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NLOS Target Localization with an L-Band UWB Radar
via Grid Matching

Huagui Du, Chongyi Fan*, Zhen Chen, Chun Cao, and Xiaotao Huang

Abstract—This paper considers utilizing radar multipath returns to locate a target hidden behind a
corner. A novel target localization algorithm based on grid matching is proposed for non-line of sight
(NLOS) environment. The algorithm first establishes a multipath propagation model based on real data
from an L-band ultra-wideband (UWB) radar. Then, it calculates the times of arrival (TOAs) of each
grid based on the multipath propagation model and matches the grid which is closest to the measured
TOAs of round-trip multipath returns. Both simulation and real-data experiment results validate the
effectiveness of the multipath model and the proposed localization algorithm.

1. INTRODUCTION

Localization targets hidden behind a corner have aroused wide interest in both military and civil security
fields [1, 2]. As in battle reconnaissance and city monitoring, it is not expected to expose the first
responders under any threat in dangerous scenes, which may meet during the action like anti-terrorism
or fire rescue. However, conventional optical surveillance device mostly works in line of sight (LOS),
which is unsuitable in adverse atmospheric conditions. The existing research results show that a simple
portable radar called “around-the-corner” radar (ACR) has the ability of NLOS targets detection and
localization, which regards multipath signals as useful signals rather than interference. It can extract
the target information from the NLOS multipath returns, which can be used to look behind corners [3–
7]. The feasibility of ACR has been demonstrated by exploiting the multipath specular reflection,
diffraction, and even diffuse reflection [8–15].

The application research of radar multipath signals originated in the DARPA’s Multipath
Exploitation Radar program [16, 17]. In the early stages, researchers mainly focused on the feasibility
analysis of obtaining NLOS target information from multipath signals, followed by the multipath
detection. In recent years, the focus turns to exploiting multipaths to locate NLOS targets [18–25].
The NLOS localization algorithms can be divided into two types with respect to single and multiple
multipath signals. The first type utilizes only one single robust multipath signal, which is very common
in millimeter wave radar(MMW). In [18], the localization algorithm with single multipath return is
proposed based on phased comparison among the multiple channels. In [19], positioning the target is
realized by a synthetic bistatic MMW radar. However, these methods are not suitable for low-frequency
radars which usually meet multiple kinds of multipaths at the same time. To solve this problem, the
second type focuses on extracting target information from multiple multipath signals. Zetik et al.
proposed a NLOS target localization method that considers a one-bounce reflection and a diffraction
path, ignoring more-bounce reflection paths [20]. In [21], a localization method is provided based on
the assumption that all kinds of multipath signals can be received and extracted. Without this ideal
assumption, Thai et al. [22] and Rabaste et al. [23] proposed a detection-localization algorithm based
on the subspace filter matching and ray-tracing, which is verified by real experiments. Their work has
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good positioning accuracy but takes time. In addition, according to the idea of path matching, several
NOLS localization algorithms have been proposed [24–26]. The core part of positioning is to correctly
match the measured TOAs with the propagation paths in [24, 25], and the algorithm in [26] requires
that all propagation paths are detected and associated with walls. However, it is very difficult for all
paths to be successfully detected and correctly matched in real data.

To avoid matching the measured TOAs with propagation paths and considering computational
efficiency, a novel NLOS target localization algorithm based on grid matching is proposed in this paper.
This algorithm takes two or more-bounce reflection paths into account and only extracts the measured
TOAs, omitting the matching between the measured TOAs and the propagation paths by meshing
method. The higher the number of TOAs exists, the better the localization performance is. Actually,
by controlling the size of the mesh, the proposed algorithm can cope with the case where some measured
TOAs are missed, or the distance measurement error appears. In addition, the theoretical propagation
distance can be calculated in advance for one scenario, which guarantees the real-time realization.

