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State Space Modelling of Electromagnetic Responses — A Practical
Approach to Extract Parameters from Simulated or Measured Data

Krishna Naishadham*

Abstract—As computing power and algorithmic advances have evolved rapidly in the recent past,
it is now feasible to solve complex electromagnetic (EM) problems involving scattering, radar cross
section, antenna design, microwave circuit design, artificial EM materials, etc., using full-wave numerical
methods. Several general-purpose commercial software packages are routinely used in industry in all
these domains for EM analysis or design. However, the task of processing large sets of data output
from these design studies and analyses is generally beyond the realm of commercial software packages,
and the designer spends many hours writing problem-specific computer programs to extract the desired
performance parameters. Some examples where auxiliary processing is needed for the extraction of EM
parameters of interest include determination of coupling coefficients or the unloaded quality factor of
a dielectric resonator, de-embedding feed lines from antenna currents, removal of discontinuity effects,
and the extraction of equivalent circuit models. The same considerations as simulated data apply to
the parametric analysis of measured data in the presence of noise. This paper presents a versatile data-
driven spectral model derived from a state-space system representation of the computed or measured
EM fields, from which all the parameters of interest can be extracted. An attractive feature of the
state space method is its ability to identify a small number of system transfer function poles uniquely
associated with a specific scattering mechanism or modal response, thereby enabling its isolation from
the total response for detailed study. For example, using SSM, specular reflection and creeping waves
on a smooth convex surface can be analyzed, and the diffraction at the edges can be isolated from the
composite RCS of a large body. The desired field parameter is extracted or estimated from synthetic
or measured data using a linear system of a relatively small model order that characterizes the specific
modal response of interest. Illustrative examples will be presented to demonstrate the usefulness of the
proposed approach for parametric extraction.

1. INTRODUCTION

With prolific algorithmic advances and significant improvement of computational resources in recent
years, full-wave electromagnetic (EM) simulation techniques, such as the method of moments (MoM) [1],
finite element method (FEM) [2], finite-difference time-domain (FDTD) method [3], and transmission
line matrix method [4], have been increasingly used to solve complex EM problems involving scattering,
radar cross section (RCS), antenna design, microwave circuit design, artificial EM materials, etc.
These rigorous techniques account for physical phenomena such as surface-wave coupling and radiation,
dispersion, frequency-dependent metallization and dielectric losses, proximity effects, and near-field
coupling. Although EM simulation methods are computationally intensive, algorithmic advances and
the large-scale GPU and distributed computing platforms enable commercially available full-wave EM
analysis software packages to be applied to challenging problems such as scattering by electrically
large objects (e.g., computing the RCS of an aircraft) and modeling the EMI between interconnects
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on a printed circuit board containing dense RF and/or high-speed digital circuits. The outputs of
these software packages are generally voltages, currents, scattering (S) parameters or some derived
EM field variable such as the RCS. In design studies, large datasets of these output parameters need
to be processed, for example, to remove the effects of transmission line discontinuities on the S-
parameters or to extract the modal response of a particular wave species and isolate the scattering
centers causing undesirable RCS. Therefore, it is very desirable to investigate independent signal
models (in time domain) and spectral models (in frequency domain), which accurately represent the
simulated or measured output field responses. One can then utilize this model for removing the
effects of discontinuities or parasitic scattering mechanisms so that the desired EM performance can be
characterized accurately.

Several researchers have extracted parameters of interest from scattered fields or circuit response
using signal processing techniques such as Prony’s method [5, 6], pencil of functions [7–11], autoregressive
moving average (ARMA) [12, 13], estimation of signal parameters via rotational invariance techniques
(ESPRIT) [14–16], multiple signal classification (MUSIC) [17], and the state space method (SSM) [18–
21]. Applications include computation of complex natural resonances and eigenmodes [22–28], impulse
response characterization of time-domain signatures [29–34], broadband equivalent circuit parameter
extraction [35, 36], identification of radar target’s features [37–40], extraction of biomedical vital signs
from UWB radar measurements [41–43], and location of buried targets using ground penetrating
radar [44]. The basis behind such signal processing applications is that the EM field scattered by
an object can be adequately represented as a sum of damped sinusoids, whose amplitude and phase
are closely related to the physical parameters of interest. For example, poles of the transfer function
for the exponential signal model locate discrete scattering centers useful in object typing and feature
identification in radar target identification.

