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RRT-MWF-MVDR Algorithm for Space-Time Antijamming
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Abstract—Minimum variance distortionless response (MVDR) beamformer is one of the well-known
space-time antijamming techniques for global navigation satellite system (GNSS). It can jointly utilize
spatial filter and temporal filter to suppress interference signals. However, the computational complexity
is usually so high that it is difficult to apply to engineering problems. In order to solve this problem,
a novel MVDR algorithm based on rank-reducing transformation (RRT) and multistage wiener filter
(MWF) is proposed for reducing the computational complexity, named as RRT-MWF-MVDR algorithm.
Via the characteristics of the oppressive jamming environment and the steering vector of satellite signal,
a rank-reducing transformation is given. By the rank-reducing transformation, a rank reduction is
realized for the high dimensional received data. Taking these received data with reduced rank as
the input of the MWF, the forward decomposition and backward iteration are accomplished. Then the
equivalent reduced rank matrix and equivalent weight vector of MWF can be given, respectively. Finally,
the space-time two-dimensional antijamming weight vector is given by the mathematical relationship
between the reduced-rank matrix and the weight vector. The proposed method can effectively avoid
the inverse of high-dimensional matrix. The proposed method offers a number of advantages over
the existing algorithms. For example, (1) it has less computational load and is easier to be executed
in practical application; (2) it can maintain higher output signal-to-interference-noise ratio (SINR).
Simulation results verify the effectiveness of proposed method.

1. INTRODUCTION

Global navigation satellite system (GNSS) provides accurate location and velocity information in
military and civilian fields, for instance, agriculture, aviation, land-vehicle navigation, and marine-
navigation [1]. However, the GNSS receiver is easily disrupted by various interference signals since
the power level of satellite signals is extremely weak after a long distance transmission. Thus, the
antijamming performance has received significant attention for GNSS.

The space-time adaptive processor (STAP) is used to receive the satellite signals while suppressing
the interfering signals, which add a temporal filtering on the basis of the spatial filtering [2, 3]. It is well
known that the spatial degree of freedom (DOF) is equal to M − 1 in the case of using an M -element
antenna array. Compared with temporal and spatial filtering, STAP has lager antijamming DOF and
can suppress more kinds of interferences. However, the received signal dimension of STAP increases
from M to MP owing to the addition of temporal filtering (each antenna element is equipped with P
delay taps). Therefore, the antijamming algorithm based on STAP has a large amount of computation
due to calculating covariance matrix inverse, so that many low complexity methods are proposed, such
as principal components (PC) [4], cross spectral metric (CSM) [5], multistage wiener filter (MWF) [6],
and reduced-rank minimum variance beamformer (RRMVB) [7]. Unfortunately, the above algorithms
may involve eigendecomposition (EVD) or covariance matrix inverse, which still require a large amount
of computational load. In order to avoid the computation of covariance matrix inverse and EVD,
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dimensionality reduction and iterative algorithms attract much attention [8–12]. The householder MWF
is improved to suppress interference and impulsive noise. It can gain good performance for narrow band
and wideband signals [8]. An MWF with spatial blocking broadening and automatic rank selection is
proposed [9]. It can ensure high angle estimation accuracy and robust reduced-rank beamforming. An
adaptive reduced-rank method based on knowledge-aided joint iterative optimization is exploited [10].
Via joint optimization, the reduced-rank matrix and beamforming weight vector are constructed even
under the condition of few samples. Besides, a space-time reduced-rank algorithm is presented for
antijamming [11]. By combining the least squares (LS) and joint iterative optimization of parameter
vectors, the best set of basis for reduced-rank processing can be automatically obtained. In [12], a
weight vector is obtained via the Least Mean Square (LMS), which guarantees jamming nulling while
declining the cost of hardware and computational load.

The signal feature is critical to improve the antijamming performance. Recently, several algorithms
with lower complexity load have been proposed to improve the adaptive processing performance based
on projection technique. A robust null broadening method based on projection technique is proposed to
alleviate the computational load [13]. It can be robust even though the calibration errors exist. In [14],
the received data are preprocessed by the projection technique. Via the diagonal loading (DL) method,
the covariance matrix is obtained. Compared with [13], the method has not only a deeper null but
also a lower computational complexity. Combining with projection transform and diagonal loading, a
new adaptive beamforming algorithm is given [15]. It can gain a new sample covariance matrix via
the subspace projection. This method can effectively improve the antijamming performance, such as
broadening the width of jammer nulls and strengthen the null depth. Minimum variance distortionless
response (MVDR) algorithm is one of the popular approaches for antijamming [16]. An improved MVDR
is proposed to control the sidelobe level utilizing several constraints [17]. It enforces the direction-of-
arrival (DOA) of the desired signal to be far away from the DOAs of the interfering signals. An idea of
reconstructing the interference-plus-noise (IN) covariance matrix is presented [18]. The estimation error
of the desired signal can be effectively eliminated since the reconstructed IN matrix does not contain the
desired signal. To alleviate the computational burden caused by EVD, a fast reduced rank minimum
variance beamformer (FRRMVB) is proposed [19], which estimates the interference subspace by using
a set of the received data vectors.

