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Abstract—In this paper, we develop numerical methods for using vector spherical and spheroidal waves
in the hybrid method to calculate the multiple scattering of objects of complex shapes, based on the
rigorous solutions of Maxwell equations in the form of Foldy-Lax multiple scattering equations (FL).
The steps in the hybrid method are: (1) calculating the T -matrix of each single object using vector
spherical/spheroidal waves and (2) vector spherical/spheroidal waves addition theorem. We utilize the
commercial software HFSS to calculate the scattered fields of a complex object on the circumscribing
sphere or spheroid for multiple incidences and polarizations. The T -matrix of spherical waves or
spheroidal waves are then obtained from these scattered fields. To perform wave transformations
(i.e., addition theorem) for vector spherical/spheroidal waves, we develop robust numerical methods.
Numerical results are illustrated for T-matrices and numerical vector addition theorems.

1. INTRODUCTION

Multiple scattering of waves by discrete scatterers have been studied extensively using analytical theory
of radiative transfer equation (RTE) [1–6], distorted Born approximation (DBA) [7–10] and Feynman
diagrammatic methods [11–13]. The effects of multiple scattering influence the transmission properties
and bistatic scattering properties of a conglomeration of objects. With the advent of computers
and computational methods, full wave simulations of multiple scattering of 3 dimensional solutions
of Maxwell equations have become a topic of current interests [14–19]. Recently, it has been shown by
the Numerical Solutions of 3D Maxwell Equations (NMM3D) full-wave simulations that the attenuation
of vegetation layer can be significantly overestimated by the classical RTE and DBA [18, 19]. This is
because the classical models assume that vegetation is spatially homogeneous with a uniform statistical
distribution in position [1, 7, 20]. The uniform distributions lead to the concept of an effective/average
medium which is homogeneous. The homogeneous medium is similar to the “cloud model” and gives an
effective attenuation rate and transmission that is homogeneous. Many kinds of vegetation, including
agriculture crops, could have leaves, stems and branches distributed in clusters with substantial gaps
between them. Thus, vegetation canopies are not homogeneous. Also, the transmissions in gaps are
larger than that in non-gaps invalidating the homogeneous assumption of RTE and DBA [21].

A common approach in multiple scattering has been based on Foldy-Lax multiple scattering
equations which are formulated using the T -matrix of single objects and translational additional
theorem [1, 12, 15, 22, 23]. In the past, the objects are assumed to be of spherical shape or of
cylindrical shape [12, 16, 17, 19, 24, 25]. The vector translation addition theorem is that of spherical
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waves and cylindrical waves [12, 19]. The scattering of plane waves by quasi-homogeneous scatterers
is investigated in [26]. The field coefficients are expressed via the T -matrix method with the best
linear approximation [26]. It is shown that the far-field pattern of the quasi-homogeneous scatterer is
decomposed into that of the respective homogeneous scatterer plus the perturbation far-field pattern,
depending only on the deviations of the wavenumber profile function from the average value [26]. In
comparison, the method developed in our paper is applicable to both quasi-homogeneous scatterers
and inhomogeneous scatterers. The multiple scattering of 2D objects is calculated using the scattering
operator method (SOM) in [27]. The technique presented in our paper is suitable to treat multiple
scatterings of N 3D objects of complicated shapes where N is an arbitrary number (if additional
scatterers are added, the value of N is increased). This technique has the same advantages as SOM [27]
such as stability when compared with the integral method. We have extended the previous vector
spherical waves method of Foldy-Lax to vector spheroidal wave expansions which are suitable for
complicated 3D objects which can be enclosed by prolate spheroidal surfaces. In inverse scattering
problem, reference [28] developed a novel inverse method to calculate the permittivity of an electrically
small rod. The field across surface of the electrically small rod is assumed be constant. Based on this
assumption, the closed-form solutions of the permittivity are derived from the scattering integral [28].
Reference [29] reconstructed the shapes and locations of multiple 3D perfect electric conducting (PEC)
objects using the level set method. In our paper, the Foldy-Lax multiple scattering equations are efficient
and accurate to solve the scatterings from multiple objects, especially when the fractional volume of the
objects is small (e.g., vegetation canopy). In the future, for inverse scattering of the multiple scattering
problems, we will use the hybrid method for the forward solution, and machine leaning techniques such
as convolution neural network can be employed for inverse scattering [30].

In full wave simulations of multiple scattering in vegetation, the additional challenges are that
the objects are of complex shapes consisting of branches and leaves and they are clustered together.
For example, in microwave remote sensing of soil moisture and vegetation, the scattering objects are
vegetation such as wheat, soya bean and corn that lies above the soils. In this paper, we use a hybrid
method for NMM3D simulations of multiple scatterings by complex objects. In the hybrid method, the
solutions are divided into the interior regions and the exterior regions. The complex object is placed
in the interior region which has a circumscribing/enclosing boundary. The first step consists of solving
Maxwell equations in the interior region. Off the-shelf technique of HFSS (high frequency structure
simulator) or FEKO (field calculations involving bodies of arbitrary shape) is used to calculate the
scattered fields of the complex object on the circumscribing boundary. In the next step, the T-matrices
of the complex objects are then used in Foldy-Lax multiple scattering equations with the translational
addition theorem.

In this paper, for the interior regions, we use circumscribing spheres and circumscribing spheroids.
For the case of circumscribing spheres, we used vector spherical wave expansions [31]. For the case of
circumscribing spheroids, we used vector spheroidal waves [32] expansions. Recently, we have also used
circumscribing cylinders of infinite lengths [19, 21, 33]. To extract the T -matrix for an arbitrary-shape
object, the off the-shelf technique HFSS is used. HFSS enables us to perform full-wave simulations of
single objects with complicated structures. To calculate the T -matrix of the single object from HFSS, we
first define a spherical/spheroidal surface (S) which encloses the object. Then, we excite the object using
incident plane waves at different incident angles and polarizations in HFSS. Using the scattered field
values from HFSS on the circumscribing boundary, the spherical/spheroidal wave expansion coefficients
of the scattered waves are obtained. Since the expansion coefficients of the incident plane waves are
known, the T -matrix is calculated from the scattered fields of HFSS. Analytic expressions of translational
addition theorem of vector spherical waves are well established using Wigner 3-j coefficients [1]. The
expressions of translational addition theorem of vector spheroid waves are very complicated and have
only been implemented numerically for low order spheroidal waves [34–36]. In this paper, we develop
robust numerical methods to calculate the coefficients of the translation addition theorem for vector
spheroidal waves.

A short 3-page version of this present paper was presented at the ICCEM conference [37]. A longer
version was in the PhD thesis of the first author [33]. The outline of the present paper is as follows.
In Section 2, the numerical method of extracting T -matrix for complex objects using HFSS for vector
spherical waves and vector spheroidal waves is developed. Section 3 presents the results and validation
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for the numerical extraction of T -matrix. In Section 4, we describe the details of the methods for
calculating the translation addition theorem numerically for vector spheroidal waves. Section 5 presents
the results and discussions on the numerical translation addition method.

2. FOLDY-LAX MULTIPLE SCATTERING EQUATIONS

2.1. Foldy-Lax Multiple Scattering Equations and T -Matrix

In NMM3D full wave simulations, Maxwell equations are solved using the Foldy-Lax multiple scattering
equations (FL) with generalized T -matrix. Consider an incident wave Ēinc incident on N number of
scatterers. In Foldy-Lax equations, one considers Ēm

ex, the final exciting field of scatterer m. The coupled
equations for N number of scatterers with N final exciting fields, Ēn

ex, n = 1, 2, 3, . . . , N are (Fig. 1)

Ēm
ex = Ēinc +

N∑
n=1
n �=M

¯̄Gmn
¯̄T nĒn

ex (1)

where ¯̄T n is the generalized T -matrix of scatterer n, and ¯̄Gmn is the propagation of wave from scatterer
n to scatterer m. The product ¯̄Gmn

¯̄T nĒn
ex gives the scattered wave from scatterer n to scatterer m.

The T -matrix describes the scattering of the object. In this paper, it is expressed in vector spherical
waves and in vector spheroidal waves.

Figure 1. Illustration of Foldy-Lax multiple scattering equations using five branches.

For quasi-homogeneous scattering, the Foldy-Lax multiple scattering equations can be simplified by
applying the Born approximation. The solutions of the Foldy-Lax multiple scattering equations require
only one iteration for convergence [10]. The idea is similar to that of [38,39].

2.2. Numerical T -matrix Extraction

The exciting fields are expanded in regular vector waves while the scattered waves outside the enclosing
surface are expressed with outgoing vector waves (Fig. 2). Then, the T -matrix describes the linear
relation between scattering field coefficients and the exciting field coefficients [1].[

āS(M)

āS(N)

]
=

[
¯̄T

(11) ¯̄T
(12)

¯̄T
(21) ¯̄T

(22)

][
āE(M)

āE(N)

]
= T̄

[
āE(M)

āE(N)

]
(2)

In Equation (2), (M) and (N) stand for vector waves of the two polarizations; āE(M) and
āE(N) represent the exciting field coefficients; and āS(M) and āS(N) represent the scattered field
coefficients. For vector spherical waves, Nmax is the number of multipoles for both M and N
and Lmax = Nmax(Nmax + 2) [1]. For spheroidal waves, we use separate Mmax and Nmax, and



90 Huang et al.

Figure 2. Two branches, each enclosed by a spherical surface (left figure) and a spheroidal surface
(right figure), without overlap. The technique presented in this paper is suitable to treat any number
of scatterers even though only two branches are shown in each sub figure.