This paper presents a versatile data-driven spectral model derived from a state-space system
representation of the computed or measured scattering parameters and EM fields, from which all
the parameters of interest can be extracted. Parametric extraction from measured data is especially
challenging because of noise and random measurement errors. The efficacy of spectral estimation
methods to extract parameters of damped sinusoids embedded in noise has been studied by many
researchers. For example, performance analysis of MUSIC is treated in [45, 46]; estimation of the
direction of arrival of radar returns using ESPRIT is presented in [47]; a performance study of matrix
pencil method in the presence of noise is described in [48, 49], and sensitivity analysis of the state space
method is treated in [50, 51]. SSM [18–21] has been extended to ultra-wideband coherent processing
of range-Doppler data for radar target identification and validated with static range measurements
[52, 53]. In EM problems, the matrix pencil method has been widely used (cf. [25, 26, 32]). A quantitative
comparison between state space and matrix pencil methods shows similar performance with comparable
accuracy when being implemented on canonical harmonic retrieval problems with noisy data [49, 54, 55].
It is emphasized that the current paper focuses only on SSM, and a review of other signal processing
methods applied to EM problems is not undertaken. The interested reader refers to the relevant
references cited above.

The state space method can be applied in either time domain or frequency domain. In this paper,
we focus on the frequency domain problems. The reader refers to [34] for the application of SSM to
time-domain EM problems. The state space system identification approach in [34] is derived from the
subspace identification method for linear systems introduced by Overschee and De Moor in [58]†. In
this paper, we apply the subspace system identification method to frequency domain. We describe the
problem formulation and the modeling process in detail so that an uninitiated reader can follow the
steps to program and execute the algorithm and generate results of interest. An attractive feature of
SSM is its ability to identify and associate a small number of poles of the system transfer function
with a specific scattering mechanism or modal response, such as scattering parameters at the transition
(discontinuity) between a coplanar connector and a microstrip transmission line in measured data [36],
and isolated scattering by edges and seams from the composite RCS of a large body [40, 52]. Thus, the
desired field parameter can be extracted or estimated from synthetic or measured data using a linear
system with relatively small model order. Illustrative examples will be presented to demonstrate the
usefulness of the SSM for parametric extraction in EM problems involving simulated as well as measured
† The author is thankful to a reviewer for pointing this out.
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data.
The first two problems pertain to simulated data. First, we consider a planar dielectric slab

illuminated by a plane wave at normal incidence and isolate the reflection off the front face using range-
classified poles pertinent to the specular reflection. This process is akin to de-embedding transmission
lines at the ports to evaluate the circuit behavior of an antenna or a discontinuity. In the second example,
appealing to the canonical problem of Mie scattering by a sphere, creeping waves are extracted using
SSM to model the RCS response and validated against high-frequency asymptotic approximations.
Next, random white Gaussian noise is added to the Mie series solution, and Monte Carlo simulation
is performed to examine robustness of the SSM estimates to noise. Numerical considerations such as
dynamic range, signal-to-noise ratio (SNR), and model order determination are addressed in detail for
both examples.

The application of SSM to the measured data on relatively complex EM problems, including
canonical radar target scattering, biomedical radar and microwave circuits, is reviewed. A state-space
spectral model is presented for the parametric characterization of low-loss wideband transmission lines
enclosed in a MEMS package. SSM isolates and removes discontinuity effects at the CPW-microstrip
transitions leading to the line, and filters out measurement noise, enabling accurate extraction of
distributed circuit parameters, such as propagation constant and characteristic impedance.

The paper is organized as follows. In Section 2 the state space algorithm is reviewed in detail
following [53, 56]. Section 3 presents basic numerical considerations on the state space approach, such
as estimation of the SNR and the model order. Section 4 presents illustrative examples on parametric
extraction for simulated EM problems, as discussed above. Factors affecting accuracy and numerical
efficiency of the proposed technique are discussed. Section 5 reviews the application of SSM to the
measured data alluded to earlier. Finally, the paper is summarized and concluding remarks are presented
in Section 6.