In this paper, an RRT-MWF-MVDR algorithm is proposed for the antijamming problem. Via a
rank-reducing transformation (RRT) and multistage wiener filter (MWF), the presented method can
not only effectively save the computational cost, but also maintain a high array output power of the
interesting satellite signal and a high output signal to interference-plus-noise-ratio (SINR). The rest of
the paper is organized as follows. The data model is described in Section 2. Section 3 introduces the
presented method. Section 4 shows some simulation results. Finally, the conclusion is given in Section 5.

2. DATA MODEL

Consider that GNSS receiver with a uniform linear array (ULA) which consisting of M antennas. Each
antenna is equally spaced with P taps, and the space-time filter structure is given in Figure 1.

Assume that there are an interesting satellite signal s(t) and q narrow-band oppressive jamming
signals jk(t) (k = 1, · · · , q) impacting on the ULA. Then, the MP × 1 received signals x(t) at time
instant t can be expressed as [20]

x(t) = a0s(t) +
q∑

k=1

akjk(t) + n(t) (1)

where x(t) = [x11, x12, · · · , x1P , · · · , xM1, · · · , xMP ]T , s(t) and jk(t) {k = 1, 2, · · · , q} represent the
interesting satellite signal and the kth oppressive jamming signal, respectively. n(t) denotes the white
Gaussian noise of the space-time filter structure. a0 and ak {k = 1, 2, · · · , q} represent steering vectors
of satellite and interference signals, respectively, which have the following forms

al = as(θl) ⊗ at(fl) for l = 0, 1, 2, · · · , q

as(θl) = [1, exp{−j2πfld sin(θl)/c}, · · · , exp{−j2πfl(M − 1)d sin(θl)/c}]T
at(fl) = [1, exp{−j2πflτ}, · · · , exp{−j2πfl(P − 1)τ}]T

(2)
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Figure 1. Space-time antijamming model.

where θl and fl denote the DOA and frequency for the lth signal, respectively. τ stands for the delay
time. The superscript (·)T denotes the transpose operation.

The covariance matrix of x(t) can be expressed as

Rx = E
{
x(t)xH(t)

}
= σ2

sa0aH
0 + AjRbAH

j + σ2
nI = Rd + Rj+n (3)

where E{·} represents the statistical average operation, and the superscript (·)H denotes the conjugate
transpose. σ2

s = E{s(t)sH (t)} is the power of the interesting satellite signal. Rb = E{j(t)jH(t)}, where
j(t) = [j1(t), j2(t), · · · , jk(t), · · · , jq(t)] indicates q interference signals. Rb is a diagonal matrix whose
kth diagonal element is the power of the kth interference signal for k = 1, 2, · · · , q. The MP ×q steering
vector matrix Aj = [a1,a2, · · · ,ak, · · · ,aq]. σ2

n and I indicate Gaussian noise power and identity matrix,
respectively. Rd = σ2

sa0aH
0 is the interesting satellite signal covariance matrix. Rj+n = AjRbAH

j +σ2
nI

stands for the interference-plus-noise (IN) covariance matrix.
The output signal y(t) by the STAP can be expressed as

y(t) = wHx(t) (4)

where w ∈ CMP×1 represents the space-time antijamming weight vector.
For a space-time two-dimensional antijamming weight vector w, the power of the output signals

can be expressed as follows

Po(w) = E
{
y(t)yH(t)

}
= wHRdw + wHRj+nw = σ2

s

∣∣wHa0

∣∣2 + wHRj+nw (5)

where σ2
s |wHa0|2 stands for the output power of the interesting satellite signal. wHRj+nw represents

the output power of the interferences plus noise.
Similarly, the output SINR is obtained as follows

