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Scattering from a Rectangular Dielectric Cylinder by Mode
Matching Technique

Muhammad Akbar1, * and Saeed Ahmed2

Abstract—The propagated fields within and radiated fields outside a rectangular dielectric cylinder
are represented as guided and radiation modes respectively. These fields of the cylinder are related
with incident, backward scattered fields at x = 0 and transmitted fields at x = a by Mode Matching
technique. The expressions for guided and radiation mode amplitudes are derived by applying the
orthogonal property of the modes. The unknown functions (mode amplitudes) in each of these equations
that are defining discrete functions of the guided modes field and angular spectrum for the radiation field
are determined numerically. The powers due to discrete guided modes (even and odd) are calculated.
The integrals related with the backward and forward scattered fields and the powers associated with
them are approximately evaluated by the method of steepest descents.

1. INTRODUCTION

The cylinders represent one of the most important classes of geometrical object used for important civil
and military wide applications. The numerical simulation of the scattering from cylinders has a long
history in computational electromagnetics. Froese and Wait [1] investigated the diffracted field due to
dielectric cylinder whose parameters correspond to the experimental conditions. Similar diffraction has
been considered by Wait [2] in which he considered the interaction of electromagnetic waves with plasma
cylinder which is placed in the free space. Very few researchers have considered a dielectrics cylinder
with rectangular geometry [3, 4]. In this paper, we will consider the fields due to a rectangular dielectric
cylinder as guided and radiation modes and relate these fields with the incident and scattered fields
by applying the Mode Matching technique which is frequently used in electromagnetics for complex
geometries [5]. The resulting expressions are simplified by the orthogonal properties of the modes and
will derive the expressions of their mode amplitudes (guided and radiations) not only in the forward
direction but also in the backward direction. The backward and forward scattering coefficients R(k1y)
and T (k1y) are determined numerically. Moreover, the power propagated (forward and backward) within
dielectric cylinder is determined numerically. The back and forward scattered fields and power in the
free space are approximated asymptotically.

2. MATHEMATICAL FORMULATION

The electromagnetic propagation and scattering are considered in which a plane wave (E-polarized) is
incident at angle θi = π

4 with the rectangular dielectric cylinder of length a and width 2b as shown
in Fig. 1. The dimension of the dielectric cylinder along z-axis is taken to be infinite. The energy is
bounded within the cylinder partially due to the bouncing of the waves not only in upward-downward

Received 11 July 2020, Accepted 20 November 2020, Scheduled 7 December 2020
* Corresponding author: Muhammad Akbar (akbar5508126@yahoo.com).
1 Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan. 2 Department of Earth Sciences, Quaid-i-Azam
University, Islamabad, Pakistan.



130 Akbar and Ahmed

Figure 1. Scattering due to dielectric cylinder.

but also in forward-backward directions. The fields carrying this energy are in the form of even and
odd guided modes in forward-backward direction. Due to the presence of discontinuity, the energy is
also radiated in the free space as radiation modes [9]. These guided modes (forward and backward) and
the radiation modes of the dielectric cylinder are represented as follows.

3. GUIDED AND RADIATION MODES

Here various notations used for the electric field representations in the following evaluations should be
taken as: an ‘eg’ in the subscript stands for even guided with an ‘og’ in the subscript for odd guided
mode. Similarly a ‘+’ in the superscript stands for positive (+) x-axis while a ‘−’ in the superscript
stands for negative (−) x-axis. The expanded form of the field expressions for guided and radiation
modes in each region are as follows.

3.1. Even Guided Modes

E(n)
eg (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

{
[A+

n eikxnx] + [A−
n e−ikxnx]

}
k2ne−k1n(y−b) 0 < x < a, y > b ;{

[A+
n eikxnx] + [A−

n e−ikxnx]
}

[(k2n + ik1n) cos(k2ny)] 0 < x < a, |y| < b ;{
[A+

n eikxnx] + [A−
n e−ikxnx]

}
k2nek1n(y+b) 0 < x < a, y < −b;

A linear combination of all such solutions for even guided modes is written as,

E(n)
eg (x, y) =

N∑
n=1

{
[A+

n eikxnx] + [A−
n e−ikxnx]

}
F (n)

eg (y) (1)