2. STATE SPACE METHOD

In recent years, there has been a great deal of attention devoted to model-based eigen-decomposition
methods derived from a state-space realization of the system identification problem, which is defined
as the determination of the internal states of a linear time-invariant (LTI) system given a set of
inputs and outputs [18, 21, 52–62]. The idea of using state-space methods to estimate frequencies and
amplitudes of damped sinusoids was first suggested in [18], where Kung et al. developed a system
identification approach based on singular value decomposition (SVD) for the harmonic retrieval (or
spectral estimation) problem. The foundation of state-space signal modeling is based on representation
of a linear rational system, popular in linear systems and control theory [63–65], in which the difference
equations for the discrete-time signal are converted into state equations and the model parameters are
estimated in terms of the state matrices characterizing the system. State-space parameterization enables
reduction of parameter sensitivity, as demonstrated by several examples relevant to the sinusoid retrieval
problem in the tutorial article by Rao and Arun [21]. Unlike polynomial-based signal processing methods
such as Prony’s, MUSIC and maximum likelihood estimation, in which the frequencies of damped
sinusoids are obtained by cumbersome root-search of polynomials, state-space methods simultaneously
yield complex amplitudes (with initial phases) and frequencies directly from three state matrices. The
frequencies are calculated from the eigenvalues of the state transition matrix, and the amplitudes are
derived by eigen-decomposition of the state equations using two auxiliary matrices, the control and
observation matrices.

As shown in the sequel, the decomposition of the data into a sum of damped sinusoids representing
an LTI system enables direct computation of the state matrices from a low-rank truncation of the Hankel
(or forward-prediction) matrix representing the data. We show that each entry of the Hankel matrix
can be expressed in terms of the impulse response derived from the state space matrices. The SVD
of the Hankel matrix is a product of the observability and controllability matrices which yield all the
model parameters in the harmonic retrieval problem.



66 Naishadham

2.1. ARMA Signal Model

The scattered field output data sequence y(k) comprises N uniformly spaced frequency samples (see
Eq. (1) below), each represented as a sum of M complex sinusoids (or scattering centers) corrupted
by measurement noise w(k), assumed to be white Gaussian with zero mean. In deterministic data
modeling, we assume that w(k) = 0, k �= 0 and characterize the impulse response, thus estimating the
system parameters using only the output. When the input is known and needs to be considered (e.g.,
short pulses or modulated waveforms), the system can be identified using both input w(k) and output
y(k) [34]. For completeness, we retain w(k) in the formulation even if we may not consider it in a given
case. Thus, over a given bandwidth, the signal measurements at N frequencies are modeled as

y(k) =
M∑
i=1

aip
k
i + w(k); k = 1, . . . , N,

y(k) = ŷ(k) + w(k).

(1)

The difference between the “true” signal, y(k), and the state space model, ŷ(k), is the random noise,
measurement error or modeling error, w(k). The signal y(k) represents the response of a liner time
invariant system where ŷ(k) and w(k) correspond to the homogeneous solution and the particular
solution, respectively. The poles pi are given by

pi = exp [−Δf(αi + j2πτi)] (2)

where ai (in Eq. (1)) and αi represent the amplitude and its spectral rate of decay (for negative αi) or
growth (for positive αi), respectively, for the i-th scattering center, and Δf is the sampling frequency.
Both positive and negative αi are needed to model the peaks and dips in the frequency response (for
example at resonance). It is emphasized that positive αi does not imply instability or violation of any
physical constraint such as the radiation condition. The parameter τi denotes time delay of the i-th
scatterer at the observation point and is related to range Ri by τi = 2Ri/c, where c is the speed of
light. Equation (1) is set up in terms of the monostatic RCS that an observer would measure for a
given target at range Ri. Therefore, 2Ri is simply the round-trip distance between the transmitter
and the target. If bistatic radar is used, then 2Ri should be replaced by Rt + Rr, where Rt and Rr

denote the distance to the target from the transmitter and the receiver, respectively. It follows that
2πτifk = (ωk/c)(2Ri) = βk(2Ri) represents the phase of the i-th sinusoid, with βk being the phase
constant at the frequency fk. The frequency vector is specified in terms of the carrier frequency f1 as

fk = f1 + (k − 1)Δf, k = 1, . . . , N, (3)

where Δf is the sampling frequency. The primary interest in state space system identification is to
estimate the parameters ai, αi, and Ri (or τi), which are embedded in the data sequence y(k). The
latter two parameters are computed from the eigenvalues of an open-loop state matrix, to be defined
shortly. Once these parameters are estimated, the amplitudes ai can be readily derived from the state
matrices using a modal decomposition method based on least squares [53].