Lmax = Nmax(Mmax + 1). Thus, the dimensions of āE(M), āE(N), āS(M), and āS(N) are Lmax × 1. Then
¯̄T

(11)
, ¯̄T

(12)
, ¯̄T

(21)
, and ¯̄T

(22)
are of dimensions Lmax × Lmax.

Let
¯̄T =

[
¯̄T

(11) ¯̄T
(12)

¯̄T
(21) ¯̄T

(22)

]
(3)

be the T -matrix. The size of the T -matrix ( ¯̄T ) is 2Lmax × 2Lmax.
To find ¯̄T numerically for complex objects, the scatterer is excited with 2Lmax different incident

plane waves (different incident angles and polarizations). For each of the plane wave incident wave, for
example, the incident wave, we calculate āE(M)

l , āE(N)
l , for vector spherical waves or vector spheroidal

waves. For each plane incident wave wave , the near scattered fields can be calculated using off-the-
shelf techniques such as HFSS, FEKO, and CST. In this paper we used HFSS. The near scattered
fields ĒS(r̄) are calculated on the surfaces of smallest circumscribing sphere or spheroid respectively for
vector spherical waves and vector spheroidal waves. Then, the scattered field coefficients are calculated
by integration of the product of the ĒS(r̄) and the vector spherical waves or vector spheroidal waves on
the surfaces. Then, āS(M)

l , āS(N)
l for vector spherical waves or vector spheroidal waves are calculated.

These are repeated for j = 1, 2 . . . , 2Lmax incident plane waves.
These coefficients are assembled into the exciting field coefficient matrices and the scattered field

coefficient matrices of sizes 2Lmax × 2Lmax as follows.⎡⎣ ā
E(M)
1 . . . ā

E(M)
2Lmax

ā
E(N)
1 . . . ā

E(N)
2Lmax

⎤⎦ (4)

and ⎡⎣ ā
S(M)
1 . . . ā

S(M)
2Lmax

ā
S(N)
1 . . . ā

S(N)
2Lmax

⎤⎦ (5)

Using these two coefficient matrices, then the ¯̄T of size 2Lmax × 2Lmax is obtained by

¯̄T =

⎡⎣ ā
S(M)
1 . . . ā

S(M)
2Lmax

ā
S(N)
1 . . . ā

S(N)
2Lmax

⎤⎦⎡⎣ ā
E(M)
1 . . . ā

E(M)
2Lmax

ā
E(N)
1 . . . ā

E(N)
2Lmax

⎤⎦−1

(6)

The numerical methods to calculate the scattered field coefficients for vector spherical and
spheroidal waves are described below.

2.3. Calculations of āS
l and the T -Matrix for Vector Spherical Waves

Scattered fields are expressed in terms of vector spherical waves as below.

ĒS (r̄) =
∑
m,n

[
a

S(M)
mn M̄mn (kr, θ, φ)

+aS(N)
mn N̄mn (kr, θ, φ)

]
(7)
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where M̄ and N̄ are as defined in page 27–28 of [31].
We use HFSS to calculate the tangential components of the scattered field on the surface of the

circumscribing sphere of radius R. The scattered field expansion coefficients can be obtained using

aS(M)
mn = [γmnhn(kR)z2mn]−1

∫ π

0
dθ sin θ

∫ 2π

0
dφr̂ × Ēs(R, θ, φ) · B̄−mn(θ, φ) (8)

aS(N)
mn =

[
γmn

[kRhn(kR)]′

kR
z3mn

]−1 ∫ π

0
dθ sin θ

∫ 2π

0
dφr̂ × Ēs(R, θ, φ) · C̄−mn(θ, φ) (9)

For incident plane waves Ēi = Epip̂ie
ik̄i·r̄, the vector spherical wave expansion coefficients are [1]

aE(M)
mn = (−1)m

(2n + 1)
γmnn(n+ 1)

in
[
Epi

(
p̂i · C̄−mn (θi, φi)

)]
(10)

aE(N)
mn = (−1)m

(2n + 1)
γmnn(n+ 1)

in
[
Epi

(
p̂i ·
(−iB̄−mn (θi, φi)

))]
(11)

where the superscript “E” means exciting fields. p̂i is the polarization (either v̂ or ĥ).
The expressions for both the scattered fields (Equations (8) and (9)) and incident fields

(Equations (10) and (11)) are obtained. From these, the T -matrix with vector spherical wave expansions
for a complex object is obtained using Equation (6). It is noted that this numerical method of extracting
T -matrix works for the object with arbitrary shape. Then, the scattered field coefficients are obtained,
and the T -matrix is extracted.

2.4. Numerical T -Matrix Extraction for Vector Spheroidal Waves

2.4.1. Calculations of āS
l for Vector Spheroidal Waves

For vector spheroidal waves, there is no orthogonality property. Calculating the scattered field expansion
coefficients are more complicated than that for the vector spherical waves.

Using the even and odd modes, the scattered field is expanded as

Ēs =
∑
m,n

[
aS(M),e

mn M̄a(3)
e,mn + aS(M),o

mn M̄a(3)
o,mn + aS(N),e

mn N̄a(3)
e,mn + aS(N),o

mn N̄a(3)
o,mn

]
(12)

where “e” stands for the even mode, and “o” stands for the odd mode. The superscript “(3)” means the
vector spheroidal waves of the third kind, which is the outgoing vector spheroidal waves. The definition
of the superscript “a” is in Appendix. In this paper, a = r. The spheroidal waves are listed in the
Appendix. The m index denotes the usual sinmφ and cosmφ. The n index denotes the η variable which
roughly corresponds to θ in the case of spherical waves. Ēs is obtained from HFSS for a given incident
wave. To calculate the scattered field coefficients as, we take the tangential Ēs dot product with vector
spheroidal waves and perform 2D numerical integration over the enclosing spheroidal surface.

To illustrate, we take ξ̂× of the above Equation (12), and then take the dot product with M̄a(3)
e,m′n′

ξ̂ × Ēs · M̄a(3)
e,m′n′ =

∑
m,n

⎡⎣ a
S(M),e
mn ξ̂ × M̄

a(3)
e,mn · M̄a(3)

e,m′n′ + a
S(M),o
mn ξ̂ × M̄

a(3)
o,mn · M̄a(3)

e,m′n′

+aS(N),e
mn ξ̂ × N̄

a(3)
e,mn · M̄a(3)

e,m′n′ + a
S(N),o
mn ξ̂ × N̄

a(3)
o,mn · M̄a(3)

e,m′n′

⎤⎦ (13)

Before integrating
∫ ∫

∂SO dS over the spheroidal surface, where

dS = f2
(
ξ2 − 1

) 1
2 dφdη

(
ξ2 − η2

) 1
2 (14)

where the function f = d/2 and d is the interfocal distance.
We multiply by a gMe (η) function in the dot product. This is introduced to avoid singularity in

the integration. In this paper, we choose

gMe (η) = gMo (η) = gNe (η) = gNo (η) = g (η) =
(
1 − η2

) (
ξ2 − η2

)3 (15)
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Thus to illustrate one such integration for a term on the right hand side of Equation (13), using

M̄
a(i)
(e,o)mn = M

a(i)
(e,o)m,n,ηη̂ +M

a(i)
(e,o)m,n,ξ ξ̂ +M

a(i)
(e,o)m,n,φφ̂ (16)

we define

CM,e,M,o
m′n′mn =

∫
∂SO

dSξ̂ × M̄a(3)
o,mn · M̄a(3)

e,m′n′g
Me(η)

=f2
(
ξ2−1

) 1
2

∫ 2π

0
dφ

∫ 1

−1
dη
{(
ξ2−η2

) 1
2 gMe (η)×

[
−Ma(3)

o,mnηM
a(3)
e,m′n′φ+Ma(3)

o,mnφM
a(3)
e,m′n′η

]}
(17)

We next use
M

a(3)
e,mnη = fMη

mn (η) sin(mφ);Ma(3)
o,mnη = −fMη

mn (η) cos(mφ);

M
a(3)
e,mnφ = fMφ

mn (η) cos(mφ);Ma(3)
o,mnφ = fMφ

mn (η) sin(mφ).
(18)

where the f s are given in the appendix.
The integration

∫ 2π
0 dφ is just over products of sin(mφ) and cos(mφ).

We then have

CM,e,M,o
m′n′mn = πδmm′f2

(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gMe (η)

[
fMη

mn (η)fMφ
m′n′(η) + fMφ

mn (η)fMη
m′n′(η)

]}
(19)

This integration will be examined later. It is noted that the case when m = m′ = 0 is excluded
here.

Because we have 4 terms on the right side of Equation (13), there are in total 16 coefficients of
C ′s. Beside the CM,e,M,o

m′n′mn , the rest of the 15 coefficients are listed below.