The rest of this paper is organized as follows. In Section 2, the multipath propagation model for
an L-shaped corner is constructed. In Section 3, the proposed localization algorithm based on grid
matching is introduced in detail. In the next section, the localization error is analyzed by simulation
firstly, and then two real experiments will be carried out. Finally, Section 5 concludes this paper.

2. MULTIPATH MODELING

Consider a typical NLOS scenario of urban streets — an L-shaped corner with perpendicularly bent
walls, as shown in Fig. 1. A local coordinate system with the x-axis parallel to the Wall-3 is established.
The radar is placed at the origin of the local coordinate system, and the position is Rtr = [xtr, ytr]T .
The corner formed by Wall-1 and Wall-3 is C = [xc, yc]T . L is the width of the aisle formed by Wall-1
and Wall-2, so the x-coordinates of Wall-1 and Wall-2 are xc and (xc + L), respectively. Suppose that
a concealed target T = [xT , yT ]T is located in the NLOS area indicated by shadow, and the scenario
geometric structure is known as the priori knowledge. For example, the building layout can be obtained
through other auxiliary tools, such as Lidar.

As shown in Fig. 1, the transmitted radar signals with great attenuation cannot directly propagate
to the target T behind the corner due to the presence of the corner C, while the multipath returns
keep the signal energy. The research in [24, 25] shows that for an L-band UWB radar, four or more-
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Figure 1. Multipath propagation model.
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bounce reflection paths suffer from severe attenuation and cannot effectively provide target information.
So four types single-trip propagation paths, named Path1, Path2, Path3, and Path4 (see Fig. 1), are
considered in this paper. Specifically, Path1 represents the radar radiation signal which propagates to
the potential target T by diffraction, and Path2, Path3, and Path4 represent single-trip propagation
paths by one-bounce, two-bounce, and three-bounce reflection due to Wall-1 and Wall-2, respectively.
Because both of the transmitted and received signals may pass by these four paths, the receiver can
capture ten combinations of different round-trip propagation paths for an L-band UWB radar. Stacking
all these round-trip propagation paths in a vector P, we have:

P = [p11, p12, pmn, . . . , p44]
T ,

m ≤ n, m, n ∈ {1, 2, 3, 4}, (1)

where pmn denotes the round-trip propagation path combined with Path-m transmission and Path-n
reception. In this paper, pmn and pnm are treated as the same path.

The propagation distances of different propagation paths in Equation (1) are represented in a vector
R, which can be expressed as:

R = [r11, r12, rmn, . . . , r44]
T ,

m ≤ n, m, n ∈ {1, 2, 3, 4}, (2)

and rmn represents the round-trip propagation distance of the path pmn.
Assume that the scenario geometric structure is known, and the specular reflection is stronger

than other reflections. Therefore, R can be calculated theoretically as follows. Firstly, according to
the principle of mirror symmetry and multipath propagation model in Fig. 1, the positions of virtual
targets S1, S2, S3, and S4 generated by Path1, Path2, Path3, and Path4 can be obtained. Specifically,
Sm can be calculated by: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S1 = [x1, y1]
T = [xT , yT ]T ,

S2 = [x2, y2]
T = [2 (xc + L) − xT , yT ]T ,

S3 = [x3, y3]
T = [2 (xc + L) − 2xc + xT , yT ]T ,

S4 = [x4, y4]
T = [4 (xc + L) − 2xc − xT , yT ]T .

(3)

Then, according to Fig. 1 and Eq. (3), the propagation distance rm of the transmitting Path-m
and the propagation distance rn of the receiving Path-n can be calculated by:

rm =

{
‖RtrC‖ + ‖CT‖, m = 1,

‖RtrSm‖ , m = 2, 3, 4,
(4)

and

rn =

{
‖TC‖ + ‖CRtr‖ , n = 1,

‖SnRtr‖ , n = 2, 3, 4,
(5)

where ‖ · ‖ denotes the Euclidean norm.
Finally, the distance rmn of the round-trip propagation path can be obtained by:

rmn = rm + rn (6)

Consequently, considering all transmitting and receiving propagation paths, the distance vector R
can be obtained.