γSINR(w) =
wHRdw

wHRj+nw
=

σ2
s |wHa0|2

wHRj+nw
= σ2

sa
H
0 R−1

j+na0 (6)

where γSINR(w) stands for the array output SINR.
The common formulation of the space-time two-dimensional antijamming weight vector w can

be solved by MVDR algorithm, which can effectively suppress the interference signals while ensuring
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distortionless response of the interesting satellite signal. The optimal solution of MVDR weight vector
can be expressed as

min
w

wHRj+nw s.t. wHa0 = 1 (7)

where Rj+n is the IN covariance matrix given by Eq. (3).
Since Rj+n cannot be directly obtained, the problem in Eq. (7) is usually rewritten as the following

optimization problem
min
w

wHRxw s.t. wHa0 = 1 (8)

where the IN covariance matrix Rj+n is replaced by the covariance matrix Rx.
The optimal solution of the problem in Eq. (8) can be given by w = R−1

x a0

aH
0 R−1

x a0
, where the superscript

(·)−1 denotes the matrix inverse. In practical applications, Rx is replaced by a finite sample covariance
matrix R̂x = 1

N

∑N
k=1 x(k)xH (k), where N denotes the snapshot number.

3. PROPOSED ALGORITHM

In this section, RRT-MWF-MVDR algorithm is described in detail. The structure of the proposed
algorithm is shown as in Figure 2. A rank-reducing transformation and array output SINR are carried
out. Via MWF, a closed-form solution of the space-time weight vector is given.
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Figure 2. The structure of SSP-MWF-MVDR algorithm.

3.1. Rank-Reducing Transformation and Output SINR

Assume that the IN covariance matrix Rj+n can be estimated. Starting from the eigenvalue
decomposition (EVD) of the IN covariance matrix, Rj+n can be expressed as

Rj+n = UΛUH = UjΛjUH
j + σ2

nUnUH
n (9)

where Λ and Λj are diagonal matrixes. The diagonal elements of matrix Λj ∈ Cq×q consist of q principal
eigenvalues of Rx, that is, Λj = diag(λ1, λ2, · · · , λq), λ1 ≥ λ2 · · · ≥ λq, and the columns of Uj ∈ CMP×q

are the corresponding eigenvectors which form interference signal subspace. The columns of Un are
the remaining eigenvectors of Rx which construct noise subspace. In addition, UH

j Uj = I ∈ Cq×q, and
UH

j Un = 0.
Therefore, the signal subspace Us can be written as Us = [Uj a0], where a0 is the known steering

vector of interesting satellite. Let the rank-reducing transformation T = Us = [Uj a0]. Then, via the
rank-reducing transformation T, the MP × 1 data vector x(t) can be written as THx(t). Therefore,
the problem in Eq. (7) can be rewritten as

min
wr

wH
r THRj+nTwr s.t. wH

r THa0 = 1 (10)
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where THRj+nT and wr are the r×r rank-reduced matrix and corresponding r×1 antijamming weight
vector, respectively.

For the problem in Eq. (10), the weight can be expressed as

wr =
(THRj+nT)−1a0r

aH
0r(THRj+nT)−1a0r

(11)

where a0r = THa0.
Similarly, according to Eq. (6), the output SINR with rank reducing processing can be given as

γSINRr =
σ2

s |wH
r a0|2

wH
r Rzwr

= σ2
sa

H
0 T(THRj+nT)−1THa0 (12)

where Rz = THRj+nT, it has the following forms

THRj+nT=

[
UH

j

aH
0

]
(UjΛjUH

j +UnΛjUH
n ) [Uj a0]=

[
Λj ΛjUja0

aH
0 UjΛj aH

0 (UjΛjUH
j + UnΛjUH

n )a0

]
(13)

In terms of the matrix inversion lemma, the inverse matrix of THRj+nT can be given as

(THRj+nT)−1 =

[
Λ−1

j + Uja0(aH
0 UnΛnUH

n a0)−1aH
0 Uj −Uja0(aH

0 UnΛnUH
n a0)−1

−(aH
0 UnΛnUH

n a0)−1aH
0 Uj (aH

0 UnΛnUH
n a0)−1

]
(14)

Substituting Eq. (14) into Eq. (12), the output SINR can be rewritten as

γSINRr = σ2
sa

H
0 T(THRxT)−1THa0 = σ2

s

(
aH

0 UjΛ−1
j UH

j a0 +
(aH

0 a0 − aH
0 UjUH

j a0)2

aH
0 UnΛnUH

n a0

)

= σ2
s

(
aH

0 UjΛ−1
j UH

j a0 +
(aH

0 UnUH
n a0)2

σ2
naH

0 UnUH
n a0

)
= σ2

sa
H
0 (UjΛ−1

j UH
j +

1
σ2

n

UnUH
n )a0

= σ2
sa

H
0 R−1

j+na0 (15)

From Eqs. (6) and (15), it is clear that γSINR = γSINRr, namely, the weight vector wr given by the
problem (10) can maintain the same output SINR as the weight vector w given by the problem in
Eq. (7).