CM,e,M,e
mnm′n′ =0 (20)

CM,e,N,e
m′n′mn =πδmm′f2

(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gMe (η)

[
−fNη

mn(η)fMφ
m′n′(η) + fNφ

mn (η)fMη
m′n′(η)

]}
(21)

CM,e,N,o
mnm′n′ =0 (22)

Using gMo, we have

CM,o,M,e
m′n′mn =

∫
∂SO

ξ̂ × M̄a(3)
e,mn · M̄a(3)

o,m′n′g
Mo(η)

=πδmm′f2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gMo(η)

[
−fMη

mn (η)fMφ
m′n′(η) − fMφ

mn (η)fMη
m′n′(η)

]}
(23)

CM,o,M,o
m′n′mn =

∫
∂SO

ξ̂ × M̄a(3)
o,mn · M̄a(3)

o,m′n′g
Mo(η) = 0 (24)

CM,o,N,e
m′n′mn =

∫
∂SO

ξ̂ × N̄a(3)
e,mn · M̄a(3)

o,m′n′g
Mo(η) = 0 (25)

CM,o,N,o
m′n′mn =

∫
∂SO

ξ̂ × N̄a(3)
o,mn · M̄a(3)

o,m′n′g
Mo(η)

=πδmm′f2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gMo(η)

[
−fNη

mn(η)fMφ
m′n′(η) + fNφ

mn (η)fMη
m′n′(η)

]}
(26)

Using gNe. Similarly, we obtain

CN,e,M,e
m′n′mn =

∫
∂SO

ξ̂ × M̄a(3)
e,mn · N̄a(3)

e,m′n′g
Ne(η)

=πδmm′f2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gNe(η)

[
−fMη

mn (η)fNφ
m′n′(η) + fMφ

mn (η)fNη
m′n′(η)

]}
(27)
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CN,e,M,o
m′n′mn =

∫
∂SO

ξ̂ × M̄a(3)
o,mn · N̄a(3)

e,m′n′g
Ne(η) = 0 (28)

CN,e,N,e
m′n′mn=

∫
∂SO

ξ̂ × N̄a(3)
e,mn · N̄a(3)

e,m′n′g
Ne(η) = 0 (29)

CN,e,N,o
m′n′mn=

∫
∂SO

ξ̂ × N̄a(3)
o,mn · N̄a(3)

e,m′n′g
Ne(η)

=πδmm′f2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gNe(η)

[
−fNη

mn(η)fNφ
m′n′(η) − fNφ

mn (η)fNη
m′n′(η)

]}
(30)

Using gNo. Similarly, we obtain

CN,o,M,e
m′n′mn =

∫
∂SO

ξ̂ × M̄a(3)
e,mn · N̄a(3)

o,m′n′g
No(η) = 0 (31)

CN,o,M,o
m′n′mn =

∫
∂SO

ξ̂ × M̄a(3)
o,mn · N̄a(3)

o,m′n′g
No(η)

=πδmm′f2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gNo(η)

[
−fMη

mn (η)fNφ
m′n′(η) + fMφ

mn (η)fNη
m′n′(η)

]}
(32)

CN,o,N,e
m′n′mn=

∫
∂SO

ξ̂ × N̄a(3)
e,mn · N̄a(3)

o,m′n′g
No(η)

=πδmm′f2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2 gNo(η)

[
fNη

mn(η)fNφ
m′n′(η) + fNφ

mn (η)fNη
m′n′(η)

]}
(33)

CN,o,N,o
m′n′mn=

∫
∂SO

ξ̂ × N̄a(3)
o,mn · N̄a(3)

o,m′n′g
No(η) = 0 (34)

The next step is to calculate the integrations over η. Following is a summary of the integration
needed to be computed.∫ 1

−1
dη
(
ξ2 − η2

) 1
2 fMη

mn (η) fMφ
m′n′ (η) g (η) ;

∫ 1

−1
dη
(
ξ2 − η2

) 1
2 fNη

mn (η) fMφ
m′n′ (η) g (η)∫ 1

−1
dη
(
ξ2 − η2

) 1
2 fNφ

mn (η) fMη
m′n′ (η) g (η) ;

∫ 1

−1
dη
(
ξ2 − η2

) 1
2 fNφ

mn (η) fNη
m′n′ (η) g (η)

(35)

f(η)s are singular as shown in Appendix A. The product with g(η) removes the singularities.

For example, the integrand
(
ξ2 − η2

) 1
2 fNφ

mn (η) fNη
m′n′ (η) g (η) is also plotted in Fig. 3, which shows no

singularity over the range of η.
Then, these functions are ready to be integrated numerically to find the matrix ¯̄C.
Next, we consider calculations of the left hand side of Equation (13)

bMe
m′n′ =

∫
∂SO

dSgMe (η) ξ̂ × Ēs · M̄a(3)
e,m′n′ (36)

= f2
(
ξ2 − 1

) 1
2

∫ 2π

0
dφ

∫ 1

−1
dη
(
ξ2 − η2

) 1
2 gMe (η) ξ̂ × Ēs · M̄a(3)

e,m′n′ (37)

Since Ēs is calculated numerically by HFSS, the Equation (37) is a 2 dimensional integration over
φ and η.

The other 3 terms are
bMo
m′n′ =

∫
∂SO

dSgMe (η) ξ̂ × Ēs · M̄a(3)
o,m′n′ (38)

bNe
m′n′ =

∫
∂SO

dSgMe (η) ξ̂ × Ēs·N̄a(3)
e,m′n′ (39)

bNo
m′n′ =

∫
∂SO

dSgMe (η) ξ̂ × Ēs·N̄a(3)
o,m′n′ (40)
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Figure 3. Plot of the integrand in Equation (35) at c = 3.8773, ξ = 1.05, (m′, n′) = (m,n); blue:
(m,n) = (0, 1), red: (m,n) = (1, 1), and black: (m,n) = (1, 2).

We use HFSS to calculate Ēs. In HFSS, the output scattered fields are usually defined in the
rectangular coordinates Ē = Exx̂+Eyŷ+Ez ẑ. Thus, the output scattered fields need to be transformed
into spheroidal coordinates Ē = Eηη̂+Eξ ξ̂+Eφφ̂. Using the η̂, ξ̂ and φ̂ unit vector in terms of Cartesian
unit vector, we obtain

Eη = −η
(
ξ2 − 1

) 1
2

(ξ2 − η2)
1
2

(Ex cosφ+ Ey sinφ) + ξ

(
1 − η2

) 1
2

(ξ2 − η2)
1
2

Ez (41)

Eξ = ξ

(
1 − η2

) 1
2

(ξ2 − η2)
1
2

(Ex cosφ+ Ey sinφ) + Ez

(
ξ2 − 1

) 1
2

(ξ2 − η2)
1
2

ẑ (42)

Eφ = −Ex sinφ+ Ey cosφ (43)

2.4.2. Matrix Notations

The matrix notation for spherical waves is detailed in [1]. In using spheroidal waves, we consider prolate
spheroids of relatively moderate to large aspect ratio because that resemble the branching structure of
vegetation. If the aspect ratio is comparable to 1, then we can just use spherical waves. Thus we are
considering cases with aspect ratio of 3 to 20 times. In this case, we use separate Mmax and Nmax. Thus
the counting is

m = 0,
n = 1, 2, . . . Nmax;
m = 1,
n = 1, 2, . . . Nmax;
. . .
m = Mmax,
n = 1, 2, . . . Nmax.

(44)

Then, the total number of terms is

(Mmax + 1)Nmax = Lmax (45)
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Suppose Nmax = 5, Mmax = 1, the values of m, n, and l are listed below.

n 1 2 3 4 5 1 2 3 . . . 4 5
m 0 0 0 0 0 0 1 1. . . 1 1
l 1 2 3 4 5 6 7 8 . . . 9 10

(46)

The dimension is
(Mmax + 1)Nmax = 2 × 5 = 10 (47)

In matrix notations,⎡⎢⎢⎣
b̄M,e

b̄M,o

b̄N,e

b̄N,o

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
¯̄C

M,e,M,e ¯̄C
M,e,M,o ¯̄C

M,e,N,e ¯̄C
M,e,N,o

¯̄C
M,o,M,e ¯̄C

M,o,M,o ¯̄C
M,o,N,e ¯̄C

M,o,N,o

¯̄C
N,e,M,e ¯̄C

N,e,M,o ¯̄C
N,e,N,e ¯̄C

N,e,N,o

¯̄C
N,o,M,e ¯̄C

N,o,M,o ¯̄C
N,o,N,e ¯̄C

N,o,N,o

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
āS(M),e

āS(M),o

āS(N),e

āS(N),o

⎤⎥⎥⎦ (48)

b̄Me = dimension of Lmax × 1
āS(M),e = dimension of Lmax × 1

¯̄C
M,e,M,e

= dimension of Lmax × Lmax

Then, in more compact notations,[
b̄(M)

b̄(N)

]
=

⎡⎣ =
C

(M)(M) =
C

(M)(N)

=
C

(N)(M) =
C

(N)(N)

⎤⎦[ āS(M)

āS(N)

]
(49)

where

b̄M =
[
b̄M,e

b̄M,o

]
b̄(N) =

[
b̄N,e

b̄N,o

]
Then, the scattered field coefficients are obtained as[

āS(M)

āS(N)

]
=

⎡⎣ =
C

(M)(M) =
C

(M)(N)

=
C

(N)(M) =
C

(N)(N)

⎤⎦−1 [
b̄(M)

b̄(N)

]
(50)

2.4.3. Calculations of āE
l for Vector Spheroidal Waves

To obtain the T -matrix, we next compute the exciting field coefficients. The T -matrix is of dimension
4Lmax×4Lmax. Thus, we choose 4Lmax incident plane waves, which includes the 2 incident polarizations
of TE and TM. Then, the number of angles are 2Lmax, chosen over (θi, φi).