3. THE PROPOSED ALGORITHM

In this section, the proposed NLOS localization algorithm is derived and explained in details.
Furthermore, in order to facilitate understanding and application, the whole signal processing flow
is given.
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3.1. The Construction of Grid Matching Matrix

A classical NLOS scenario can be represented as an L-shaped corner as shown in Fig. 1. The received
radar echo z(t) is a superposition of multiple specular multipath returns, which is given by:

z(t) =
M∑

m=1

N∑
n=1

σmns [t − τm (xT , yT ) − τn (xT , yT )] + w(t), (7)

where M and N represent the numbers of transmitting and receiving paths, respectively; σmn is the
complex reflection coefficient of the path pmn; s(t) represents the transmitted radar signal; w(t) denotes
the noise; and τm(xT , yT ) and τn(xT , yT ) respectively denote the time delay of transmitting Path-m and
receiving Path-n for the target located at (xT , yT ).

Theoretically, the TOAs of all paths in Eq. (1) can be obtained from the radar echo z(t) through
signal preprocessing techniques of MTI [20], FFT, and CA-CFAR [27]. However, due to the presence of
interference and noise, some multipaths may be lost, and the real number of extracted TOAs may be less
than the ideal value in Eq. (1). Stack all the extracted TOAs in a vector Te, and Te = [τ1, τ2, . . . τQ]T .
Thus the measured target range vector Rmeasure is given by:

Rmeasure = cTe = [R1, R2, . . . , Rq, . . . , RQ]T , (8)

where c represents the velocity of EM wave in the air, and Q is the number of extracted TOAs. For
the L-band radar, Q usually does not exceed ten, because four or more-bounce reflection paths suffer
severe attenuation and are ignored.

After obtaining the range vector Rmeasure, the method of meshing the NLOS area is used to obtain
target position. With this method, the calculation efficiency and positioning accuracy are guaranteed.
The core principle of positioning is to construct a grid matching matrix through Rmeasure and theoretical
propagation distance. Specifically, the construction of the grid matching matrix needs four steps:

Step 1: Divide the NLOS area to be detected into grids of I × J . The spacing between grids is
d, as shown in Fig. 1, which does not exceed the range resolution ΔRu of the radar system. Here the
central position of each grid is (xi, yj), and i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J}.

Step 2: Calculate the theoretical distance vector Rij of round-trip propagation paths for the
potential target at the grid position (xi, yj). According to Eqs. (4), (5), and (6), Rij can be expressed
as:

Rij =
[
rij
11, r

ij
12, r

ij
mn, . . . , rij

44

]T
. (9)

Step 3: Calculate the grid matching matrix. Specifically, we first initialize the grid matching
matrix to G:

G =

⎡
⎢⎢⎣

g11 g12 . . . g1J

g21 g22 . . . g2J
...

...
...

...
gI1 gI2 . . . gIJ

⎤
⎥⎥⎦ . (10)

and set the grid matching vector to A:

A =
[
Aij

11,1, A
ij
12,1, . . . , A

ij
mn,q, . . . , A

ij
44,Q

]T

10Q×1
. (11)

where Aij
mn,q can be calculated by:

Aij
mn,q =

∣∣rij
mn − Rq

∣∣ , rij
mn ∈ Rij , Rq ∈ Rmeasure. (12)

Then, reconstruct the grid matching vector A to Ã:

Ã =
[
Ãij

11,1, Ã
ij
12,1, . . . , Ã

ij
mn,q, . . . , Ã

ij
44,Q

]T

10Q×1
. (13)

and Ãij
mn,q can be obtained by:

Ãij
mn,q =

{
1, Aij

mn,q ≤ ΔRu,

0, Aij
mn,q > ΔRu.

(14)
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At last, the element of gij in the grid matching matrix G is presented as follows:

gij = sum(Ã), (15)

where sum(Ã) represents the sum of all elements in Ã, and gij also represents the number of elements
smaller than ΔRu in vector A.

