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Abstract—This paper presents a bidirectional coupler which is designed by combining nonuniform
wiggly lines and the reflected power canceller (RPC) method. The combination not only brings about a
high directivity but also makes a wideband structure with a compact size. Although, in the RPC method,
an idle port is used to produce a reflected signal in order to achieve a high directivity, there are not any
idle ports in the proposed coupler. The coupler was built on an FR4 substrate. The measurement results
show that this structure is suitable to monitor forward and reflected signals in high power applications.
The fabricated coupler has the directivity of more than 22 dB and the coupling flatness of ±0.12 dB in
the forward and backward signals in a wide frequency range of 140 MHz–190 MHz.

1. INTRODUCTION

Couplers are essential components to sample forward and reflected powers in different RF/microwave
systems. Wideband bidirectional couplers, which have a compact size, play a pivotal role in power
monitoring systems operating in the VHF band. Also, in the case of high power signals, bidirectional
couplers should have weak coupling with flat response because power detectors are low-power devices
and have good performance for a certain range of input power level. Furthermore, the monitoring
cannot be accurately done when there is not isolation between the forward and reflected signals.
Therefore, the couplers should have not only the weak coupling but also high directivity. Among
different coupler structures, microstrip couplers are very common since they are easily fabricated and
integrated with other structures, but they suffer from poor directivity. There are different techniques
to achieve high directivity couplers with a wide frequency band and compact size. Methods such as
inductive compensation [1], delay lines [2], wiggly lines [3, 4], and the reflected power canceller [5]
are some techniques to enhance directivity. To increase couplers bandwidth, using nonuniform lines,
dielectric overlay [6], and changing geometry of couplers [7] are some useful methods. Reducing the size
of couplers involves methods such as employing lumped elements on output ports [8], or applying stubs,
folded structures, and a slotted ground plane [9–11]. The couplers can be achieved by combining some
of the aforementioned techniques. In the VHF band, lumped elements are commonly utilized in various
designs, for they introduce a degree of freedom in tuning. As a result, the methods including lumped
elements are appropriate candidates.

In this paper, the reflected power canceller (RPC) method and nonuniform wiggly lines are employed
to implement a high directivity and wideband bidirectional coupler operating in the VHF band. The
nonuniform wiggly lines improve the directivity and bandwidth while the RPC method plays a pivotal
role in acquiring a coupler with higher directivity. To reduce the size of the coupler, capacitors on the
sampling ports are suggested. This coupler is suitable for sampling forward and reflected high power
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signals. Another important advantage of this design is that there is not idle port which is used to
enhance directivity in the RPC method. Consequently, all ports of the coupler are utilizable, and the
bidirectional coupler can be realized.

2. THEORY

The schematic diagram of the proposed coupler is shown in Fig. 1. Port 3 samples the forward signal,
and port 4 samples the reflected signal. To understand how the coupler combined with the RPC method
operates, there is a diagram in Fig. 2(a) with colored lines, which show the signal paths. In the reflected
power canceller method, the idle port is considered to make an intended mismatch and remove the

Figure 1. Schematic diagram of the proposed coupler.

(a) (b)

Figure 2. (a) Signal paths in the proposed coupler, there are signals similar to C and D at port 3 too,
(b) the suggested Γ circuit.
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signal which has the same magnitude and anti-phase of the leakage reflected signal to the sampling
port. In Fig. 2(a), the intended mismatch is generated by Γ on port 4 and port 3. Consequently, there
is not idle port which is employed in the typical RPC method. As seen from Fig. 2(a), the mismatch
on port 3 creates signal D on port 4, and an incident signal at port 1 is divided into signal A, which is
the sampled forward signal at port 3, and signal C, which is the leakage signal from port 1 at port 4.
Also, the sampled backward signal at port 4 is signal B. To have high directivity at port 4, signals C
and D must be canceled out by designing the Γ circuit properly. This explanation is also given for port
3. The proposed Γ circuit making the mismatch is shown in Fig. 2(b).

Signals A, B, C, and D can be described by ABCD matrix [5]. This matrix is equal to the ABCD
matrix of Γ circuit in Eq. (1) for signals A and B, and is obtained by multiplying the ABCD matrix of
each cascade component in a signal path for signals C and D in Eq. (2).
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where the matrix of TL is the ABCD matrix of the transmission line given in [5]. By deriving scattering
matrices from Eqs. (1) and (2), and the condition SignalC + SignalD = 0 to have high directivity at
port 4, we find
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In Eq. (4), Z0 and d are the characteristic impedance and the physical length of line 2, respectively.
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3. DESIGN OF THE PROPOSED COUPLER

The nonuniform wiggly coupled lines are designed employing formulas given in [12, 13]. First, the
familiar Equation (5) is optimized for a range of spacing between conductors from 0.015 mm to 18 mm,
dielectric constant of 4.8, substrate thickness of 2.4 mm, Z0 = 50Ω, f1 = 140 MHz, and f2 = 190 MHz
to obtain width of strips.