The incident plane waves are expanded in terms of incoming prolate spheroidal waves [32]. For TE
plane wave,

Ēplane,TE =
Nmax∑
n=1

n∑
m=0

in
[
f (2)

mnM̄
r(1)
e,Mn + if (1)

mnN̄
r(1)
o,mn

]
(51)

For TM plane wave,

Ēplane,TM =
Nmax∑
n=1

n∑
m=0

in
[
f (1)

mnM̄
r(1)
o,mn − if (2)

mnN̄
r(1)
e,mn

]
(52)
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where

f (1)
mn(θi) =

4m
Λmn

∞′∑
r=0,1

dmn
r

(r +m)(r +m+ 1)
Pm

m+r(cos θi)
sin θi

(53)

f (2)
mn(θi) =

2 (2 − δ0m)
Λmn

∞′∑
r=0,1

dmn
r

(r +m)(r +m+ 1)
dPm

m+r(cos θi)
dθi

(54)

dmn
r is the coefficients in calculating the spheroidal wave functions as explained in Appendix A. The

definition of Λmn is

Λmn =
∞′∑

r=0,1

(|m| +M + r)!
(|m| −m+ r)!

2
2(|m| + r) + 1

dmn∗
r (c)dmn

r (c) (55)

The incident plane waves propagate in the xz plane at angle θi to the z axis.
Then,

ā
E(M)
mn = inf

(2)
mn, ā

E(N)
1 = in+1f

(1)
mn, for TE waves

ā
E(M)
mn = inf

(1)
mn, ā

E(N)
1 = −in+1f

(2)
mn, for TM waves

(56)

The superscript ‘(1)’ is used in M̄
r(1)
mn , N̄ r(1)

mn because the incident waves are expanded in terms of
income vector spheroidal waves.

For each incident plane wave, we compute[
āE(M)

āE(N)

]
We also compute the scattered near field using on the spheroidal surface Ē(S) from HFSS and, then

calculate [
āS(M)

āS(N)

]
After the expansion coefficients for both scattered fields and the corresponding incident fields are

computed, the T -matrix with vector spheroidal waves is obtained for irregular objects.

3. NUMERICAL ILLUSTRATIONS OF T -MATRIX EXTRACTIONS AND
VALIDATIONS

To validate the T -matrix of complex object, we validate using the following methodology.
Figure 4 shows a complex object of a branch with leaves attached. The results of the scattered

field are computed in 2 ways. The first method is the direct method using HFSS to calculate the far

Figure 4. A branch with leaves attached for T -matrix validation.
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field bistatic cross sections. The results of this method are the benchmark solutions. In the second
method, we use the near fields scattered fields of HFSS to extract the T -matrix of vector spheroidal
waves. Then, we use the extracted T -matrix to calculate the scattered far fields using the far field
solutions of vector spheroidal waves. By showing that the results of method 2 and method 1 agree, the
extraction of T -matrix for complex objects using spheroidal waves are validated.

To illustrate method 2, consider plane wave incidence, the exciting field coefficients are as before.
Using the extracted T -matrix, the expansion coefficients āS of the scattered waves are obtained

āS = ¯̄T āE (57)
Then, the scattered fields are

Ēs =
N max∑
n=1

n∑
m=0

[
aS(M),e

mn M̄a(3)
e,mn + aS(N),e

mn N̄a(3)
e,mn

]
+

N max∑
n=1

n∑
m=1

[
aS(M),o

mn M̄a(3)
o,mn + aS(N),o

mn N̄a(3)
o,mn

]
(58)

Note that the difference between as here and the āS before is: the āS before in equations are
calculated using the near fields of HFSS. They are then used to obtain the T -matrix, while the āS here
are calculated from the T -matrix.

The asymptotic forms of M̄ r(3)
(e,o),mn and N̄ r(3)

(e,o),mn are [40]

M
r(3)
(e,o),m,n,η → (−i)n+1mSmn (cos θ)

sin θ
exp (ikr)

kr

[
sin (mφ)

− cos (mφ)

]
(59)

M
r(3)
(e,o),m,n,φ → −(−i)n+1dSmn (cos θ)

dθ

exp (ikr)
kr

[
cos (mφ)
sin (mφ)

]
(60)

N
r(3)
(e,o),m,n,η → −(−i)ndSmn (cos θ)

dθ

exp (ikr)
kr

[
cos (mφ)
sin (mφ)

]
(61)

N
r(3)
(e,o),m,n,φ → −(−i)nmSmn (cos θ)

sin θ
exp (ikr)

kr

[
sin (mφ)

− cos (mφ)

]
(62)

Thus, in the far field region,

Es,η =
exp (ikr)

kr

∑
m,n

⎡⎢⎢⎣
(
a

S(M)e
mn sin (mφ) − a

S(M)o
mn cos (mφ)

) (−i)n+1mSmn (cos θ)
sin θ

−
(
a

S(N)e
mn cos (mφ) + a

S(N)o
mn sin (mφ)

) (−i)ndSmn (cos θ)
dθ

⎤⎥⎥⎦ (63)

Figure 5. σvv from HFSS (method 1) compared with that from the T -matrix (method 2).
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Figure 6. σhh from HFSS (method 1) compared with that from the T -matrix (method 2).

Es,φ =
exp (ikr)

kr

∑
m,n

⎡⎢⎢⎣
(
a

S(M)e
mn cos (mφ) + a

S(M)o
mn sin (mφ)

) −(−i)n+1dSmn (cos θ)
dθ

−
(
a

S(N)e
mn sin (mφ) − a

S(N)o
mn cos (mφ)

) (−i)nmSmn (cos θ)
sin θ

⎤⎥⎥⎦ (64)

Finally, using the relationship that
[
Es

v
Es

h

]
= exp(ikr)

r

[
Svv Svh

Shv Shh

] [
Ei

v

Ei
h

]
and σpq = 4π|Spq|2, the

radar cross section (RCS) of the scatterer using the T -matrix of method 2 is obtained.
The RCS are computed using two methods for a branch with complicated leaves (Fig. 4). The

results are shown in Fig. 5 and Fig. 6. The length of the center stalk of the branch is 8cm and the
permittivity is 27.22 + 5.22i with frequency at 1.41GHz. The T -matrix is extracted from HFSS using
the method in section 2. It can be seen that the results from the T -matrix and HFSS are in good
agreement This good agreement verifies the correctness of the T -matrix with vector spheroidal wave
expansions.

4. NUMERICAL TRANSLATION ADDITION THEOREM FOR VECTOR
SPHEROIDAL WAVES

Consider two spheroids (e.g., Fig. 2(b)), one centered at r̄l and the other centered at r̄j . Consider
an outgoing spheroidal wave M̄a(3)

σ,mn (c, ξj , ηj , φj) from spheroid j. The translation addition theorem
says that the outgoing waves can be expressed as a linear combination of incoming waves on particle l
(Fig. 7).

The mathematical expressions for the translation addition theorem for vector spheroidal waves
are [1]

M̄
a(3)
σ′,μ′ν′ (c, ξj , ηj , φj) =

∑
σ,μ,ν

[
M̄a(1)

σ,μν (kr̄rl)AMσμν,Mσ′μ′ν′ + N̄a(1)
σ,μν (kr̄rl)ANσμν,Mσ′μ′ν′

]
(65)

Taking ∇× on both sides of the above equation and using the properties that ∇ × M̄ = kN̄ and
∇× N̄ = kM̄ , we have

N̄
a(3)
σ′,μ′ν′ (c, ξj , ηj , φj) =

∑
σ,μ,ν

[
M̄a(1)

σ,μν (kr̄rl)ANσμν,Mσ′μ′ν′ + N̄a(1)
σ,μν (kr̄rl)AMσμν,Mσ′μ′ν′

]
(66)
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Figure 7. Illustration of translation addition theorem of vector spheroidal waves: outgoing spheroidal
waves centered at r̄j are transformed to incoming spheroidal waves centered at r̄l.

where σ is either ‘e’ or ‘o’. These equations mean the outgoing vector spheroidal waves
M̄

a(3)
σ,mn (c, ξj , ηj , φj) and N̄a(3)

σ,mn (c, ξj , ηj , φj) centered at r̄j are expressed the incoming vector spheroidal
waves M̄

a(1)
σ,μν (kr̄rl) and N̄

a(1)
σ,μν (kr̄rl) centered at r̄l. AMσμν,Mσ′μ′ν′ and ANσμν,Mσ′μ′ν′ are the

transformation coefficients. We only need the M̄a(3)
σ′,μ′ν′ (c, ξj , ηj , φj) (i.e., Equation (65)) to derive the

translational addition coefficients since the N̄a(3)
σ′,μ′ν′ (c, ξj , ηj , φj) follows from it.