3.2. Odd Guided Modes

Similarly the field expression for odd guided mode due to dielectric cylinder, which includes all the
regions, is,

E(p)
og (x, y) =

⎧⎪⎪⎨
⎪⎪⎩
−{

[A+
p eikxpx] + [A−

p e−ikxpx]
}

k2pe
−k1p(y−b) 0 < x < a, y > b;

i
{
[A+

p eikxpx + A−
p e−ikxpx

}
[(k2p + ik1p) sin(k2py)] 0 < x < a, |y| < b;{

[A+
p eikxpx] + [A−

p e−ikxpx]
}

k2pe
k1p(y+b) 0 < x < a, y < −b;
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Similarly, the general field expression of the all odd guided modes for a dielectric cylinder can be
represented as the linear combination of all the modes

E(p)
og (x, y) =

P∑
p=1

{
[A+

p eikxpx] + [A−
p e−ikxpx]

}
F (p)

og (y) (2)

The solution of Helmholtz’s equation leads to plane waves. After applying the boundary conditions at
−b and b, a set of four equations is derived. For their non-trivial solution, two transcendental equations
for even and odd guided modes were derived. The roots of these equations which are the eigenvalues of
these eigenvalue equation were determined numerically [6].

3.3. Radiation Modes

Radiation modes of the dielectric cylinder carry energy away into the free space. These modes carry
energy not only in the forward direction but also in the backward direction. After putting the values
of the coefficients the field expression of radiation modes is,

Er(x, y) =

⎧⎪⎨
⎪⎩
{
A+eikxx + A−e−ikxx

} [
Teik1y(y−b)

]
0 < x < a, y > b;{

A+eikxx + A−e−ikxx
} [

Beik2yy + Ce−ik2yy
]

0 < x < a, |y| < b;{
A+eikxx + A−e−ikxx

} [
eik1y(y+b) + Re−ik1y(y+b)

]
0 < x < a, y < −b;

where,

R =

−
[
1 −

(
k1y

k2y

)2
]

sin (2k2yb)[
1 +

(
k1y

k2y

)2
]

sin (2k2yb) + 2i
(

k1y

k2y

)
cos (2k2yb)

(3)

Similarly, the expressions of T , B, and C can be derived as,

T =
2i
(

k1y

k2y

)
[
1 +

(
k1y

k2y

)2
]

sin (2k2yb) + 2i
(

k1y

k2y

)
cos (2k2yb)

(4)

B =
1
2

(
1 +

k1y

k2y

)
Te−ik2yb (5)

And

C =
1
2

(
1 − k1y

k2y

)
Teik2yb (6)

A linear combination of all such solutions for radiation modes for all values of k1y will also represent a
solution to the Helmholtz’s equation. This statement can be mathematically written as,

Er(x, y) =
∫ ∞

0

{
A+(k1y)eikxx + A−(k1y)e−ikxx

}
Fr(k1y, y)dk1y (7)

4. MODE AMPLITUDES AND FUNCTIONAL EQUATION

The fields are continuous across the interfaces at x = 0 and x = a. The coupling of incident, back
scattering, and forward scattering fields with the modal fields of the cylinder is carried out by Mode
Matching [7, 8]. Modal fields due to cylinder are represented by guided as well as radiation modes and
are shown in Equations (1), (2), and (7). The back scattering and forward scattering fields are plane
wave spectrums. As a result, four equations of continuity are derived. The orthogonal property of the
modes is utilized to simplify the field expression and to derive the expression of mode amplitudes of the
guided as well as radiation modes. The mode amplitudes of guided modes (even and odd) propagating
in forward and backward directions are as follows.
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4.1. Mode Amplitudes for Guided Modes

A+
n =

∫ ∞

−∞
R (k1y)

⎧⎨
⎩
[√

k2
2 − k2

2n −
√

k2
1 − k2

1y

] [
F

(n)
e (k1y)

]
2F (n)

e

√
k2

2 − k2
2n

⎫⎬
⎭ dk1y +

⎧⎨
⎩
[
k′

1 +
√

k2
2 − k2

2n

] [
F

(n)
1e

]
2F (n)

e

√
k2

2 − k2
2n

⎫⎬
⎭ . (8)

And,

A−
n =

∫ ∞

−∞
R(k1y)

