seen from Figure 9,
the incident angles of the signal source are −11◦ and 11◦. The incident angles are almost the same as
the actual incident signal. Therefore, the SBL method can achieve high-resolution and reliable DOA
estimation. Furthermore, the processing results of SBL can be used in the INCM reconstruction.

It can be seen from Figure 10 that the useful signal in the 11◦ azimuth is completely removed in the
reconstructed beam pattern, leaving only the interference signal in the −11◦ azimuth. The proposed
algorithm in this paper can better realize the separation of useful signals, ensure that the incident signal
does not contain useful signal components, and eliminate the influence of expected signal components.
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algorithm.
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Figure 10. Beam pattern after INCM recon-
struction.

6. CONCLUSIONS

This paper combines the idea of SBL algorithm with interference noise covariance matrix reconstruction
and proposes a robust adaptive beamforming method based on covariance matrix reconstruction.
The algorithm uses the SBL algorithm to determine the true signal direction and spatial spectrum,
then uses the SBL algorithm to determine the desired signal orientation from the received signal
and reconstructs the interference noise covariance matrix to obtain the optimal weight required for
beamforming. The algorithm in this paper does not require any additional optimization process.
Theoretical analysis, simulation results, and water pool experiments demonstrate that the proposed
algorithm could achieve high-precision and robust position estimation when the incident signal contains
expected signal components. Broadband signals which contain more information than narrowband
signals are widely used in underwater signal processing. Therefore, I will apply the proposed algorithm
to the broadband signals in future.
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