For vector spheroidal waves, unlike spherical waves, we do not need to have μ = 0, 1, 2, . . . , ν because
we are using prolate spheroidal waves for moderate to large aspect ratio. Thus, in this case, we use
separate Mmax and Nmax. The number of μ and ν combinations is Lmax = (Mmax + 1)Nmax. To count
the number of coefficients, we combine the two indices, and write (μ, ν) , (m,n) etc. as 1, 2, . . . Lmax.
Thus for (μ, ν) and (μ′, ν ′) which are independent inside the summation in Equation (65), we have L2

max.
In addition, there is a factor of 2 for“even” and “odd” for σ. Thus for σ and σ′ which are independent,
we have 4 combinations. However, for 2 polarizations, M̄ and N̄ , the count needs to be careful because
the two equation above are the same. Thus, we only have M,M and N,M , in the subscripts of A and
not M,N nor N,N . Thus, the count is only 2 and not 4. For the combined index of (σ, μ, ν), there
are 2Lmax indices. There are 4L2

max indices in each of AMσμν,Mσ′μ′ν′ and ANσμν,Mσ′μ′ν′ . Because the
factor is only 2 for polarization combinations, the total number of the translation addition coefficients
to be determined in AMσμν,Mσ′μ′ν′ and ANσμν,Mσ′μ′ν′ is 8L2

max.
Following is the summary of the steps to obtain the coefficients A.
Step (1): take cross product of Equation (65) with the normal ξ̂r̄l

of spheroidal l.
Let σ′ = e. We have the equation

ξ̂r̄l
×M̄a(3)

e,μ′ν′ (c, ξj , ηj , φj) =
∑
μ,ν

[
ξ̂r̄l

×M̄a(1)
e,μν (kr̄rl)AMeμν,Meμ′ν′+ξ̂r̄l

×M̄a(1)
o,μν (kr̄rl)AMoμν,Meμ′ν′

+ξ̂r̄l
×N̄a(1)

e,μν (kr̄rl)ANeμν,Meμ′ν′ +ξ̂r̄l
×N̄a(1)

o,μν (kr̄rl)ANoμν,Meμ′ν′

]
(67)

Let σ′ = o,

ξ̂r̄l
×M̄a(3)

o,μ′ν′ (c, ξj , ηj , φj) =
∑
μ,ν

[
ξ̂r̄l

×M̄a(1)
e,μν (kr̄rl)AMeμν,Moμ′ν′+ξ̂r̄l

×M̄a(1)
o,μν (kr̄rl)AMoμν,Moμ′ν′

+ξ̂r̄l
×N̄a(1)

e,μν (kr̄rl)ANeμν,Moμ′ν′ +ξ̂r̄l
×N̄a(1)

o,μν (kr̄rl)ANoμν,Mo,μ′ν′

]
(68)

Note that there are changes between Left-Hand-Side (LHS) of Equations (67) and (68). Between
the Righ-Hand-Side (RHS) of Equations (67) and (68), only the A′s coefficients change because σ′ is
changed. The cross products remain the same on the RHS. Both Equations (67) and (68) have 4 terms
under the summation sign. Let (μ, ν) = 1, . . . Lmax and (μ′, ν ′) = 1, . . . Lmax, then Equation (67) has
4L2

max coefficients of A′s and Equation (68) also has 4L2
max coefficients of A′s, giving a total of 8L2

max
coefficients of A′s.
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Step (2): Use Equation (67) which has σ′ = e. Take the dot product of Equation (67) ‘in front’
with M̄a(1)

e,mn (kr̄rl) and integration over the surface of spheroidal l.∫
∂SOl

dSM̄a(1)
e,mn (kr̄rl) · ξ̂r̄l

× M̄
a(3)
e,μ′ν′ (c, ξj , ηj , φj) =∑

μ,ν

∫
∂SOl

dSM̄a(1)
e,mn (kr̄rl) · ξ̂r̄l

× M̄a(1)
e,μν (kr̄rl)AMeμν,Meμ′ν′

+
∑
μ,ν

∫
∂SOl

dSM̄a(1)
e,mn (kr̄rl) · ξ̂r̄l

× M̄a(1)
o,μν (kr̄rl)AMoμν,Meμ′ν′

+
∑
μ,ν

∫
∂SOl

dSM̄a(1)
e,mn (kr̄rl) · ξ̂r̄l

× N̄a(1)
e,μν (kr̄rl)ANeμν,Meμ′ν′

+
∑
μ,ν

∫
∂SOl

dSM̄a(1)
e,mn (kr̄rl) · ξ̂r̄l

× N̄a(1)
o,μν (kr̄rl)ANoμν,Meμ′ν′

(69)

Then, we have one integral on the LHS. This means that for fixed μ′,ν ′, we have one coefficient
b on the LHS and 4 coefficients C ′s for each mn. Similarly, take dot product of Equation (67) with
M̄

a(1)
o,mn (kr̄rl), N̄

a(1)
e,mn (kr̄rl) and N̄a(1)

o,mn (kr̄rl), respectively. In total, for each mn,we have 4 integrals of b
on the LHS and 16 C ′s coefficient integrals on the RHS, giving 4 coefficients of b on the LHS and 16
coefficients C ′s on RHS. These give us 4 equations. We let m = 0, 1, . . .Mmax, n = 1, 2, . . . Nmax, then
we have (Mmax + 1)Nmax = Lmax. There are 4Lmax equations in total.

Step (3): Use Equation (68) which has σ′ = o. Repeat Step (2) by taking 4 dot products with
M̄

a(1)
e,mn (kr̄rl), M̄

a(1)
o,mn (kr̄rl), N̄

a(1)
e,mn (kr̄rl) and N̄

a(1)
o,mn (kr̄rl), for each of them. Step (2) and step (3) will

give totally 8Lmax equations.
Step (4): repeat steps (1)–(3) for (μ′, ν ′) = 1, 2, . . . Lmax. Then, totally 8L2

max equations are
obtained for the 8L2

max translation addition coefficients to be solved.
The detailed calculations for all the steps are presented as below.
First, we analyze the right hand side of Equation (69). The calculations are similar to those in

section 2.4, except that the outgoing vector spheroidal waves are replaced by incoming spheroidal waves.
We illustrate the calculations of one term as below.

CM,e,M,e(1)
mnμν =

∫
∂SO

M̄a(1)
e,mn · ξ̂ × M̄a(1)

e,μν

=
∫

∂SO

(
Ma(1)

e,mnηη̂ +M
a(1)
e,mnξ ξ̂ +M

a(1)
e,mnφφ̂

)
·
(
−Ma(1)

e,μνηφ̂+M
a(1)
e,μνφη̂

)
= f2

(
ξ2 − 1

) 1
2

∫ 2π

0
dφ

∫ 1

−1
dη
(
ξ2 − η2

) 1
2

[
−Ma(1)

e,μνηM
a(1)
e,mnφ +M

a(1)
e,μνφM

a(1)
e,mnη

]
(70)

In comparison with the previous section, we note that the integrands are the products of two
incoming waves. Thus, a superscript ‘(1)’ is used to distinguish the C of this section from the C of the
previous section. Because the regular incoming waves are smooth [41], we do not need to introduce the
smoothing function g(η). We next use

M
a(1)
e,mnη = f

Mη(1)
mn (η) sin(mφ);Ma(1)

o,mnη = −fMη(1)
mn (η) cos(mφ);

M
a(1)
e,mnφ = f

Mφ(1)
mn (η) cos(mφ);Ma(1)

o,mnφ = f
Mφ(1)
mn (η) sin(mφ).

(71)

Thus,

C
M,e,M,e(1)
mnμν = f2

(
ξ2 − 1

) 1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[∫ 2π

0
dφ sin(μφ) cos (mφ)

∫ 1

−1
dη
(
ξ2 − η2

) 1
2

(
−fMη(1)

μν (η)fMφ(1)
mn (η)

)]
+
[ ∫ 2π

0
dφ cos(μφ) sin (mφ)

∫ 1

−1
dη
(
ξ2 − η2

) 1
2 fMφ(1)

μν (η)fMη(1)
mn (η)

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= 0 (72)
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The 4 dot products give 4 coefficients CM,e,M,e(1)
mnμν , CM,e,M,o(1)

mnμν C
M,e,N,e(1)
mnμν and CM,e,N,o(1)

mnμν . Then, as
described in step 2,we repeat by taking the dot product of Equation (67) with M̄a(1)

o,mn (kr̄rl), N̄
a(1)
e,mn (kr̄rl)

and N̄a(1)
o,mn (kr̄rl), and obtain the 16 coefficients of C ′s.

The 16 Cmnμν integral coefficients involve the products of the 4 vector spheroidal waves
M̄

a(1)
e,mn (kr̄rl) , M̄

a(1)
o,mn (kr̄rl), N̄

a(1)
e,mn (kr̄rl) and N̄

a(1)
o,mn (kr̄rl) with the 4 vector spheroidal waves

M̄
a(1)
e,μν (kr̄rl), M̄

a(1)
o,μν (kr̄rl), N̄

a(1)
e,μν (kr̄rl) and N̄a(1)

o,μν (kr̄rl).
Because the expressions of the Cmnμν coefficients are integrals of the products of M̄ and N̄ over

the same surface of the l scatterer, the
∫ 2π
0 dφ is carried out analytically. Thus we only have one

dimensional integral over η for the Cmnμν coefficients. The CM,e,M,e(1)
mnμν coefficient is given above. The

one dimensional integrals of other 15 coefficients are given below.

CM,e,M,o(1)
mnμν =

∫
∂SO

M̄a(1)
e,mn · ξ̂ × M̄a(1)

o,μν

=πδμmf
2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2

[
fMη(1)

μν (η)fMφ(1)
mn (η) + fMφ(1)

μν (η)fMη(1)
mn (η)

]}
(73)

CM,e,N,e(1)
mnμν =

∫
∂SO

M̄a(1)
e,mn · ξ̂ × N̄a(1)

e,μν

=πδμmf
2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2

[
−fNη(1)

μν (η)fMφ(1)
mn (η) + fNφ(1)

μν (η)fMη(1)
mn (η)

]}
(74)

CM,e,N,o(1)
mnμν =

∫
∂SO

M̄a(1)
e,mn · ξ̂ × N̄a(1)

o,μν = 0 (75)

For the notations of C
M,e,M,e(1)
mnμν , the first part of the super/sub scripts (Me,mn) denote the the

applied dot product which in this case is M̄a(1)
e,mn. Th second part of the super/sub script, (Me,μν) refers

to the term that is inside the summation on the RHS of Equation (67).
Next, take the dot product of Equation (67) with M̄a(1)

o,mn (kr̄rl) and integration over the surface of
spheroidal l. Similarly, the 4 integrals on the RHS are calculated as below.