Z2
0c2Ca

e Ca
o

√
εe
re(f)εo

re(f) − 1 = 0 (5)

where Z0 and c are the characteristic impedance and velocity of light in vacuum, respectively. εe
re

and εo
re are effective dielectric constants for the even and odd modes, respectively, and Ca

e,o is the
even and odd mode capacitance for the coupled microstrip line configuration with air as dielectric [12].
After computing even and odd mode characteristic impedances, even and odd mode effective dielectric
constants, wiggle depth, and voltage coupling coefficient [12, 13], continuous coupling coefficient is
obtained by using Eq. (6) and coupling of 15 dB [13].
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Z2
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(6)

where Z0e(x) is the normalized even mode impedance [13]. Finally, the width of strips, the spacing
between lines, and the wiggle depth along the coupler length can be formed by evaluating the conductor
width, conductor spacing, and wiggle depth versus the voltage coupling coefficient, respectively, at all
values of k(x) [13]. The physical parameters are shown in Fig. 3. As seen, the whole length of the
wiggly coupled line is 41.48 mm, and the line spacing and wiggle depth vary from 10.23 to 7.61 mm and
5.5 to 4.97 mm, respectively. In addition, the line width changes from 4.35 mm to 4.34 mm. To shrink
the structure, the capacitor is placed parallel with Γ circuit. This capacitor and elements of Γ circuit
affect the performance of the coupler and are defined by ADS simulation (Keysight Technology) and
tuned to meet the coupling factor of 55–60 dB with 0.2 dB flatness and the directivity more than 20 dB.
The obtained values of Γ at port 3 and the capacitor are equal to R1 = 100Ω, R2 = 30Ω, R3 = 180Ω,
R4 = 34Ω, L1 = 10 nH and C = 33 pF, respectively. The element values of Γ at port 4 are similar to Γ
at port 3 with R4 = 30Ω. As seen in Fig. 1, there is an inductor in series with a resistor, which matches
the impedances of port 3 and port 4 to the input impedance of the power detectors. It is striking that
they have no influence on the performance of the coupler. For the 50 Ω input impedance, the resistor
and inductor are 34 Ω and 1.6 nH, respectively.

Figure 3. Variations of the physical geometry along the wiggly coupled lines length.

4. SIMULATION AND MEASUREMENT RESULTS

Figure 4 illustrates the proposed coupler built on FR4 with relative permittivity 4.8 and substrate
thickness 2.4 mm. The measured and simulated S parameters are shown in Fig. 5 to Fig. 7. All
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Figure 4. The fabricated proposed coupler.

Figure 5. Measured and simulated insertion and return loss.

Figure 6. Measured and simulated forward coupling and isolation.

simulations were performed with Keysight ADS Momentum. In Fig. 5, the measured insertion and return
loss are better than −0.1 dB and −30 dB, respectively. Also, the forward and backward couplings and
isolations are seen in Fig. 6 and Fig. 7, respectively. Since the directivity is high within the operational
bandwidth, it is very sensitive to fabrication and substrate tolerances. Therefore, there is a difference
between simulation and measurement results in the isolation. As seen, the measured directivity is more
than 22 dB from 140 MHz to 190 MHz in the forward and backward direction. The measured coupling
is close to the simulated value, and it is −57.53 ± 0.1 dB for the forward signal and −57.22 ± 0.12 dB
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Figure 7. Measured and simulated backward coupling and isolation.

for the backward signal. Consequently, the coupling value is within a suitable range in order to sample
high power signals (≈ 60 dBm) in power monitoring systems. It is worth mentioning that port 3 and
port 4 have the same coupling value, and there are not any idle ports although the RPC method is
employed.

5. CONCLUSION

In this paper, the reflected power canceller method and nonuniform wiggly lines are employed to realize
a bidirectional coupler which is used to sample the forward and reflected signals in power monitoring
systems. One of the positive points of the proposed coupler is that there is not idle port used in the
typical RPC method. Moreover, high directivity and fine coupling flatness in a wide frequency band
(140 MHz–190 MHz) and a compact size are some other advantages. Since the sampled signals are
applied to power detectors, which are low-power devices, having a weak coupling is important. The
measured results show that the coupling value is −57.53± 0.1 dB and −57.22± 0.12 dB for the forward
and backward directions, respectively, which are suitable values in high power monitoring systems. In
addition, the directivity is more than 22 dB for both directions within the operational band.
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10. Coromina, J., P. Vélez, J. Bonache, and F. Mart́ın, “Branch line couplers with small size and
harmonic suppression based on non-periodic step impedance shunt stub (SISS) loaded lines,” IEEE
Access, Vol. 8, 67310–67320, 2020.

11. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, “A compact microstrip rat-race coupler with modified lange
and T-shaped arms,” Progress In Electromagnetics Research, Vol. 115, 509–523, 2011.

12. Kirschning, M. and R. H. Jansen, “Accurate wide-range design equations for the frequency-
dependent characteristic of parallel coupled microstrip lines,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 32, No. 1, 83–90, Jan. 1984.

13. Uysal, S., Nonuniform Line Microstrip Directional Couplers and Filters, Artech House, 1993.