⎧⎨
⎩
[√

k2
2 − k2

2n +
√

k2
1 − k2

1y

] [
F

(n)
e (k1y)

]
2F (n)

e

√
k2

2 − k2
2n

⎫⎬
⎭ dk1y −

⎧⎨
⎩
[
k′

1 −
√

k2
2 − k2

2n

] [
F

(n)
1e

]
2F (n)

e

√
k2

2 − k2
2n

⎫⎬
⎭ . (9)

Similarly, the mode amplitude for odd guided modes can be derived,

A+
p =

∫ ∞

−∞
R(k1y)

⎧⎨
⎩
[√

k2
2 − k2

2p −
√

k2
1 − k2

1y

] [
F

(p)
o (k1y)

]
2Foe(p)

√
k2

2 − k2
2p

⎫⎬
⎭ dk1y +

⎧⎨
⎩
[
k′

1 +
√

k2
2 − k2

2p

] [
F

(p)
1o

]
2F (p)

o

√
k2

2 − k2
2p

⎫⎬
⎭ . (10)

And,

A−
p =

∫ ∞

−∞
R(k1y)

⎧⎨
⎩
[√

k2
2 − k2

2p +
√

k2
1 − k2

1y

] [
F

(p)
o (k1y)

]
2F (p)

o

√
k2

2 − k2
2p

⎫⎬
⎭ dk1y −

⎧⎨
⎩
[
k′

1 −
√

k2
2 − k2

2p

] [
F

(p)
1o

]
2F (p)

o

√
k2

2 − k2
2p

⎫⎬
⎭ (11)

where,

F (n)
e = 2

k2n

k1n
+ 2bF ∗

n

sin (k2nb)
(k2nb)

F (n)
e (k1y) = i

{
k2neik1yb

(k1y + ik1n)
− k2ne−ik1yb

(k1y − ik1n)

}
+ F ∗

n

{
sin (k1y + k2n) b

(k1y + k2n)
+

sin (k1y − k2n) b

(k1y − k2n)

}

F
(n)
1e =

{
k2ne−ik′

1b

(k1n + ik′
1)

+
k2neik′

1b

(k1n − ik′
1)

}
+ F ∗

n

{
sin (k2n + k′

1) b

(k2n + k′
1)

+
sin (k2n − k′

1) b

(k2n − k′
1)

}

F (p)
o (k1y) = −i

{
k2pe

ik1yb

(k1y + ik1p)
+

k2pe
−ik1yb

(k1y − ik1p)

}
− F ∗

p

{
sin (k1y + k2p) b

(k1y + k2p)
− sin (k1y − k2p) b

(k1y − k2p)

}
And,

F
(p)
1o =

{
k2pe

−ik′
1b

(k1p + ik′
1)

− k2pe
ik′

1b

(k1p − ik′
1)

}
− F ∗

p

{
sin (k2p + k′

1) b

(k2p + k′
1)

− sin (k2p − k′
1) b

(k2p − k′
1)

}

F (p)
o =

{
k2

2p

k1p
+
(
k2

2p + k2
1p

) [sin (2k2pb)
2k2p

− b

]}

where,
k′

1 = k1 sin
π

4
.

These guided mode amplitudes expressed by Eq. (8) through Eq. (11) can only be determined if R(k1y)
in the given equations are known. Hence, a functional equation is to be derived which is to be solved
numerically to determine the reflection coefficients R(k1y).

4.2. Derivation of Functional Equation

In the case of rectangular dielectric cylinder, we have four field equations by applying the boundary
conditions at x = 0 and x = a. After applying the orthogonal properties of the modes, these equations
are simplified having only four unknowns A+(k1y), A−(k1y), R(k1y), and T (k1y). Solving these equations
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simultaneously A+(k1y), A−(k1y) can be eliminated. As a result, the following functional equation is
derived which couples the backward scattering coefficients R(k1y) and the forward scattering coefficient
T (k1y). ∫ ∞

−∞
R (k1y)

{(
k′

x + kx

) [
F
(
k1y, k

′
1y

)]}
dk1y

+eik′
xa

∫ ∞

−∞
T (k1y)

{(
kx − k′

x

) [
F
(
k1y, k

′
1y

)]}
dk1y

{
k′

1 − k′
x

} [
F (k′

1y

]
(12)