CM,o,M,e(1)
mnμν =

∫
∂SO

M̄a(1)
o,mn · ξ̂ × M̄a(1)

e,μν

=πδμmf
2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2−η2

) 1
2

[
−fMη(1)

μν (η)fMφ(1)
mn (η) − fMφ(1)

μν (η)fMη(1)
mn (η)

]}
(76)

CM,o,M,o(1)
mnμν =

∫
∂SO

M̄a(1)
o,mn · ξ̂ × M̄a(1)

o,μν = 0 (77)

CM,o,N,e(1)
mnμν =

∫
∂SO

M̄a(1)
o,mn · ξ̂ × N̄a(1)

e,μν = 0 (78)

CM,o,N,o(1)
mnμν =

∫
∂SO

M̄a(1)
o,mn · ξ̂ × N̄a(1)

o,μν

=πδμmf
2
(
ξ2−1

) 1
2

∫ 1

−1
dη
{(
ξ2−η2

) 1
2

[
−fNη(1)

μν (η)fMφ(1)
mn (η) + fNφ(1)

μν (η)fMη(1)
mn (η)

]}
(79)

Next, take the dot product of Equation (67) with N̄a(1)
e,mn (kr̄rl). We have

CN,e,M,e(1)
mnμν =

∫
∂SO

N̄a(1)
e,mn · ξ̂ × M̄a(1)

e,μν

=πδμmf
2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2

[
−fMη(1)

μν (η)fNφ(1)
mn (η) + fMφ(1)

μν (η)fNη(1)
mn (η)

]}
(80)

CN,e,M,o(1)
mnμν =

∫
∂SO

N̄a(1)
e,mn · ξ̂ × M̄a(1)

o,μν = 0 (81)
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CN,e,N,e(1)
mnμν =

∫
∂SO

N̄a(1)
e,mn · ξ̂ × N̄a(1)

e,μν = 0 (82)

CN,e,N,o(1)
mnμν =

∫
∂SO

N̄a(1)
e,mn · ξ̂ × N̄a(1)

o,μν

=πδμmf
2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2

[
−fNη(1)

μν (η)fNφ(1)
mn (η) − fNφ(1)

μν (η)fNη(1)
mn (η)

]}
(83)

After that, take the dot product of Equation (67) with N̄a(1)
o,mn (kr̄rl).

CN,o,M,e(1)
mnμν =

∫
∂SO

N̄a(1)
o,mn · ξ̂ × M̄a(1)

e,μν = 0 (84)

CN,o,M,o(1)
mnμν =

∫
∂SO

N̄a(1)
o,mn · ξ̂ × M̄a(1)

o,μν

=πδμmf
2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2

[
−fMη(1)

μν (η)fNφ(1)
mn (η) + fMφ(1)

μν (η)fNη(1)
mn (η)

]}
(85)

CN,o,N,e(1)
mnμν =

∫
∂SO

N̄a(1)
o,mn · ξ̂ × N̄a(1)

e,μν

=πδμmf
2
(
ξ2 − 1

) 1
2

∫ 1

−1
dη
{(
ξ2 − η2

) 1
2

[
fNη(1)

μν (η)fNφ(1)
mn (η) + fNφ(1)

μν (η)fNη(1)
mn (η)

]}
(86)

CN,o,N,o(1)
mnμν =

∫
∂SO

N̄a(1)
o,mn · ξ̂ × N̄a(1)

o,μν = 0 (87)

Next, we describe the 4 integrals on the left hand side giving the b coefficients.

b
Me,Me(1)
mnμ′ν′ =

∫
∂SOl

dSM̄a(1)
e,mn (kr̄rl) · ξ̂r̄l

× M̄
a(3)
e,μ′ν′ (c, ξj , ηj , φj)

=
∫

∂SOl

dSM̄
a(3)
e,μ′ν′ (c, ξj , ηj , φj) ·

[
−ξ̂r̄l

× M̄a(1)
e,mn (kr̄rl)

]
=
∫

∂SOl

dSM̄
a(3)
e,μ′ν′ (c, ξj , ηj , φj) ·

(
Ma(1)

e,mnηφ̂r̄l
−M

a(1)
e,mnφη̂r̄l

)
(88)

Note that the two dimensional integration is over the spheroidal surface of spheroid l. The integrand
is a product of spheroidal function centered at r̄l with spheroidal functions centered at r̄j. Since j and
l are different, we cannot do the

∫ 2π
0 dφ integral as in the case of Cmnμν . We have two dimensional

integrals of bmnμν .
The second factor M̄a(3)

e,μ′ ν′ (c, ξj , ηj , φj) is outgoing vector spheroidal wave from spheroid j. Thus,
we need to transform it from the spheroidal coordinate system centered at r̄j to the spheroidal coordinate
system centered at r̄l.

M̄
a(3)
e,μ′ν′ (c, ξj , ηj , φj) = M

a(3)
e,μ′ν′ηη̂r̄j +M

a(3)
e,μ′ν′ξ ξ̂r̄j +M

a(3)
e,μ′ν′φφ̂r̄l

= M
flj ,a(3)
e,μ′ν′η η̂r̄l

+M
flj ,a(3)
e,μ′ν′ξ ξ̂r̄l

+M
flj ,a(3)
e,μ′ν′φ φ̂r̄l

(89)

where the superscript flj indicates the coordinate transformation.
Then, bMe,Me(1)

mnμ′ν′ is calculated as

b
Me,Me(1)
mnμ′ν′ =

∫ 1

−1
dη

∫ 2π

0
dφf2

(
ξ2 − 1

) 1
2
(
ξ2 − η2

) 1
2

(
M

flj ,a(3)
e,μ′ν′φ M

a(1)
e,mnη −M

flj ,a(3)
e,μ′ν′η M

a(1)
e,mnφ

)
(90)

The two dimensional integration is calculated numerically. Similarly, the other three terms of b are
calculated as follows.

b
Mo,Me(1)
mnμ′ν′ =

∫ 1

−1
dη

∫ 2π

0
dφf2

(
ξ2 − 1

) 1
2
(
ξ2 − η2

) 1
2

(
M

flj ,a(3)
e,μ′ν′φ M

a(1)
o,mnη −M

flj ,a(3)
e,μ′ν′η M

a(1)
o,mnφ

)
(91)
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b
Ne,Me(1)
mnμ′ν′ =

∫ 1

−1
dη

∫ 2π

0
dφf2

(
ξ2 − 1

) 1
2
(
ξ2 − η2

) 1
2

(
M

flj ,a(3)
e,μ′ν′φ N

a(1)
e,mnη −M

flj ,a(3)
e,μ′ν′η N

a(1)
e,mnφ

)
(92)

b
No,Me(1)
mnμ′ν′ =

∫ 1

−1
dη

∫ 2π

0
dφf2

(
ξ2 − 1

) 1
2
(
ξ2 − η2

) 1
2

(
M

flj ,a(3)
e,μ′ν′φ N

a(1)
o,mnη −M

flj ,a(3)
e,μ′ν′η N

a(1)
o,mnφ

)
(93)

For the notations of b′s, the first super/sub script (Mo,mn) is what dot product is taken and the
second super/sub script (Me,μ′ν ′) refers to the left hand of the original equation before taking the dot
product. Since Equation (67) has (Me) originally on the LHS, we have (Me) as the second superscript
above.

The magnitude of M̄a(3)
σ,mn (k ¯rrj) is plotted on the spheroidal surface centered at r̄l in Fig. 8. It

is observed that |M̄ r(3)
o,01 ( ¯rrj)| = 0. This can be verified by substituting m = 0 and n = 1 into the

expression of M̄a(3)
o,mn in Appendix A.

(b)(a)

(d)(c)

Figure 8. |M̄ r(3)
σ,mn( ¯rrj)| on the spheroidal surface centered at r̄l, where r̄l = [0, 0, 0], r̄j = [−λ/2, 0, 0]

for (a) σ = e, m = 0, n = 1; (b) σ = o, m = 0, n = 1; (c) σ = e,m = 1, n = 2; (d) σ = o, m = 1, n = 2.

Then, we have 4 equations

bMe,Me
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CM,e,M,e(1)
mnμν AMeμν,Meμ′ν′ +

∑
μ,ν

CM,e,M,o(1)
mnμν AMoμν,Meμ′ν′

+
∑
μ,ν

CM,e,N,e(1)
mnμν ANeμν,Meμ′ν′ +

∑
μ,ν

CM,e,N,o(1)
mnμν ANoμν,Meμ′ν′

⎤⎥⎥⎦ (94)

bMo,Me
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CM,o,M,e(1)
mnμν AMeμν,Meμ′ν′ +

∑
μ,ν

CM,o,M,o(1)
mnμν AMoμν,Meμ′ν′

+
∑
μ,ν

CM,o,N,e(1)
mnμν ANeμν,Meμ′ν′ +

∑
μ,ν

CM,o,N,o(1)
mnμν ANoμν,Meμ′ν′

⎤⎥⎥⎦ (95)
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bNe,Me
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CN,e,M,e(1)
mnμν AMeμν,Meμ′ν′ +

∑
μ,ν

CN,e,M,o(1)
mnμν AMoμν,Meμ′ν′

+
∑
μ,ν

CN,e,N,e(1)
mnμν ANeμν,Meμ′ν′ +

∑
μ,ν

CN,e,N,o(1)
mnμν ANoμν,Meμ′ν′

⎤⎥⎥⎦ (96)

bNo,Me
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CN,o,M,e(1)
mnμν AMeμν,Meμ′ν′ +

∑
μ,ν

CN,o,M,o(1)
mnμν AMoμν,Meμ′ν′

+
∑
μ,ν

CN,o,N,e(1)
mnμν ANeμν,Meμ′ν′ +

∑
μ,ν

CN,o,N,o(1)
mnμν ANoμν,Meμ′ν′

⎤⎥⎥⎦ (97)

In the above 4 equations, we let (μ′, ν ′) and (m,n) be 1, 2, ....Lmax. Thus we have 4L2
max equations.

