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High Efficiency Multi-Functional All-Optical Logic Gates Based on
MIM Plasmonic Waveguide Structure with the Kerr-Type

Nonlinear Nano-Ring Resonators

Yaw-Dong Wu*

Abstract—In this paper, high efficiency multi-functional all-optical logic gates based on a metal-
insulator-metal (MIM) plasmonic waveguide structure with Kerr-type nonlinear nano-ring resonators
are proposed. The proposed structure consists of three straight input ports, eight nano-ring resonators
filled with the Kerr-type nonlinear medium, and one straight output port. By fixing the input signal
power and properly changing the control power, it can be used to design high efficiency multi-functional
all-optical logic gates. The numerical results show that the proposed Kerr-type nonlinear plasmonic
waveguide structures could really function as all-optical XOR/NXOR, AND/NAND, and OR/NOR
logic gates in the optical communication spectral region. The transmission efficiency of the high logic
state is higher than 95%, and that of the low logic state is about 0% at the wavelength 1310 nm. The
performance of the proposed logic gates was analyzed and simulated by the finite element method
(FEM).

1. INTRODUCTION

Recently, surface plasmon waveguide structures are popularly used to design all-optical devices. One of
the most important surface plasmon polaritons (SPPs) characteristics is that electromagnetic wave can
couple with propagating free electron oscillation at metal-dielectric interfaces. SPPs have promising
application on ultra-compact integrated optical circuits because they can overcome the conventional
diffraction limit and can manipulate light on sub-wavelength scales [1–3]. Metal-insulator-metal (MIM)
optical waveguide structures can strongly confine the optical beam in the insulator region. Many
plasmonic components based on the MIM waveguides have been demonstrated by numerical simulations
and/or experiments [4–15]. In the past few years, there has been great interest in the possibility of
using nonlinear optical waveguide devices as ultrafast photonic devices for optical signal processing and
optical communication systems. All-optical switching devices and logic gates based on the optical Kerr
effect in a nonlinear waveguide have been of particular interest for high-bit rate optical communication
and optical computing systems. The conventional all-optical Kerr-type nonlinear waveguide structures
containing one or more medium, whose refractive index depends on the local intensity, have stimulated
a great deal of theoretical and experimental study. Several conventional all-optical devices using optical
nonlinearity have been proposed and implemented [16–29]. However, most of the conventional all-
optical devices suffer from limitations such as big size (in ∼mm order), simultaneous output, and being
difficult to perform chip scale integration. Recently, there has been great interest in the possibility
of using nonlinear MIM plasmonic optical waveguide devices as ultrafast photonic devices for optical
signal processing and optical communication systems. All-optical plasmonic switches and logic gates
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based on Kerr-type nonlinear optical effect have been of particular interest for high-bit rate optical
communication and optical computing systems.