F
(
k′

1y, k1y

)
= π

{[
e−ik1yb + T ′eik1yb

]
δ
(
k1y − k′

1y

)
+
[
R′e−ik1ybδ

(
k1y + k′

1y

)]}

+i

⎧⎨
⎩ −e−ik1yb(

k1y − k′
1y

) +
T ′eik1yb(

k1y − k′
1y

) − R′e−ik1yb(
k1y + k′

1y

)
⎫⎬
⎭

+2

⎧⎨
⎩B′ sin

(
k1y − k′

2y

)
b(

k1y − k′
2y

) + C ′ sin
(
k1y + k′

2y

)
b(

k1y + k′
2y

)
⎫⎬
⎭

F
(
k′

1y

)
=

i

k′
1y

(
1 − R′ − T ′) + 2b

(
B′ + C ′) sin

(
k′

2yb
)

(
k′

2yb
) (13)

This is the general functional Equation (12) which relates the backward and forward parts of the
scattered field of cylinder. This equation is solved numerically by known techniques (Method of
Moments) to determine R(k1y) and T (k1y) [10]. Once the free space mode amplitudes are determined,
all the amplitudes of even and odd guided modes shown in above equations can be determined.

5. THE POWER WITHIN DIELECTRIC CYLINDER

The guided waves in the dielectric cylinder are not only moving in forward direction but also in the
backward direction after bouncing back from the interface at x = a. As a result, a part the field and
power is trapped within the body of dielectric medium. This field is in the form of even and odd guide
modes moving along forward and backward directions. The mode amplitudes of these guided modes
are A+

n , A−
n , A+

p , and A−
p . These mode amplitudes are already determined by using relationsin Eqs. (8)

through (11). Here the field and power expressions for even and odd guided modes are derived and
determined.

The field expression for the nth even guided mode is,

E(+n)
e (x, y) = A+

n

[
F (n) cos(k2ny)

]
eikxnx 0 < x < a, |y| < b (14)

The power carried by this nth mode is

P+
n =

∫
�S+ · exdx

where S+ is a pointing vector.

P+
n = A+

n A+∗
n

[√
εr

2η
(
k2

2n + k2
1n

)] ∫ b

−b
cos2 (k2ny) dy

The equation can be solved as,

P+
n =

∣∣A+
n

∣∣2 {2b
√

εr

η

(
k2

2n + k2
1n

)}
(15)

Similarly, the power propagated in the backward direction due to even guided modes is

P−
n =

∣∣A−
n

∣∣2 {2b
√

εr

η

(
k2

2n + k2
1n

)}
(16)
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The expression of electric field which is confined within the slab due to the pth odd mode propagating
in the forward direction is,

E(+p)
o (x, y) = A+

p F (p) sin(k2py)eikxpx, 0 < x < a, |y| < b (17)

Now its expression of power can be written as,

P+
p = |A+

p |2
{

2b
√

εr

η

(
k2

2p + k2
1p

)}
(18)

Similarly, the power propagated in the backward direction due to the pth odd guided modes is

P−
p =

∣∣A−
p

∣∣2 {2b
√

εr

η

(
k2

2p + k2
1p

)}
(19)

The guided power carried by each of these modes and its variation with respect cylinder width ‘b’ are
shown in the following Table 1.

6. THE BACKWARD AND FORWARD SCATTERING POWER OF DIELECTRIC
CYLINDER

The functional Equation (12) is solved numerically to determine R(k1y) and T (k1y) for the backward and
forward scattered fields, respectively. Now the backward and forward scattered fields and their respective
powers due to dielectric cylinder in their corresponding regions of space are to be determined. To achieve
this objective, the integral equations for the scattered fields are to be solved asymptotically [11].

The integral representation of backward scattered field Eb in the region of x < 0 and ∀y is,

Eb(x, y) =
∫ ∞

−∞
R(k1y)e−ikxx+ik1yydk1y (20)

Transformation from k1y to φ plane will be carried out to facilitate the evaluation of the integral
according to

k1y = k1 sinφ, kx = k1 cos φ

Similarly, the cartesian coordinates x and y are transformed to polar coordinates r and θ using,

x = −r cos θ, y = r sin θ.