Therefore, the rank-reducing transformation can be chosen as T = [Ûj ,a0], where Ûj is the
estimated interference subspace. Furthermore, in order to alleviate the computational load, Ûj is
estimated roughly by the (r − 1) snapshot vector X = [x(t1), · · · ,x(tr−1)], that is, the rank reducing
transformation can be given by [21]

T = [x(t1),x(t2), · · · ,x(tr−1),a0] (16)

where r denotes the rank-reducing number with r ≥√q(M + 1) − 1.

3.2. Multistage Wiener Filter

To avoid matrix inversion, this subsection gives a computation method based on MWF for the
antijamming weight vector. The structure of MWF is shown as in Figure 2. The input signal z0(t) of
the MWF can be given by z0(t) = THx(t), and the interesting satellite signal s(t) is regarded as the
reference signal d0(t). zi(t) ∈ C(r−i)×1 (i = 1, 2, · · · , r − 1) is the input signal for the ith stage filter.
The signal di(t) is defined as

di(t) = hH
i zi−1(t) (17)

where hi =
rzi−1di−1∥∥∥rzi−1di−1

∥∥∥ =
rzi−1di−1√

rH
zi−1di−1

rzi−1di−1

guarantees the correlation between di(t) and di−1(t).

rzi−1di−1
= E{zi−1(t)d∗i−1(t)}. (·)∗ represents the complex conjugation.
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Let Bi be an (r − i) × (r − i + 1) row full rank blocking matrix with Bihi = 0. The input signal
of the filter can be expressed as

zi(t) = BH
i zi−1(t) (18)

zi−1(t) is projected on a subspace orthogonal to the cross-correlation vector rzi−1di−1
, so that zi−1(t)

does not contain any information in di(t). In terms of Eqs. (17) and (18), the upper branch signal of
each stage of the filter can be further expressed as

di(t) = hH
i

⎛
⎝i−1∏

j=1

Bj

⎞
⎠ z0(t) (19)

where
∏

represents the multiplicative symbol, and
∏i−1

j=1 Bj = Bi−1Bi−2 · · ·B1. The Wiener filter is
decomposed step by step until zi(t) is transformed into a scalar, i.e.,

zr−1(t) = dr(t) = er(t) = Br−1zr−2(t) = · · · =

⎛
⎝r−1∏

j=1

Bj

⎞
⎠ z0(t) (20)

where ei(t) is the iterative output error of the ith stage filter and can be expressed as

ei(t) = di(t) − w∗
i+1ei+1(t) (i = 1, 2, · · · , r − 1) (21)

where wi = ξ−1
i δi, and ξi = hH

i (
∏i−1

j=1 Bj)Rz0(
∏i−1

j=1 Bj)Hhi, δi =
√

rH
zi−1di−1

rzi−1di−1
. Thus, the final

iteration output of the MWF is obtained as follows

e0(t) = d0(t) − w∗
1{d1(t) − w∗

2[d2(t) − · · · − w∗
r−1(dr(t) − w∗

rer(t))]} = d0(t) − wH
d d(t) (22)

where wd = [w1,−w1w2, w1w2w3, · · · , (−1)r+1
∏r

i=1 wi]T , d(t) = [d1(t), d2(t), · · · , dr(t)]T which can be
further denoted as follows

d(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hH
i

hH
2 B1

...

hH
r−1

r−2∏
j=1

Bj

r−1∏
j=1

Bj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z0(t) = Lz0(t) (23)

The above d(t) is brought back to Eq. (22), which can be obtained as follows

e0(t) = d0(t) − wH
d Lz0(t) (24)

Finally, the adaptive weight vector of the proposed algorithm can be given as

w = LHwd (25)

where L and wd are the equivalent reduced rank matrix and weight of MWF, respectively.

Summary of SSP-MWF-MVDR Algorithm
Step 1 Collect data X = [x(1), · · · ,x(N)] where x(n) denotes the nth snapshot of the array.

Step 2 Estimate the signal subspace T = [x(t1),x(t2), · · · ,x(tr−1),a0], where r ≥√q(M + 1)−1.
Step 3 Take z0(k) = THx(k) as the input vector and calculate the equivalent reduced rank matrix

L and weight wd of MWF, respectively.
Step 4 Compute the space-time 2-D antijamming weight vector w, according to Eq. (25).
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3.3. Computational Complexity Analysis

The computational complexity of the proposed algorithm is briefly investigated. The computational
complexity of the proposed algorithm mainly includes: (1) the rank-reducing transformation of the
MP × 1 snapshot vector x(k), of order O(MPr), where r denotes the rank-reducing number; (2)
the equivalent reduced rank matrix and weight estimation of MWF of order O(r2). Therefore, the
computational complexity of the proposed algorithm is of order O(MPr).