2.2. ARMA Transfer Function

The model in Eq. (1) is interpreted as an LTI system with input given by the sequence w(k) and the
output by the data sequence y(k). The goal in system identification is to compute the coefficients of the
ARMA transfer function (TF) characterizing the discrete signal model in Eq. (1). Since the transfer
function is defined for impulse response, we first set w(k) = δ(k) in Eq. (1) and take the z-transform
after substituting fk from Eq. (3), to obtain

Y (z) =
M∑
i=1

Bi

1 − piz−1
(4)

Bi =

Ai︷ ︸︸ ︷
aie

αif1 ej

θi︷ ︸︸ ︷
2πτif1 � Aie

jθi (5)
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In the above, Bi denote the complex amplitudes; θi is the initial (static) phase; and pi are the poles in
the complex z-plane given in Eq. (2). The finite summation in Eq. (4) leads to a TF comprising rational
polynomials in the numerator and denominator [10], given by

T (z) =
Y (z)
W (z)

=

c0 +
M−1∑
i=1

ciz
−i

1 −
M∑
i=1

diz
−i

� N(z)
D(z)

(6)

The TF T (z) has M poles and M − 1 zeros, located at the roots of D(z) and N(z), respectively. The
TF in Eq. (6) represents a special case of a more general ARMA TF given by

T (z) =

c0 +
Q∑

i=1

ciz
−i

1 −
P∑

i=1

diz
−i

� N(z)
D(z)

(7)

which has P poles and Q zeros (P and Q can assume arbitrary integer values). The special case
Q = P − 1 listed in Eq. (6) is also known as “strictly proper” TF and the Prony’s model belongs to this
category. Another important special case is the purely Auto Regressive (AR) TF with Q = 0.

The input-output relationship for the general ARMA model with the TF in Eq. (7) is characterized
by the difference equation [10]

y(k) =
P∑

i=1

diy(k − i) +
Q∑

j=1

cjw(k − j) + c0w(k) (8)

Eq. (8) is valid for the TF in Eq. (6) as well with P = M and Q = (M − 1). From linear systems and
control theory [63, 64], one can show that the difference equation in Eq. (8) may be written alternatively
in terms of the state-space description characterized by the difference equations

x(k + 1) = Ax(k) +Bw(k) (9)
y(k) = Cx(k) + w(k), (10)

where x(k) ∈ CM×1 is the state vector; A ∈ CM×M is the state transition matrix ; B ∈ CM×1 and
C ∈ C1×M are constant matrices known as control matrix and observation matrix, respectively [64].
Our goal is to identify the matrices A, B, and C given the data sequence y(k) and the input w(k). The
transfer function, T (z), is obtained by taking the z-transform of Eqs. (9) and (10) with w(k) = δ(k)
and evaluating the ratio Y (z)/W (z) :

T (z) = C(zI −A)−1B + 1. (11)

It follows from Eq. (11) that the poles of the model (i.e., the roots of D(z) in Eq. (7)) are the eigenvalues
of the open-loop matrix A and the zeros (i.e., the roots of N(z) in Eq. (7)) are the eigenvalues of the
matrix (A−BC) [52, 53].

2.3. State Space System Identification

The transfer function in Eq. (7) can be written equivalently in terms of its impulse response sequence
as

T (z) = h(0) + h(1)z−1 + . . .+ h(n)z−n + . . . (12)

which is aptly referred to as the infinite impulse response (IIR) transfer function [64]. The expansion
of the inverse matrix in Eq. (11) into an infinite series yields

(zI −A)−1 = Iz−1 +Az−2 +A2z−3 + . . . (13)
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where I is M ×M identity matrix. By inserting Eq. (13) into Eq. (11), we obtain

T (z) = 1 + CBz−1 + CABz−2 + CA2Bz−3 + . . . (14)

Equating coefficients of like-powers of z in Eqs. (12) and (14) and realizing that h(k) = y(k) for the
impulse input, we obtain

y(0) = 1
y(1) = CB

y(3) = CAB

...

y(k) = CAk−1B

...