The asymptotic solution of this equation is,

Eb(r, θ) = R(θ)Fb(θ)
eik1r

√
k1r

−π

2
< θ <

π

2
(21)

where,
Fb(θ) =

[√
2π cos θ eiπ/4

]
Hence, the backward scattered power of the cylinder is

Pb(θ) = |R(θ|2 |Fb(θ|2 −π

2
< θ <

π

2
(22)

Numerical investigation of the backward scattered power Pb versus observation angle θ is presented
which demonstrates that the scattered power is significantly influenced by width ‘b’ of the cylinder.

Similarly, the integral representation of forward scattered field Ef in the region of x > a and ∀y is,

Ef (x, y) =
∫ ∞

−∞
T (k1y)eikxx+ik1yy dk1y (23)

T (k1y) is the forward scattering coefficients whose values are already determined numerically. The
asymptotic solution of this equation results into

Ef (r, θ) = T (θ)Ff (θ)
eik1r

√
k1r

−π

2
< θ <

π

2
(24)
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Table 1. Power carried by the guided modes for different values of cylinder width b, where incident
angles θi = π

4 , and εr = 3.12.

Eigenvalues 1.33 0 0
Forward Modal Power −40.3 0 0

Even Prop Angles 49 0 0
Modal Power −55.7 0 0

b = 0.05λ Backward Prop Angles 131 0 0
Eigenvalues 0 0 0

Forward Modal Power 0 0 0
Odd Prop Angles 0 0 0

Modal Power 0 0 0
Backward Prop Angles 0 0 0

Eigenvalues 1.035 0 0
Forward Modal Power −34.9 0 0

Even Prop Angles 36 0 0
Modal Power −50.2 0 0

b = 0.12λ Backward Prop Angles 144 0 0
Eigenvalues −0.985 −0.981 0

Forward Modal Power −35.2 −35 0
Odd Prop Angles −44.0 34 0

Modal Power −51.0 −50.5 0
Backward Prop Angles −146 146 0

Eigenvalues −1.16 −0.61 0.39
Forward Modal Power −33.8 −37.0 −37.7

Even Prop Angles −41.0 −20.0 13
Modal Power −48.9 −52.7 −52.5

b = 0.52λ Backward Prop Angles −139 −160 167
Eigenvalues −0.78 0.78 0

Forward Modal Power −19.5 −19.5 0
Odd Prop Angles −26.0 26.0 0

Modal Power −35.0 −34.8 0
Backward Prop Angles −153 153 0

where,

Ff (θ) =
[√

2π cos θ eiπ/4
]

Pf (θ) = |T (θ|2|Ff (θ|2 −π

2
< θ <

π

2
(25)

Here the forward scattered power Pf versus observation θ is presented which demonstrate that the
forward scattered power is also significantly influenced by width ‘b’ of the cylinder.

7. NUMERICAL RESULTS AND DISCUSSIONS

Here the physical interpretation of the numerical results is presented. According to the theory, a
dielectric cylinder having rectangular dimensions is excited by a plane wave incident obliquely. As
a result, all guided as well as radiation modes are excited to satisfy the boundary conditions at the
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discontinuities. This dielectric cylinder can possess finite number of guided modes in addition to a
continuum of unguided radiation modes. The guided modes (even and odd) carry power essentially
within the dielectric cylinder not only in forward direction but also in backward direction. These
guided modes are eigen-modes having eigenvalues. The number of eigenvalues and their corresponding
eigen-modes depends upon the electrical length of the cylinder which is a measure of relative permittivity
εr of the medium of dielectric cylinder and its width of b. The expressions for the determination of
eigenvalues of the given structure are derived but not reported here. As we increase the electrical
length of structure by either increasing the relative permittivity εr of the medium of dielectric cylinder
or its width b, there is an increase of the number of guided modes. Here we can see from the table
that for εr = 3.12 and b = 0.05λ only one eigenvalue can exist having one even guided mode which is
propagating in forward direction at a particular propagation angle with horizontal axis and bounced
back with less power after loosing much power at the boundary x = a along another propagation angle.
For the cylinder width b = 0.12λ having constant εr = 3.12, three eigenvalues (one even and two odd)
are possible, and hence one even and two odd modes are capable to propagate at particular propagation
angles in the forward direction. These will return back after loosing the considerable amount of power
at specific propagation angles. For a thicker cylinder of thickness b = 0.52λ, three even and two odd
modes can propagate and bounce back after loosing power at the cylinder boundary.