Next, we use Equation (68), σ′ = o and have (Mo,μ′ν ′) on the LHS. We take the dot products
with M̄a(1)

e,mn (kr̄rl), M̄
a(1)
o,mn (kr̄rl), N̄

a(1)
e,mn (kr̄rl) and N̄a(1)

o,mn (kr̄rl). We get 4L2
max equations.

Note that the LHS is changed from the Equation (69) of step (2) because we have σ′ = o on the
LHS. On the RHS, the translation coefficients A′s depend on σ′ and are changed from the Equation (69)
of step (2). However, the 16 Cmnμν integral coefficients remain the same between step (2) and step (3)
because they only depend on the products of M̄a(1)

e,mn (kr̄rl), M̄
a(1)
o,mn (kr̄rl), N̄

a(1)
e,mn (kr̄rl) and N̄a(1)

o,mn (kr̄rl)
with M̄a(1)

e,μν (kr̄rl), M̄
a(1)
o,μν (kr̄rl), N̄

a(1)
e,μν (kr̄rl) and N̄a(1)

o,μν (kr̄rl).
Following the same procedures as those for Equation (67), we obtain the 4 equations

bMe,Mo
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CM,e,M,e(1)
mnμν AMeμν,Moμ′ν′ +

∑
μ,ν

CM,e,M,o(1)
mnμν AMoμν,Moμ′ν′

+
∑
μ,ν

CM,e,N,e(1)
mnμν ANeμν,Moμ′ν′ +

∑
μ,ν

CM,e,N,o(1)
mnμν ANoμν,Moμ′ν′

⎤⎥⎥⎦ (98)

bMo,Mo
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CM,o,M,e(1)
mnμν AMeμν,Moμ′ν′ +

∑
μ,ν

CM,o,M,o(1)
mnμν AMoμν,Moμ′ν′

+
∑
μ,ν

CM,o,N,e(1)
mnμν ANeμν,Moμ′ν′ +

∑
μ,ν

CM,o,N,o(1)
mnμν ANoμν,Moμ′ν′

⎤⎥⎥⎦ (99)

bNe,Mo
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CN,e,M,e(1)
mnμν AMeμν,Moμ′ν′ +

∑
μ,ν

CN,e,M,o(1)
mnμν AMoμν,Moμ′ν′

+
∑
μ,ν

CN,e,N,e(1)
mnμν ANeμν,Moμ′ν′ +

∑
μ,ν

CN,e,N,o(1)
mnμν ANoμν,Moμ′ν′

⎤⎥⎥⎦ (100)

bNo,Mo
mnμ′ν′ =

⎡⎢⎢⎣
∑
μ,ν

CN,o,M,e(1)
mnμν AMeμν,Moμ′ν′ +

∑
μ,ν

CN,o,M,o(1)
mnμν AMoμν,Moμ′ν′

+
∑
μ,ν

CN,o,N,e(1)
mnμν ANeμν,Moμ′ν′ +

∑
μ,ν

CN,o,N,o(1)
mnμν ANoμν,Moμ′ν′

⎤⎥⎥⎦ (101)

For the notations of b′s, the first super/sub script (Mo,mn) is what dot product is taken, and the
second super/sub script (Me,μ′ν ′) refers to the left hand of the original equation before taking the dot
product. Since Equation (68) has (Mo) originally on the LHS, we have (Mo) as the second superscript
above. Note that we do not have (Ne) nor (No) as second superscript on the LHS because we only use
the equation of M̄a(3)

σ′,μ′ν′ (c, ξj , ηj , φj) and we do not use the equation of N̄a(3)
σ′,μ′ν′ (c, ξj , ηj , φj) in (66).

We have described the 8L2
max equations, the 8L2

max number of A′s to be determined, and the 16
expressions for the integrals C ′s. Next we introduce compact notaions.

For the four Equations (94), (95), (98), and (99), we use combined index notations that (σ, μν) →
α = 1, 2, . . . , 2Lmax. The factor of 2 is that we now include σ = e, o in the combined index.

We take the Equations (94) and (95) of step (2) from Equation (67) (σ′ = e) and the Equations (98)
and (99) of step (3) from Equation (68) (σ′ = o). In these cases, we take the dot product with
M̄

a(1)
e,mn (kr̄rl) and M̄a(1)

o,mn (kr̄rl),

bMβ,Mα′
=
∑
α

CMβ,MαAMα,Mα′ +
∑
α

CMβ,NαANα,Mα′ (102)
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where β = (σ,m, n) ;α = (σ, μ, ν) ;α′ = (σ′, μ′, ν ′).
In matrix notations,

=
b

MM

=
=
C

MM =
A

MM

+
=
C

MN =
A

NM

(103)

where all matrices are of sizes (2Lmax) × (2Lmax).
Then, we take the Equations (96) and (97) of step (2) from Equation (67) (σ′ = e) and the

Equations (100) and (101) of step (3) from Equation (68) (σ′ = o). Then,

bNβ,Mα′
=
∑
α

CNβ,MαAMα,Mα′ +
∑
α

CNβ,NαANα,Mα′ (104)

where β = (σ,m, n) ;α = (σ, μ, ν) ;α′ = (σ′, μ′, ν ′).
In matrix form,

=
b

NM

=
=
C

NM =
A

NM

+
=
C

NN =
A

NM

(105)

where all matrices are of sizes (2Lmax) × (2Lmax).
Combining the two matrices form equations, we have⎡⎣ =

b
MM

=
b

NM

⎤⎦ =

⎡⎣ =
C

MM =
C

MN

=
C

NM =
C

NN

⎤⎦⎡⎣ =
A

MM

=
A

NM

⎤⎦ (106)

Then, the translational addition coefficients are calculated by taking the inverse of the C matrix,⎡⎣ =
A

MM

=
A

NM

⎤⎦ =

⎡⎣ =
C

MM =
C

MN

=
C

NM =
C

NN

⎤⎦−1 ⎡⎣ =
b

MM

=
b

NM

⎤⎦ (107)

5. RESULTS AND DISCUSSIONS ON NUMERICAL TRANSLATION ADDITION
FOR VECTOR SPHEROIDAL WAVES

For vector spheroidal waves, there is no analytical translation addition theorem available for general
cases. However, the ¯̄C matrix needed in the numerical translation addition method as in Equation (58)

Figure 9. Vector spheroidal wave expansion co-
efficients for incident plane waves using numerical
method (maker of cross) and analytical method
(maker of circle) for TE polarization.

Figure 10. Vector spheroidal wave expansion co-
efficients for incident plane waves using numerical
method (maker of cross) and analytical method
(maker of circle) for TM polarization.
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can be verified. To verify ¯̄C, we replace M̄mn(k ¯rr2) by incident plane wave Ēinc in the numerical
translation addition method. With the same ¯̄C, when b̄ is integrated using Ēinc, the resulting Ā and B̄
are the expansion coefficients for incident plane waves. For incident plane waves, the analytical solutions
of the expansion coefficients are available as listed in Section 2. Fig. 9 and Fig. 10 show a comparison
between the expansion coefficients from the numerical method and the analytical solutions for TE and
TM polarizations, respectively. The incident plane waves are of φi = 0 and θi = 10◦ and 40◦. For
θi = 10◦, the real part of the expansion coefficient is in red while the imaginary part is in blue. For
θi = 40◦, the real part of the expansion coefficient is in magenta while the imaginary part is in green.
The circle marker indicates the results of the analytical method while the cross marker indicates the
results of the numerical method. The results from analytical and the numerical method matches well.
This means that the ¯̄C and the way of calculating b̄ for the translation addition method is correct.

6. CONCLUSIONS

This paper developed the numerical methods of calculations of T -matrix and vector translation addition
coefficients using vector spherical and spheroidal waves, for multiple scattering of waves by complex
objects. The numerical T -matrix extraction technique is applicable to complex objects such as branches
with leaves. The T -matrix calculation technique for the vector spheroidal waves is much complicated
compared to the vector spherical waves because the vector spheroidal waves have no orthogonality
property in the η̂ direction. The smoothing function is also introduced for the outgoing spheroidal
waves to remove their singularities. The accuracy of the extracted T -matrix with vector spheroidal
wave expansions is verified by comparing the scattered fields computed from the T -matrix to those
from the commercial software HFSS, for a branch with leaves. The numerical method is more robust
than the analytical method. The translation coefficients transform the outgoing spheroidal waves from
one object to the incoming spheroidal waves to the other object. The derivations of the numerical
transformation coefficients for vector spheroidal waves are presented in this paper. The accuracy of the
numerical method of calculating the transformation coefficients for vector spheroidal waves is verified.
The generalized numerical T -matrix extraction and vector wave transformations are the two key steps
in the hybrid method of calculating multiple scatterings. The numerical T -matrix extraction and wave
transformation techniques for vector spheroidal waves will be used in the hybrid method to calculate
the multiple scattering of complex objects.
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APPENDIX A.