Recently, some authors have proposed all-optical logic gates based on MIM plasmonic waveguide
resonators. Bian and Gong [30] proposed compact all-optical interferometric logic gates based on one-
dimensional MIM plasmonic waveguide structures. They used multi-channel MIM plasmonic waveguide
configurations to design the whole set of fundamental all-optical logic gates. Chen et al. [31] proposed
a novel design of ultrasmall multifunctional Boolean logic gates based on a couple metal gap waveguide
structure. Dolatabady and Granpayeh [32] proposed all-optical logic gates based on two dimensional
plasmonic waveguides with nano-ring resonators. Wang et al. [33] proposed all-optical quasi logic
gates, demonstrated by means of polarization-dependent four-wave mixing, based on MIM plasmonic
waveguide structures filled with a Kerr-type nonlinear medium. Nozhat and Granpayeh [34] proposed
a nonlinear plasmonic T-shaped switch and three optical logic gates based on square-shaped ring
resonators. Wen et al. [35] proposed broadband plasmonic logic input sources constructed with dual
square ring resonators and dual waveguides. The proposed plasmonic waveguide structure can be
used as the broadband illuminating sources for three input logic gates, such as the AND gate or
OR gate. Yc et al. [36] designed a compact logic device based on plasmonic-induced transparency.
The proposed plasmonic waveguide structure could implement the function of logical operations XOR
and XNOR simultaneously. Abdulnabi and Abbas [37, 38] proposed all-optical logic gates based on
nanoring insulator-metal-insulator plasmonic waveguides at optical communications band and all-
optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides.
Shekhar et al. [39] proposed all optical OR/NOR logic gate using micro-ring resonator based switching
activity. Abbas and Abdulnabi [40] proposed plasmonic reversible logic gates. Noor et al. [41] proposed
the modeling and optimization of plasmonic detectors for beyond-CMOS plasmonic majority logic
gates. Fakhruldeen and Mansour [42] proposed the design and simulation of plasmonic NOT gate
based on insulator-metal-insulator (IMI) waveguides. However, in the previous works, the normalized
transmission efficiencies of the high logic states of the proposed plasmonic all-optical logic gates in the
previous works are not high enough, about 20%–80%. Most of the plasmonic waveguide structures
proposed in the previous works are linear cases. In general, nonlinear optical effects are more suitable
for designing all-optical switches or logic gates than the linear ones in the applications of high-bit
rate optical signal processing and optical communication systems. In order to improve the normalized
transmission efficiency of the high logic states, the Kerr-type nonlinear optical effect was used to design
all-optical plasmonic logic gates. In this manuscript, high efficiency multi-functional all-optical logic
gates based on MIM plasmonic waveguide structures with Kerr-type nonlinear nano-ring resonators
are proposed. The numerical results show that the proposed Kerr-type nonlinear plasmonic waveguide
structures could really function as all-optical XOR/NXOR, AND/NAND, and OR/NOR logic gates in
the optical communication spectral region. The normalized transmission efficiency of the high logic
state for each logic gate is higher than 95%, and that of the low logic state is about 0%. The proposed
all-optical logic gates based on MIM plasmonic waveguide structures with Kerr-type nonlinear nano-ring
resonators can be implemented by a lithography technique or the standard Complementary Metal-Oxide-
Semiconductor (CMOS) fabrication technology [43–45]. To the best of my knowledge, this is the first
time to use the MIM plasmonic waveguide structure with the Kerr-type nonlinear nano-ring resonators
to design high efficiency multi-functional all-optical logic gates. The performance of logic gates was
analyzed and simulated by the FEM. The proposed all-optical logic gates have great advantages of
small size and low pumping light intensity. It would be a potential key component in the applications
of ultra-compact all-optical integrated photonic circuits.

2. ANALYSIS

In general, the interface between semi-infinite materials having positive and negative dielectric constants
can effectively guide transverse magnetic (TM) surface waves. Because the width of the MIM plasmonic
waveguide is much smaller than the wavelength, only the fundamental TM waveguide mode can
propagate. The dispersion equation for TM mode in the waveguide is given by [46]:

εdkm + εmkd tanh
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2
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)
= 0 (1)
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where the parameters kd and km are defined as kd = (β2 − εdk
2
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are the dielectric constants of the insulator and the metal, respectively. k0 = 2π/λ is the free-space
wave vector. The propagation constant β is represented as effective index neff = β/k0 of the waveguide
for SPPs. In the paper, the dielectric is assumed to be air with εd = 1 and the metal to be silver whose
imaginary part of relative permittivity is smaller than most metals, so it has lower energy-loss and low
power-absorption compared to other metals. The dielectric constant εm of silver can be calculated by
Drude model [47]

εm(ω) = ε∞ − ω2
p

ω(ω + iγ)
(2)

where ε∞ stands for the dielectric constant at infinite angular frequency with the value of 3.7, and
ωp = 1.38 × 1016 Hz is the bulk plasma frequency, which represents the natural frequency of the
oscillations of free conduction electrons. In addition, γ = 2.73 × 1013 Hz is the damping frequency
of the oscillations, and ω is the angular frequency of the incident electromagnetic radiation. The SPPs
are excited with inputting a TM-polarized plane wave. The transmission of the structure is defined
as T = Ptr/Pin [48]. Pin represents the total incident power, and Ptr is the transmission power.
The proposed structure of single aperture-side-coupled dielectric nano-ring resonator is shown in Fig. 1,
which consists of a waveguide coupled to a aperture-side-coupled dielectric nano-ring cavity filled with a
Kerr-type nonlinear material. The refractive index of the Kerr-type nonlinear material can be expressed
as [49]:

n = n0 + n2I (3)

where the value of linear refractive index n0 is set as 1.47. The Kerr-type nonlinear medium is assumed
to be Au-SiO2; its nonlinear refractive index is n2 = 2.07 × 10−9 cm2/W [50]; and I is the pumping
beam intensity. The dielectric constant of the Kerr-type nonlinear medium in the nano-ring resonator
can be changed by varying the intensity of the pumping light.

Figure 1. The nonlinear aperture-side-coupled dielectric single nano-ring resonator filled with the
Kerr-type nonlinear medium.

3. NUMERICAL RESULTS AND DISCUSSIONS

Figure 1 shows the proposed MIM plasmonic waveguide structure with single nonlinear aperture-side-
coupled dielectric nano-ring resonator. The parameters of the proposed structure are set to w = 50 nm,
w1 = 20 nm, H = 100 nm, and R = 280 nm. The influence of the radius of the nano-ring resonator at
the resonant wavelengths is analyzed by the FEM, with the perfectly matched layer (PML) absorbing
boundary conditions at all boundaries of the simulation domain. The grid sizes are chosen to be
Δx = Δy = 5 nm and Δt = Δx/2c. The radius is set as variable while the other parameters are
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fixed as above. Fig. 2(a) shows the transmission spectra of the single ring resonator structure with
radii varying from R = 270 nm to 290 nm. The numerical results show that the resonant peak-
wavelengths have a red-shift with increase of the radii of the nano-ring resonator. Fig. 2(b) shows
that the relationship between the resonant peak-wavelengths and the radii of the nano-ring resonator
is approximately linear. Fig. 3 shows the relationship between the resonant peak-wavelengths and the
width of the coupling rectangular aperture w1. The resonant peak-wavelengths have a red-shift with
decrease of the width of the coupling rectangular aperture. Fig. 4 shows the normalized transmission
spectra for fixed R = 290 nm, w1 = 20 nm, w = 50 nm with the height of the coupling rectangular
aperture varying from H = 60 nm to 140 nm. The resonant peak-wavelengths have a red-shift with
increasing the height of the coupling rectangular aperture H. By properly changing the radii of the
nano-ring resonators, and the width and height of the coupling rectangle waveguide, the operating
wavelength can be tuned easily. For the resonance of a ring resonator to take place, the circumference

(a) (b)

Figure 2. (a) Transmission spectra of the single ring resonator structure with different radius for
R = 270nm ∼ 290 nm, (b) the relationship between the resonant wavelengths and the radii of the
nano-ring resonator.

Figure 3. The relationship between the resonant
peak-wavelengths and the width of the coupling
rectangular aperture w1.

Figure 4. Transmission spectra of the single
ring resonator structure with different height of
the coupling rectangular aperture H = 60nm ∼
140 nm.
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of the ring must be an integer multiple of the wavelength of the light. And the mode number must be
a positive integer for resonance to take place. When the incident light contains multiple wavelengths,
only the resonant wavelengths can propagate through the ring resonator fully. Hence, a ring resonator
will have several resonant modes. The two photon absorption and induced free carrier effect in the
Kerr-type nonlinear medium are not considered in this numerical simulation process. When the TM
waves are launched into the proposed MIM plasmonic waveguide structure to excite the SPPs, the
incident waves will be coupled into the MIM plasmonic waveguide structure, and the SPPs are formed
on the interfaces between the insulator and metal. Meanwhile, the incident waves will be coupled
to the nano-ring resonators through the coupling rectangle waveguide. The standing wave modes in
the nano-ring resonators will be excited if the resonant condition is satisfied. The resonant modes
will be very sensitive to the dielectric constant which can be changed by the input signal and pump
light due to the Kerr-type nonlinear effect of the nonlinear medium. In the following, the high efficiency
multi-functional all-optical logic gates based on the MIM plasmonic waveguide structure with Kerr-type
nonlinear nano-ring resonators are proposed, as shown in Fig. 5. The proposed structure consists of
three straight input ports, eight nano-ring resonators filled with the Kerr-type medium, and one straight
output port. It can be used to design six all-optical logic gates, such as XOR/NXOR, AND/NAND,
and OR/NOR logic gates. The dielectric constant of the Kerr-type nonlinear medium in the nano-ring
resonator can be changed by varying the intensity of the pumping light. The transmission spectra will
have a red shift with increasing the intensity of the pumping light. The gate functions of the proposed
MIM plasmonic waveguide structure can be realized by the principle of constructive and destructive
interferences between the input signal and control signals. By properly changing the intensity of the
pumping light and optimizing the parameters of the proposed MIM plasmonic waveguide structure with
the Kerr-type nonlinear nano-ring resonators, it can be really used to design multi-functional all-optical
logic gates. The gate functions of the proposed MIM plasmonic waveguide structure can be realized by
the principle of constructive and destructive interferences between the input signal and control signals.