Step 4: By repeating Steps 2 and 3 for all grids, the grid matching matrix will be obtained.
In summary, G can be obtained by acquiring the building layout, position of the radar, and

measured TOAs. To calculate G, a large amount of calculation is mainly derived from Equation (9). In
order to improve real-time processing, Rij can be calculated and stored in advance when the building
layout is known. For the same scenario, this comparably time-consuming calculation only needs to
calculate one time.

3.2. The Determination of Target Location

After the grid matching matrix G is obtained, the target T behind an L-shaped corner will be located.
The positioning principle is that if grid (xi, yj) is the real target position, most of the measured range
in Eq. (8) will be correctly matched (Aij

mn,q = 1) by the theoretical distance vector in Eq. (9), and gij

will reach the maximum.
In the ideal case, all multipath returns can be detected correctly by CA-CFAR with accurately

radar ranging. If the spacing d is small enough, the position of the grid which has the largest element
gij in G is the target position. However, in fact, there is not only one maximum value in G. On the
one hand, the number of propagation paths measured in practice is usually less than the theoretical
value. On the other hand, due to the influence of noise and system errors, the measured round-trip
propagation distance Rmeasure and theoretical distance R cannot be completely consistent. Thus, the
larger values of G will be distributed in multiple grids and concentrated around grids which are near
the target’s real position. For a single target, elements with larger values in G will only appear in one
area. Therefore, the target can be located by finding this area. In practice, we mainly need three steps
to find this area:

Step 1: Obtain a binary grid matching matrix G̃ by threshold detection Tthre, and g̃ij is given by:

g̃ij =
{

1, gij ≥ Tthre,

0, gij < Tthre.
(16)

It is worth pointing out that Tthre is related to the number of elements (Pnum) in vector Rmeasure

in Eq. (8). The selection of Tthre will be researched in the next section.
Step 2: Eliminate a small number of discrete points with the value of 1 in G̃ by using the strel

function, and strel function is an operation of morphological dilation and erosion.
Step 3: Extract the connected domains by bwlabel function. The connected domain with the

largest area is denoted as S, and the real position of the target will be in the grid represented by S.
Furthermore, the centroid of S is calculated as the position of the target T, expressed as:

T = [x̂, ŷ]T = cent(S), (17)

where (x̂, ŷ) represents the estimated position of the target, and cent(·) is the calculation of centroid.
Finally, in order to facilitate the understanding and application of the proposed algorithm, the

flowchart of the algorithm is given, as shown in Fig. 2.

4. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the localization performance will be analyzed under different conditions through
numerical simulation. Furthermore, real data experiments are implemented to explain the processing
steps and validate the effectiveness of the algorithm.
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Figure 2. Block diagram of the proposed algorithm.

4.1. Performance Simulation

According to Section 3.2, it can be known that the proposed algorithm depends on the detection
threshold Tthre, and choosing a suitable Tthre is essential for precise positioning. In the ideal case, the
maximum value in G is (Pnum), and the grid position where the maximum value is located is the true
position of the target. Thus, selecting Pnum as Tthre can correctly extract the target position information.
However, if the maximum value Pnum is selected as Tthre, the area of the extracted connected domain S
may be small, and S may be eliminated by the strel function. Therefore, in order to prevent the target
from being eliminated and to ensure the effectiveness of the algorithm when the ranging error occurs,
the area of the connected domain S is expanded by selecting (Pnum − 1) or (Pnum − 2) as Tthre.

In order to quantitatively illustrate the positioning performance, the influence of the number of
TOAs (Pnum), binary detection threshold Tthre, and ranging error (ΔRerror) are considered. The grid
size d and range resolution ΔRu are 0.05 m and 0.01 m, respectively. In addition, we assume that
the ranging error follows a Gaussian distribution with mean ΔRerror, and the ranging error ΔRerror

considered in the simulation is 0 to 0.5 m. This is because the system with larger ΔRerror is not suitable
for the narrow NLOS scenario, such as corridors and parking lot entrances. For these scenes, the area
of interest to be detected is small, only high-precision positioning results can provide effective target
information, which is convenient for the operator to make decisions.