(15)

Therefore, the relationship between the impulse response of the model and the state-space parameters
for any positive value of k is defined by

y(k) = CAk−1B, k > 0. (16)

Eq. (16) indicates that a Hankel (or forward-prediction) matrix, H, formed from the IIR sequence of a
system as

H =

⎡
⎢⎢⎢⎣
y(1) y(3) y(4) . . .

y(3) y(4) y(5) . . .

y(4) y(5) y(??) . . .
...

...
...

...

⎤
⎥⎥⎥⎦ (17)

can be decomposed into a product of two matrices given by

H =

⎡
⎢⎢⎢⎣

C

CA

CA2

...

⎤
⎥⎥⎥⎦

[
B AB A2B . . .

]
� ΩΓ, (18)

where Ω and Γ are known as observability and controllability matrices, respectively [65]. It is important
to note that despite the infinite dimensions of H in Eq. (17), in practice, the impulse response is always
finite. Thus, for a given set of measurements the rank of the Hankel matrix H, and by inference the
rank of Ω and Γ, will always be finite. As described later in this Section, Ω and Γ, consequently H,
can be truncated to a low rank r ≤M, where M is the number of complex sinusoids in the model (see
Eq. (1)). In summary, the Hankel matrix H may be interpreted as an operator constructed from a set
of measurements y(k) that maps the past input vector w− to the future output y+. Causality of SSM
is explicit in Eqs. (8)–(10), which emphasize that the current output is dependent on the past output
and the current as well as the past input signals. Next, we present a method to derive the state-space
matrices from the Hankel matrix constructed using a finite set of output data samples.

The first step in computing the triplet (A,B,C) is to form the Hankel matrix using available data
samples y(k), k = 1, 2, . . . , N.

H =

⎡
⎢⎢⎢⎣

y(1) y(3) . . . y(L)
y(3) y(4) . . . y(L+ 1)

...
...

...
...

y(N − L+ 1) y(N − L+ 2) . . . y(N)

⎤
⎥⎥⎥⎦ (19)

where the parameter L denotes length of the correlation window, heuristically chosen to be L = [N/2],
and the brackets denote the smallest integer less than or equal to the inserted quantity. Note that
the Hankel matrix in Eq. (19) is a truncated version of the IIR in Eq. (17). Subspace decomposition
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methods exploit the eigenstructure of Hankel matrices to compute the state matrices of the LTI system
and estimate the signal models [18, 21, 25, 26, 52–56, 60–62]. Accordingly, we partition the Hankel matrix
into signal and noise subspaces using the singular value decomposition of H. Organizing the SVD in
terms of the singular values {σi} in descending order of magnitude, the Hankel matrix may be written
as

H = [ Us Un ]
[

Σs 0
0 Σn

] [
V ∗

s

V ∗
n

]
= UΣV ∗ (20)

where the subscripts s and n denote the signal and noise subspaces, respectively, and the asterisk
refers to matrix conjugate transpose. The matrices Us and Un are the signal and noise components,
respectively, of the left-unitary matrix [Us Un]. Likewise, Vs and Vn denote the signal and noise
components, respectively, of the right-unitary matrix [Vs Vn]. Furthermore, Σs and Σn are diagonal
matrices comprising signal and noise singular values, respectively. It is understood that the signal
components in the SVD are entirely characterized by the dominant singular values Σs. The classification
between signal and noise subspaces is achieved by parsing the singular value spectrum in descending
order of magnitude and removing the noise singular values Σn [18, 50–53]. To increase the accuracy of the
state-space estimation, the Hankel matrix H may then be truncated by suppressing the noise singular
values and their associated unitary matrix components. This results in a reduced-rank approximation
to the Hankel matrix in Eq. (20), obtained by retaining only the dominant singular values (cf. [51]), i.e.,

H̃ = UsΣsV
∗
s . (21)

Let the computed singular values in Σ be arranged in descending order of magnitude

σ1 > σ2 > . . . > σr > 0 (22)

where r is chosen subject to the threshold [55] σr/σ1 ≈ 10−p, and p is the number of significant decimal
digits in the truth data. For example, if the data are accurate to three significant digits, then the
singular values with upper bound r for which the ratio is less than 0.001 are considered as noise singular
values and excluded from the model. The largest index r of the singular values in the signal subspace is
the rank of the Hankel matrix. It can be shown that the largest retained singular value minimizes the
error between the Hankel matrices H and H̃ in the spectral norm sense [49], i.e.,

σr ≈
∥∥∥H − H̃

∥∥∥
s
, (23)

where the subscript s denotes the spectral or L2 norm [64]. As demonstrated in Section 3, magnitude of
the dominant singular values in the signal subspace may be conveniently used to estimate the “optimal”
model order M in Eq. (1). Next, we address how one can compute the state matrices from the SVD.