Figure 5. The proposed high efficiency multi-functional all-optical logic gate based on the MIM
plasmonic waveguide structure with Kerr-type nonlinear nano-ring resonators.

3.1. AND Gate

The proposed MIM plasmonic waveguide structure with eight nano-ring resonators filled with the Kerr-
type nonlinear medium was used to design an all-optical AND logic gate, as shown in Fig. 5. The
optimal parameters of the proposed structure are chosen: R1 = 275 nm, R2 = 279 nm, R3 = 282 nm,
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(a)

(b)

(c)

(d)

Figure 6. The normalized magnetic field distributions and the normalized transmissions of the proposed
AND logic gate, when (a) A = 0, B = 0, (b) A = 0, B = 1, (c) A = 1, B = 0, (d) A = 1, B = 1.
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R4 = 286 nm, H = 120 nm, w = 50 nm, w1 = 20 nm, w2 = 25 nm, d1 = 90 nm, d2 = 250 nm, and
d3 = 200 nm. The logic function of AND logic gate is that as both of the control input ports are logic 1,
the output port is logic 1; otherwise, the output port is logic 0. In this structure, the signal port is
always ON with the intensity I0 = 1 × 106 W/cm2, and the intensity of the ON state of the output
control ports is I1 = 5× 107 W/cm2. The logic states and normalized transmissions of AND logic gates
at the wavelength 1310 nm are shown in Table 1. The normalized magnetic field distributions and the
normalized transmissions at the wavelength 1310 nm are also shown in Figs. 6(a)–(d). As the results
shown above, the proposed plasmonic waveguide structure would function as an AND logic gate.

Table 1. The logic states and the normalized transmissions of the proposed AND logic gate at the
wavelength 1310 nm.

A B Y Transmission (%)
0 0 0 0%
0 1 0 0%
1 0 0 0%
1 1 1 96%

3.2. OR Gate

The proposed MIM plasmonic waveguide structure with eight-ring resonators filled with the Kerr-
type nonlinear medium was used to design an all-optical OR logic gate, as shown in Fig. 5. The
optimal parameters of the proposed structure are chosen, R1 = 275 nm, R2 = 279 nm, R3 = 282 nm,
R4 = 286 nm, H = 120 nm, w = 50 nm, w1 = 20 nm, w2 = 25 nm, d1 = 90 nm, d2 = 250 nm. The logic
function of OR logic gate is that if at least one of the control input ports is logic 1, the output port is
logic 1, and if both of the control input ports are logic 0, the output port is logic 0. In this structure, the
signal port is always ON with the intensity I0 = 1×106 W/cm2, and the intensity of the ON state of the
output control ports is I1 = 1× 108 W/cm2. The logic states and normalized transmissions of OR logic
gates at wavelength 1310 nm are shown in Table 2. The normalized magnetic field distributions and
normalized transmissions at the wavelength 1310 nm are also shown in Figs. 7(a)–(d). As the results
shown above, the proposed plasmonic waveguide structure would function as an OR logic gate.

Table 2. The logic states and the normalized transmissions of the proposed OR logic gate at the
wavelength 1310 nm.