For selected Pnum, Tthre, and ΔRerror, 300 independent Monte Carlo simulation experiments are
performed, and the localization error is used to evaluate the performance. Specifically, the localization
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error is given by:

Error =

Mon∑
k=1

√
(x̂k − xT )2 + (ŷk − yT )2

Mon
(18)

where (x̂k, ŷk) represents the estimated target position from the k-th Monte Carlo simulation experiment;
(xT , yT ) is the real position of the target; and Mon denotes the number of Monte Carlo simulation
experiments.

Figures 3(a) and (b) show the localization error results when the detection threshold Tthre is
(Pnum − 1) and (Pnum − 2), respectively. Comparing Figures 3(a) with (b), it can be seen that the
proposed algorithm has better stability when Tthre is (Pnum − 2). Actually, it has good positioning
performance when Pnum is more than 5, and ΔRerror is less than 0.3 m (see Fig. 3(b)). This is because
the larger elements in G can be accurately extracted by Tthre and bwlabel function in this case. On the
contrary, when ΔRerror has a larger value and serious loss of paths, the connected domain containing
the real position of the target cannot be accurately obtained. Therefore, a large positioning error will
occur.
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Figure 3. The localization error results. (a) Tthre = Pnum − 1. (b) Tthre = Pnum − 2.

Consequently, in the case of unknown ranging error ΔRerror, in order to seek the stability of the
algorithm, it is usually best to choose (Pnum − 2) as the binary detection threshold Tthre.

4.2. Real Data Experiments

To validate the proposed localization algorithm experimentally, real data are collected by using an L-
band UWB radar with the step-frequency continuous wave (SFCW) signal. An L-shaped parking lot
entrance (see Fig. 4) was chosen as the experiment environment. Fig. 4(a) shows the optical image of the
scene, and Fig. 4(b) shows the 2-D plane obtained by Lidar. The position of the corner is C = [1.0, 0.5]T ,
and the width of entrance is 5.4 m. The radar system is placed at 1.4 m high from the ground, and the
antenna array is directed toward Wall-2 (only one receiving channel is used in this paper). Specifically,
the detailed parameters of the radar system are listed in Table 1. Two experiments considering different
target move conditions are performed.

Experiment 1: An experiment considering the case of micro-motion NLOS target is carried out.
During the data collection, a person stood at the position T = [3.5, 2.5]T (see Fig. 4(b)), and he was
swaying back and head with a small range. According to the proposed algorithm, the processing results
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Table 1. The key parameters of the SFCW radar.

Parameters Value Parameters Value

Bandwidth 1.5 GHz Number of Steps 750

Step Frequency 2 MHz Distance ambiguity 75 m
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Figure 4. Experiment scenario. (a) The real experiment scenario. (b) 2-D plane of experiment scenario.

of the multipath returns are shown in Fig. 5. Firstly, the signal preprocessing technology is employed to
extract TOAs, and the result of a typical period is shown in Fig. 5(a). Obviously, six multipath signals
and their distances can be obtained, and the real propagation paths have been marked by arrows.
Secondly, mesh the area with x-coordinates from 1.0 m to 6.4 m and y-coordinates from 0.5 m to 6 m.
The cell size d is 0.01 m. According to Section 3.1, the grid matching matrix G is obtained, as shown
in Fig. 5(b). It can be discovered that the maximum value in G does not exceed 6, and the larger
values are concentrated around the real position of the target. Then, when the threshold is (Pnum − 1),
according to Eq. (16), the binary grid matching matrix G̃ is obtained, as shown in Fig. 5(c). Obviously,
there are some discrete points in G̃, which will lead to ambiguous positioning. Thus, the strel and
bwlabel functions are utilized, and the result is shown in Fig. 5(d). Finally, the target position can be
obtained by calculating the centroid of the connected domain, and the result is T = [3.495, 2.595]T . It
can be seen that the micro-motion target is located successfully.