Remarks. (1) It is clear that
√

q(M + 1)−1 ≤ r < MP , where q denotes the number of interference
signals, and M stands for the number of antennas. In other words, the determination of r depends on
the number of interference signals and the number of antennas. (2) The rank-reducing number r affects
the computational complexity of the proposed algorithm, and the computational complexity of the
proposed algorithm decreases with the decrease of r. The lower bound of r is equal to

√
q(M + 1)− 1.

Table 1 presents the computational complexity of the proposed method and several relevant
algorithms including as PC [4], CSM [5], MWF-D [6], and FRRMVB [19]. From Table 1, it can
be seen that the proposed method has lower computational costs than other algorithms.

Table 1. Comparison of computational complexities.

Algorithm Computational complexities
PC O((MP )3)

CSM O((MP )3)
MWF-D O((MP )2)

FRRMVB O(max(r3,MPr))
Proposed Algorithm O(MPr)

4. SIMULATION RESULTS

In this section, several simulation results are constructed to evaluate the proposed algorithm. Consider
a ULA with M = 8 antenna elements whose separation distances are half-wavelength, and each element
is equally spaced with P = 5 taps. Assume that there are four far field signals impinging on the array.
Among them, the DOA of satellite signal is set to θ1 = 0◦, and its normalized center frequency is
f1 = 1.0 GHz. The DOAs of three interference signals are θ2 = −10◦, θ3 = 5◦, θ4 = 0◦, respectively.
Their corresponding center frequencies are f2 = 0.9 GHz, f3 = 1.1 GHz, f4 = 1.2 GHz. The SNR of
satellite signal is equal to −20 dB, and the interference-to-noise ratio (INR) of the three interfering
signals is equal to 40 dB.

Figure 3(a) shows the space-time 2-D response diagram of the proposed algorithm. As can be seen
in the pattern, it has good mainlobe for the interesting satellite signal at θ1 = 0◦ and f1 = 1.0 GHz, and
the three interference signals are effectively suppressed. Figure 3(b) is a contour plot of the response
shown in Fig. 3(a). It is easy to know that the coordinates of the three interference signals are located
at (θ2, f2) = (−10◦, 0.9 GHz), (θ3, f3) = (5◦, 1.1 GHz), (θ4, f4) = (0◦, 1.2 GHz), respectively. As shown
in Figure 3, the proposed algorithm not only effectively blankets jammings, but also enhances the power
of the satellite signal.

Figure 4 gives the array output power curves of the interesting satellite signal and the array output
SINR curves. Five algorithms are carried out for comparison, including PC [4], CSM [5], MWF-D [6],
FRRMVB [19], and the proposed algorithm with the reduced-rank ranging from 4 to 20. From Figure 4,
we can see that the proposed method can provide better array output power and output SINR than the
aforementioned four algorithms, even under the condition of different rank-reduced numbers. This is
because the rank of the received data is reduced by projecting the received data on the signal subspace
in the proposed algorithm, and then takes the reduced rank data as the input data of multi-stage Wiener
filtering, so that the proposed approach can not only effectively reduce the computational complexity,
but also enhance the interesting satellite signal.
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Figure 3. Three-dimensional beam pattern and contour plot of the proposed algorithm. (a) Beam
pattern. (b) Contour plot.
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Figure 4. Performance curves for array output power and SINR. (a) Output power of satellite signal.
(b) Output SINR.

Figure 5 shows the output SINR curves versus number of snapshots for the aforementioned
algorithms. As can be seen, the proposed algorithm and FRRMVB algorithm have similar properties.
They can obtain better array output SINR than PC, MWF-D, and CSM algorithms. The simulation
result can show that the proposed algorithm can reduce the processing dimension of data by using
a small number of snapshots, so as to ensure that the space-time anti-jamming weight vector can be
obtained with a lower complexity and improve the real-time performance of interference suppression.
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5. CONCLUSIONS

Most of the existing space-time antijamming methods require computing the inverse of a high
dimensional covariance matrix, which incurs high computational complexity. Therefore, this paper
presents a lower complexity algorithm based on rank-reducing transformation and MWF for the space-
time antijamming problem. Via the rank-reducing transformation, the rank reduction of the received
data is accomplished. For the reduced rank data, MWF is used to avoid computing the matrix inversion.
Finally, the antijamming weight vector is calculated by the equivalent reduced rank matrix and weight
of MWF. Simulation results show that the proposed method can maintain a high array output power
of the interesting satellite signal and a high output SINR.
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