A B Y Transmission (%)
0 0 0 0%
0 1 1 95%
1 0 1 95%
1 1 1 96%

3.3. NOR Gate

The proposed MIM plasmonic waveguide structure with eight nano-ring resonators filled with the Kerr-
type nonlinear medium was used to design an all-optical NOR logic gate, as shown in Fig. 5. The
optimal parameters of the proposed structure are chosen R1 = 258 nm, R2 = 262 nm, R3 = 265 nm,
R4 = 269 nm, H = 120 nm, w = 50 nm, w1 = 20 nm, w2 = 25 nm, d1 = 90 nm, d2 = 250 nm. The logic
function of NOR logic gate is that if at least one of the input control ports is logic 1, the output port is
logic 0, and if both of the control input ports are logic 0, the output port is logic 1. In this structure,
the signal port is always ON with the intensity I0 = 1 × 106 W/cm2, and the intensity of the ON state
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(d)

Figure 7. The normalized magnetic field distributions and the normalized transmissions of the proposed
OR logic gate, when (a) A = 0, B = 0, (b) A = 0, B = 1, (c) A = 1, B = 0, (d) A = 1, B = 1.
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Figure 8. The normalized magnetic field distributions and the normalized transmissions of the proposed
NOR logic gate, when (a) A = 0, B = 0, (b) A = 0, B = 1, (c) A = 1, B = 0, (d) A = 1, B = 1.
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of the output control ports is I1 = 7 × 107 W/cm2. The logic states and normalized transmissions
of OR logic gates are shown in Table 3. The normalized magnetic field distributions and normalized
transmission are also shown in Figs. 8(a)–(d). As the results shown above, the proposed plasmonic
waveguide structure would function as an NOR logic gate.

Table 3. The logic states and the normalized transmissions of the proposed NOR logic gate at the
wavelength 1310 nm.

A B Y Transmission (%)
0 0 1 97%
0 1 0 0%
1 0 0 0%
1 1 0 0%

3.4. XNOR Gate

The proposed MIM plasmonic waveguide structure with eight nano-ring resonators filled with the Kerr-
type nonlinear medium was used to design an all-optical XNOR logic gate, as shown in Fig. 5. The
optimal parameters of the proposed structure are chosen, R1 = 258 nm, R2 = 262 nm, R3 = 265 nm,
R4 = 269 nm, H = 120 nm, w = 50 nm, w1 = 20 nm, w2 = 25 nm, d1 = 90 nm, d2 = 250 nm. The
logic function of XNOR logic gate is that if the logic states of the control input ports are the same, the
output port is logic 1; otherwise, the output port is logic 0. In this structure, the signal port is always
ON with the intensity I0 = 1 × 106 W/cm2, and the intensity of the ON state of the output control
ports is I1 = 1.5 × 108 W/cm2. The logic states and normalized transmissions of XNOR logic gates
are shown in Table 4. The normalized magnetic field distributions and normalized transmissions are
also shown in Figs. 9(a)–(d). As the results shown above, the proposed plasmonic waveguide structure
would function as an XNOR logic gate.

Table 4. The logic states and the normalized transmissions of the proposed XNOR logic gate at the
wavelength 1310 nm.

A B Y Transmission (%)
0 0 1 97%
0 1 0 0%
1 0 0 0%
1 1 1 95%

3.5. NAND Gate

The proposed MIM plasmonic waveguide structure with eight nano-ring resonators filled with the Kerr-
type nonlinear medium was used to design an all-optical NAND logic gate, as shown in Fig. 5. The
optimal parameters of the proposed structure are chosen, R1 = 253 nm, R2 = 257 nm, R3 = 260 nm,
R4 = 264 nm, H = 120 nm, w = 50 nm, w1 = 20 nm, w2 = 25 nm, d1 = 90 nm, d2 = 250 nm. The
logic function of NAND logic gate is that as both of the control input ports are logic 1, the output
port is logic 0; otherwise, the output port is logic 1. In this structure, the signal port is always ON
with the intensity I0 = 1 × 106 W/cm2, and the intensity of the ON state of the output control ports
is I1 = 5 × 107 W/cm2. The logic states and normalized transmissions of NAND logic gates at the
wavelength 1310 nm are shown in Table 5. The normalized magnetic field distributions and normalized
transmissions at the wavelength 1310 nm are also shown in Figs. 10(a)–(d). As the results shown above,
the proposed plasmonic waveguide structure would function as a NAND logic gate.
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(a)
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(d)