Next, the grid matching and path matching [24] localization algorithms are applied to the data of
25 periods, respectively. The results are shown in Fig. 6. It can be seen that the localization results of
grid matching are closer to the real target position than the results of path matching, and the average
localization error is 0.2689 m. However, the average localization error of the path matching algorithm
is 0.584 m. When the path cannot be matched correctly, the positioning result seriously deviates from
the real target position, and the maximum localization error is about 2m (see Fig. 6(b)). In addition,
the calculation times of the two algorithms are compared through simulation in the same NLOS scene,
and the results are shown in Table 2. It shows that the grid matching algorithm has better real-time
performance, and path matching localization algorithm needs a longer calculation time. This is mainly
because the principle of the path matching algorithm is to cyclically match the theoretical propagation
paths with the extracted TOAs. In the best case, only one cycle matching is required. At this time,
the calculation time is shown in Table 2. In the worst case, C2

N cycles matching is required, and N
represents the number of theoretical propagation paths.
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Figure 5. The multipath returns processing steps and results. (a) TOAs extraction results. (b) The
grid matching matrix. (c) The binary grid matching matrix. (d) Positioning results.

Table 2. Comparison of calculation time under different number of paths and localization methods.

Path Number: 10 9 8 7 6 5 4

Grid Matching: 1.509 s 1.390 s 1.326 s 1.221 s 1.133 s 1.049 s 0.961 s

Path Matching (Min): 92.391 s 66.955 s 52.189 s 37.341 s 27.393 s 19.068 s 10.788 s

In summary, the algorithm proposed in this paper has better positioning accuracy and real-time
performance, which can better meet the needs of practical applications such as urban anti-terrorism.

Experiment 2: For the case of moving target, a total of 100 periods of moving target data is
collected from A = [1.5, 1.5]T to B = [4.0, 3.5]T as a straight line (see Fig. 4(b)). Fig. 7(a) shows
the results of signal preprocessing for all periods raw data. It is noted that most of the multipath
propagation paths aforementioned appear with strong amplitudes and can be detected in most time
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Figure 7. Moving target experiment results. (a) The results of signal preprocessing on the raw data.
(b) Moving target localization results.

periods. In particular, multipath signals generated by diffraction and three-bounce reflection suffer
severe attenuation, and one-bounce reflection paths are stable with strong amplitudes.

The position of the target, as shown in Fig. 7(b), can be obtained through repeating the signal
processing flow in Fig. 2. It is worth pointing out that in order to obtain an accurate target position,
the data of the periods with a smaller Pnum (Pnum < 5) are eliminated. Although it can be seen
that measurement trajectory has a fluctuation compared with the real trajectory, which is caused by
the effect of noise and range measurement error, it is acceptable in practice. Therefore, the proposed
algorithm successfully locates the moving target based on the L-band UWB radar.
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5. CONCLUSIONS

This paper focuses on the localization problem of an NLOS target. First of all, the multipath propagation
model under an L-band radar is established. Then, considering the calculation efficiency and positioning
accuracy, a novel target localization algorithm based on TOAs to construct the grid matching matrix is
proposed. The performance of the proposed algorithm is analyzed by simulation data and shows that
it has good positioning performance when the number of propagation paths is more than 5, with the
ranging error less than 0.3 m. Meanwhile, the experimental results have also illustrated the effectiveness
of the proposed algorithm. Consequently, this paper solves the problem of NLOS target location through
grid matching. The proposed algorithm has good positioning accuracy and real-time performance, which
can better meet the needs of practical applications such as urban anti-terrorism.

In the future, we plan to extend the proposed algorithm to NLOS multi-target positioning, and the
localization method under inaccurate or unknown building layout will be researched.
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