Akin to Eq. (18), H̃ is obtained in factored form as

H̃ = UsΣsV
∗
s = Ω̃Γ̃ (24)

By using the balanced coordinate transformation method proposed in [18], one can compute the finite-
rank observability matrix Ω̃ and controllability matrix Γ̃ from the SVD in Eq. (24). These matrices are
given by

Ω̃ = UsΣ1/2
s and Γ̃ = Σ1/2

s V ∗
s . (25)

Then, the open-loop matrix A ∈ CM×M can be derived from either Ω̃ or Γ̃ as shown in Appendix A. If
the derivation of A is based on the observability matrix Ω̃, then [40]

A =
(
Ω̃∗
−r�Ω̃−r�

)−1
Ω̃∗
−r�Ω̃−r1. (26)

The matrices Ω̃−r1 and Ω̃−r� in Eq. (26) are obtained by deleting the first and last rows, respectively,
of Ω̃. Alternatively, in terms of the controllability matrix, A is given by [40]

A = Γ̃−c1Γ̃∗
−c�(Γ̃−c�Γ̃∗

−c�)
−1 (27)

where the matrices Γ̃−r1 and Γ̃−r� are obtained by deleting the first and last rows, respectively, of Γ̃.
The reader is referred to Appendix A for the least-squares computation of B and C, also using either
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Ω̃ or Γ̃. As noted earlier, the matrices B and C contribute to zeros of the transfer function. In the
AR SSM that we have employed in [39], system zeros are not used, because the system is entirely
characterized by the poles determined from A. In general, if the EM frequency response is monotonic,
an AR model would suffice. Practical systems such as microwave resonant structures and antennas have
non-monotonic responses, and it is desirable to use the complete model including the zeros.

2.4. Modal Decomposition

Once the state matrices (A,B,C) are known, the model parameters in Eq. (1) may be computed using
a modal (or eigen-) decomposition method [52, 53]. If the complex eigenvalues of A are assumed to be
distinct, one has

λ {A} = { λ1, λ2, . . . , λM } . (28)

The magnitude of the eigenvalues {λi} determines amplitude decay/growth rate (with respect to
frequency) of the system output, and their phase provides the time delay τi or the range Ri in Eq. (1).
As noted in Eq. (11), the eigenvalues of A represent the poles of the transfer function, T (z). The
eigenvalues {λi} and eigenvectors [ψi] of the state matrix A satisfy

Aψi = λiψi, i = 1, . . . ,M (29)

Now let us form a modal matrix Ψi from these eigenvectors by stacking them row-wise:

Ψ = [ ψ1 ψ2 . . . ψM ] (30)
It follows from Eqs. (28)–(30) that

AΨ = ΨΛ, (31)
Λ = diag { λ1 λ2 . . . λM } . (32)

Therefore, we may calculate Λ from Eq. (31) as

Λ = Ψ−1AΨ (33)

The entries on its main diagonal are exactly the eigenvalues of the state transition matrix A. Therefore,
the modal decomposition approach provides valid information to identify and characterize the discrete
identify point scatterers (sinusoids) embedded in the data set. The impulse response approximation,
ŷ(k), of the data sequence y(k) can be computed in terms of the state matrices using Eq. (16) as

ŷ(k) = CAk−1B, k = 1, 2, . . . , N. (34)
After substituting for A from Eq. (31) and realizing that An = ΨΛnΨ−1, we obtain

ŷ(k) = CΨΛk−1Ψ−1B. (35)

The amplitudes of the scatterers in Eq. (1) may be computed from Eq. (34). Let

Ψ−1 = [ ν1 ν2 . . . νM ]T (36)

where superscript T denotes the matrix transpose. After inserting Eqs. (30), (32), and (36) into Eq. (34),
we obtain