Each column of the table describes the eigenvalue (dimensionless) of the particular eigen mode, the
power (dB) carried by this mode, and the propagation angle (deg) of this mode and bounce back after
loosing power at the cylinder boundary (x = a) at a particular propagation angle.

Although it is very difficult to accurately find the power radiated by the waves around the dielectric
cylinder because of the bounded field due to forward and backward bouncing of the guided modes and
spill over from its surfaces and diffracted from its edges as radiation modes, the scattering around the
cylinder can be estimated by analytico-numerical approach. The scattering coefficients for forward and
backward directions R(k1y) and T (k1y) are calculated numerically. The forward (A+) and backward
(A−) scattering coefficients in the regions (0 < x < a, y < −b) and (0 < x < a, y > b) are lengthy,
complicated, and are calculated but not reported here. The detail will be provided in followup papers.

Here we have considered only the back and forward scattered parts of the power. For the better
understanding of the scattering in forward and backward directions, it is advisable to see the variation
of spatial domain of the problem with reference to observation angle. For the backward scattering
−π
2 < θ < 0 means the third quadrant while 0 < θ < π

2 means the second quadrant. Similarly for
forward scattering, −π

2 < θ < 0 means the fourth quadrant while 0 < θ < π
2 means the first quadrant.

Comparison of the two plots shows that two peaks are observed in backward scattering power and
two peaks are in forward scattering power. These peaks are due to the diffraction from the four wedges
of the cylinder. Comparatively, more power is scattered in the forward direction than the backward
direction. Moreover, it is observed that more power is scattered at angle of θ = π

4 in the first quadrant.
This is because at this angle the incident field and diffracted fields reinforce each other. The backward
part of the power is essentially coupled to the radiation modes of the free space. If the spilled over part
of the power is ignored, then the total field in this region consists of reflected and diffracted components.
The reflected field is the field reflected from the plane surface of the cylinder having width 2b with edge
ignored, and the diffracted field is due to two edges of the cylinder. Now the variation of reflected power
with respect to width of the cylinder is considered for a given incidence angle (θi = π

4 ) in Fig. 2. It is
observed that the general pattern of reflected power observed is same for all widths of the cylinder. A
few important features are observed in this plot. First, the reflected power is relatively less for smaller
width, and there is an increase of power when the cylinder width is increased. This is because for a
smaller width, the face area of the cylinder on which the incident wave impinges is small, so less power
is scattered in backward direction. Second, the number of peaks in the reflected pattern is small for
smaller cylinder width than the case when the width of the cylinder is large. This is because the number
of guided modes increases with cylinder width. It is also observed that much backward scattered power
is along θr = π

4 . This is because at this angle reflected and diffracted parts of the field superpose each
other. As a result, maximum power is scattered in this direction.

The forward scattering field in the region x > a is composed of an incident plane wave, transmitted
from the body of the dielectric cylinder plus diffracted fields which emanate from the two edges of the
cylinder. The incident wave shows the geometrical optics solution while the field discontinuity at x = a
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Figure 2. Backward scattered power of a dielectric cylinder for different values of its ‘b’, where εr = 3.12
and incident angle θi = π

4 .

Figure 3. Forward scattered power of a dielectric cylinder for different values of ‘b’, where εr = 3.12
and angle of incidence θi = π

4 .

is compensated by the transmitted and diffracted fields to maintain the continuity of the total field
across the incident shadow boundary. This diffracted field produces the peaks at this shadow boundary.
The power distribution due to field in this region and its association with the width of the cylinder 2b is
shown in Fig. 3, which shows that as the width of the cylinder is enlarged, the number of guided modes
carrying power within the cylinder is increased, so there is an increase in power which comes out from
the boundary x = a of the cylinder. As a result, there is an increase in the forward scattering power.
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8. CONCLUSION

In this paper, we have concluded that the incident power due to a plane wave on the dielectric cylinder
is distributed not only among guided but also among guided and radiation modes. This variation of
power among different modes depends upon the width of the cylinder for a constant angle of incidence.
If the width of the cylinder is increased, there is an increase of number of modes not only propagating
power within the cylinder but also in back and forward scattered power.
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