Figure 9. The normalized magnetic field distributions and the normalized transmissions of the proposed
XNOR logic gate, when (a) A = 0, B = 0, (b) A = 0, B = 1, (c) A = 1, B = 0, (d) A = 1, B = 1.
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Figure 10. The normalized magnetic field distributions and the normalized transmissions of the
proposed NAND logic gate, when (a) A = 0, B = 0, (b) A = 0, B = 1, (c) A = 1, B = 0, (d)
A = 1, B = 1.
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(d)

Figure 11. The normalized magnetic field distributions and the normalized transmissions of the
proposed XOR logic gate, when (a) A = 0, B = 0, (b) A = 0, B = 1, (c) A = 1, B = 0, (d)
A = 1, B = 1.
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Table 5. The logic states and the normalized transmissions of the proposed NAND logic gate at the
wavelength 1310 nm.

A B Y Transmission (%)
0 0 1 97%
0 1 1 96%
1 0 1 96%
1 1 0 0%

3.6. XOR Gate

Finally, the proposed MIM plasmonic waveguide structure with eight nano-ring resonators filled with
the Kerr-type nonlinear medium was used to design an all-optical XOR logic gate, as shown in Fig. 5.
The optimal parameters of the proposed structure are chosen, R1 = 253 nm, R2 = 257 nm, R3 = 280 nm,
R4 = 283 nm, H = 120 nm, w = 50 nm, w1 = 20 nm, w2 = 25 nm, d1 = 90 nm, d2 = 250 nm. The logic
function of XOR logic gate is that if the logic states of the control input ports are the same, the output
port is logic 0; otherwise, the output port is logic 1. In this structure, the signal port is always ON
with the intensity I0 = 1 × 106 W/cm2, and the intensity of the ON state of the output control ports
is I1 = 6 × 107 W/cm2. The logic states and normalized transmissions of XNOR logic gates are shown
in Table 6. The normalized magnetic field distributions and normalized transmissions are also shown
in Figs. 11(a)–(d). As the results shown above, the proposed plasmonic waveguide structure would
function as an XOR logic gate.

Table 6. The logic states and the normalized transmissions of the proposed XOR logic gate at the
wavelength 1310 nm.

A B Y Transmission (%)
0 0 0 0%
0 1 1 96%
1 0 1 96%
1 1 0 0%

4. CONCLUSIONS

In this paper, high efficiency multi-functional all-optical logic gates based on the MIM plasmonic
waveguide structures with the Kerr-type nonlinear nano-ring resonators have been proposed. The
dielectric constant of the Kerr-type nonlinear medium in the nano-ring resonators can be changed by
varying the intensity of the pumping light. By fixing the input signal power and properly changing
the control power, we can design multi-functional all-optical logic gates. In order to improve the
normalized transmission efficiency of the high logic states, the Kerr-type nonlinear optical effect was
used to design the all-optical plasmonic logic gates. The numerical results show that the proposed
Kerr-type nonlinear plasmonic waveguide structures could really function as all-optical XOR/NXOR,
AND/NAND, and OR/NOR logic gates in the optical communication spectral region. The normalized
transmission efficiency of the high logic state for each logic gate is higher than 95%, and that of the
low logic state is about 0%. To the best of my knowledge, it is the first time to use the MIM plasmonic
waveguide structure with the Kerr-type nonlinear nano-ring resonators to design high efficiency multi-
functional all-optical logic gates. Since the resonant peak-wavelengths have a red-shift with increase of
the radii of the nano-ring resonators, by properly increasing the radii of the nano-ring resonators the
operating wavelength can also be shifted to 1550 nm. The performance of logic gates was analyzed and
simulated by the FEM. The proposed all-optical logic gates have great advantages of small size and low
pumping light intensity. They would be potential key components in the applications of ultra compact
all-optical integrated photonic circuits.
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