A.1. Vector Spheroidal Functions

In this appendix, the calculations of vector spheroidal functions [42] are reviewed, which are important
to obtain the results in this paper.

The prolate spheroidal scalar wave function is

ψmn = Smn(c, η)Rmn(c, ξ) sin
cos (mφ) (A1)

where c = 1
2kd. sin(mφ) are the odd modes while cos(mφ) are the even modes, which are used instead of

exp(imφ) to follow the formulations in [32]. Smn(c, η) is the spheroidal angular function, and Rmn(c, ξ)
is the spheroidal radial function.

The spheroidal angular function Smn(c, η) satisfies the following equation,

d

dη

[(
1 − η2

) d
dη
Smn(c, η)

]
+
[
λmn − c2η2 − m2

1 − η2

]
Smn(c, η) = 0 (A2)
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where λmn is the characteristic value. There are two linearly independent solutions to this equation.
One is spheroidal angular function of the first kind

S(1)
mn(c, η) =

∞∑
r=0,1

′dmn
r (c)Pm

m+r(η) (A3)

where Pm
m+r(η) is the associated Legendre function of the first kind. The prime on the summation means

that the summation is over even r when (n −m) is even and over odd r when (n −m) is odd. In this
section, only prolate spheroidal function is used and thus only Smn(c, η) is needed. For simplification,
the superscript ‘(1)’ is omitted later in this section.

The coefficient dmn
r can be calculated using the following formula,

Am
r (c)dmn

r+2(c) + [Bm
r (c) − λmn(c)] dmn

r (c) + Cm
r (c)dmn

r−2(c) = 0 (A4)

The detailed steps of calculations can be found in [41,42].
The spheroidal radial function Rmn(c, ξ) satisfies the following equation

d

dξ

[(
ξ2 − 1

) d
dξ
Rmn(c, ξ)

]
−
[
λmn − c2ξ2 +

m2

ξ2 − 1

]
Rmn(c, ξ) = 0 (A5)

The solution is as follows

R(i)
mn(c, ξ) =

⎡⎣ ∞∑
r=0,1

′ir+m−ndmn
r (c)

(2m + r)!
r!

Z
(i)
m+r(cξ)

⎤⎦
(
ξ2 − 1
ξ2

)m/2

∞∑
r=0,1

′dmn
r (c)

(2m + r)!
r!

(A6)

where i = 1, 2, 3, 4 with z(1)
n (x) = jn(x), z(2)

n (x) = nn(x), z(3)
n (x) = h

(1)
n (x), z(4)

n (x) = h
(2)
n (x).

Thus,

R
(3)
mn(c, ξ) = R

(1)
mn(c, ξ) + iR

(2)
mn(c, ξ)

R
(4)
mn(c, ξ) = R

(1)
mn(c, ξ) − iR

(2)
mn(c, ξ)

(A7)

The vector spheroidal wave functions are calculated from the scalar wave functions as below

M̄
a(i)
(e,o)mn(c; η, ξ, φ) = ∇×

[
ψ

(i)
(e,o)mnâ

]
(A8)

N̄
a(i)
(e,o)mn(c; η, ξ, φ) =

1
k
∇×∇×

[
ψ

(i)
(e,o)mnâ

]
(A9)

where â is x̂, ŷ, ẑ, or r̂.
In this paper, we use r̂. The expressions for the vector prolate spheroidal wave functions are as

follows [42]

M̄
r(i)
(e,o)mn = M

r(i)
(e,o)m,n,ηη̂ +M

r(i)
(e,o)m,n,ξ ξ̂ +M

r(i)
(e,o)m,n,φφ̂ (A10)

with

M
r(i)
(e,o)m,n,η =

mξ

(ξ2 − η2)
1
2 (1 − η2)

1
2

SmnR
(i)
mn

[
sin

− cos (mφ)
]

(A11)

M
r(i)
(e,o)m,n,ξ

=
−mη

(ξ2 − η2)
1
2 (ξ2 − 1)

1
2

SmnR
(i)
mn

[
sin

− cos (mφ)
]

(A12)

M
r(i)
(e,o)m,n,φ =

(
ξ2 − 1

) 1
2
(
1 − η2

) 1
2

ξ2 − η2

[
ξ
dSmn

dη
R(i)

mn − ηSmn
dR

(i)
mn

dξ

] [
cos
sin (mφ)

]
. (A13)

N̄
r(i)
(e,o)mn = N

r(i)
(e,o)m,n,ηη̂ +N

r(i)
(e,o)m,n,ξ ξ̂ +N

r(i)
(e,o)m,n,φφ̂ (A14)
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with

N
r(i)
(e,o)m,n,η =

2
(
1 − η2

) 1
2

kd(ξ2 − η2)
1
2

⎡⎢⎢⎢⎢⎣
dSmn

dη
∂
∂ξ

(
ξ
(
ξ2 − 1

)
ξ2 − η2

R
(i)
mn

)

−ηSmn
∂
∂ξ

(
ξ2 − 1
ξ2 − η2

dR
(i)
mn

dξ

)
+

m2η

(1 − η2) (ξ2 − 1)
SmnR

(i)
mn

⎤⎥⎥⎥⎥⎦
[

cos
sin (mφ)

]

(A15)

N
r(i)
(e,o)m,n,ξ = − 2

(
ξ2 − 1

) 1
2

kd(ξ2 − η2)
1
2

⎡⎢⎢⎢⎣
− ∂

∂η

(
η
(
1 − η2

)
ξ2 − η2

Smn

)
dR

(i)
mn

dξ

+ξ
∂

∂η

(
1 − η2

ξ2 − η2

dSmn

dη

)
R

(i)
mn − m2ξ

(1 − η2) (ξ2 − 1)
SmnR

(i)
mn

⎤⎥⎥⎥⎦
[

cos
sin (mφ)

]

(A16)

N
r(i)
(e,o)m,n,φ=

2m
(
1−η2

) 1
2
(
ξ2−1

) 1
2

kd (ξ2−η2)

[ −1
ξ2−1

d

dη
(ηSmn)R(i)

mn−
1

1−η2
Smn

d

dξ

(
ξR(i)

mn

)] [ sin
−cos (mφ)

]
(A17)

where the upper function of (mφ) is for even function while the lower one is for odd function. Smn is
the function of η, and R(1)

mn is the function of ξ which are not written out explicitly for simplicity.

A.2. Expressions for f Functions

The f functions used in this paper are summarized below.
For outgoing spheroidal waves,

fMη
mn (η) =

mξ

(ξ2 − η2)
1
2 (1 − η2)

1
2

SmnR
(3)
mn (A18)

fMφ
mn (η) =

(
ξ2 − 1

) 1
2
(
1 − η2

) 1
2

ξ2 − η2

[
ξ
dSmn

dη
R(3)

mn − ηSmn
dR

(3)
mn

dξ

]
(A19)

fNη
mn(η) =

2
(
1 − η2

) 1
2

kd(ξ2 − η2)
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dSmn

dη

((
ξ
(
ξ2 − 1

)
ξ2 − η2

)
dR

(3)
mn

dξ
+

((
ξ4 + ξ2

)− (3ξ2 − 1
)
η2

(ξ2 − η2)2

)
R

(3)
mn

)

−ηSmn

((
ξ2 − 1
ξ2 − η2

)
d2R

(3)
mn

dξ2
+

(
2ξ
(
1 − η2

)
(ξ2 − η2)2

)
dR

(3)
mn

dξ

)

+
m2η

(1 − η2) (ξ2 − 1)
SmnR

(3)
mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A20)

fNφ
mn (η) =

2m
(
1 − η2

) 1
2
(
ξ2 − 1

) 1
2

kd (ξ2 − η2)

⎡⎢⎢⎢⎣
−1

ξ2 − 1

(
Smn + η

dSmn

dη

)
R

(3)
mn

− 1
1 − η2

Smn

(
R

(3)
mn + ξ

dR
(3)
mn

dξ

)
⎤⎥⎥⎥⎦ (A21)

For incoming spheroidal waves,

fMη(1)
mn (η) =

mξ

(ξ2 − η2)
1
2 (1 − η2)

1
2

SmnR
(1)
mn (A22)

fMφ(1)
mn (η) =

(
ξ2 − 1

) 1
2
(
1 − η2

) 1
2

ξ2 − η2

[
ξ
dSmn

dη
R(1)

mn − ηSmn
dR

(1)
mn

dξ

]
(A23)
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fNη(1)
mn (η) =

2
(
1 − η2

) 1
2

kd(ξ2 − η2)
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dSmn

dη

((
ξ
(
ξ2 − 1

)
ξ2 − η2

)
dR

(1)
mn

dξ
+

((
ξ4 + ξ2

)− (3ξ2 − 1
)
η2

(ξ2 − η2)2

)
R

(1)
mn

)

−ηSmn

((
ξ2 − 1
ξ2 − η2

)
d2R

(1)
mn

dξ2
+

(
2ξ
(
1 − η2

)
(ξ2 − η2)2

)
dR

(1)
mn

dξ

)

+
m2η

(1 − η2) (ξ2 − 1)
SmnR

(1)
mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A24)

fNφ(1)
mn (η) =

2m
(
1 − η2

) 1
2
(
ξ2 − 1

) 1
2

kd (ξ2 − η2)

⎡⎢⎢⎢⎣
−1

ξ2 − 1

(
Smn + η

dSmn

dη

)
R

(1)
mn

− 1
1 − η2

Smn

(
R

(1)
mn + ξ

dR
(1)
mn

dξ

)
⎤⎥⎥⎥⎦ (A25)
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