ŷ(k) =
M∑
i=1

(Cψi)(viB)λk−1
i , k = 1, . . . , N (37)

Upon comparison with Eq. (1), we deduce that the magnitude and phase of the eigenvalues (poles) are
related to the model parameters αi, τi, and Ri, respectively, by

αi =
log |λi|

Δf
, τi =

φi

2πΔf
, and Ri =

cφi

4πΔf
, i = 1, . . . ,M (38)

In Eq. (38), φi refers to phase of the eigenvalue λi. The sinusoid amplitudes ai defined in Eq. (1) are then
obtained from Eq. (37) using these eigenvalues, the corresponding eigenvectors, and the state matrices
B and C:

ai =
(Cψi)(viB)

(λi)
f1
Δf

; i = 1, . . . ,M. (39)
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The frequency dependence of the amplitudes and their decay/growth rate is emphasized in Eqs. (38)
and (39).

Next, we discuss the physical interpretation of the state space parameters. The correspondence
between the scattered field response and its state space representation in terms of complex sinusoids
becomes apparent when one compares Eqs. (1) and (37). The poles λi of the transfer function yield
the localized scattering centers on the scattering object. As derived in Appendix A, the matrices B
and C follow from least squares solution applied to linear systems represented by the observability and
controllability matrix, respectively (see Eqs. (A15) and (A19)). Therefore, the matrices B and C are
directly related to the observability and controllability of the linear system in Eq. (34). The observability
matrix Ω̃ affects the shape of the natural response of the scattered field (directly proportional to the
natural modes or eigenvectors of the state transition matrix A) within a given frequency band. The
controllability matrix Γ̃ limits the effect of an input such as an impulse on the natural mode. In other
words, the controllability matrix determines how much of the excitation is coupled to the natural modes
of a particular scattering center within the defined bandwidth.

3. NUMERICAL CONSIDERATIONS

3.1. Estimation of the Model Order

In any spectral estimation problem, the selection of model order of the underlying system is a critical
issue. The difference between the desired and modeled signal, as defined in Eq. (1), is a combination
of model mismatch error, measurement error, and noise. If this error is Gaussian distributed, then the
minimization of the error criterion in Eq. (23) represents the maximum likelihood estimate (MLE) for
the ARMA problem [18, 66]. In the case of MLE, the Akaike information criterion (AIC) or minimum
description length (MDL) criterion are often used for model order determination [67–69]. An estimator
that yields the true number of signals with probability one, as the sample size increases to infinity, is
said to be “consistent.” It has been shown in [68] that MDL is a consistent estimator of order, whereas
AIC is inconsistent and often overestimates the model order.

SSM has been used with simulated as well as measured data. In deterministic data modeling such
as simulated data where the SNR is quite high, we employ the singular value matrix Σ to estimate
model order in the SSM. The large singular values in Σ correspond to strong signal components, while
the smaller values are generally attributed to noise. For low noise levels, there is a sharp transition
between the large and small singular values. This transition point can be used as an estimate of the
model order. At higher noise levels, especially for measured data, the transition from large to small
singular values may not be well defined, making model order estimation more difficult. In this case,
probabilistic methods such as AIC and MDL criteria have been used for model order estimation (cf.
[33]). No general criterion exists to determine which of these two methods gives the “optimal” model
order, and none of them provide necessary and sufficient conditions to guarantee that all the required
signals are included in the model. It is expedient to consider the underlying physics of the scattering
mechanism to guide the determination of the number of scatterers using a combination of these methods
and to examine the goodness of fit for each model order by computing the mean square error in the
model [40]. For convenience, the equations to compute AIC and MDL from the singular values, σi, of
the Hankel matrix approximation, H̃, are summarized below [68].

AIC(r) = −2(M − r)N ln

⎛
⎜⎜⎜⎜⎜⎝

M∏
i=r+1

σ
−(M−r)
i

1
M − r

M∑
i=r+1

σi

⎞
⎟⎟⎟⎟⎟⎠ + 2r(2M − r) (40)
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MDL(r) = −(M − r)N ln

⎛
⎜⎜⎜⎜⎜⎝

M∏
i=r+1

σ
−(M−r)
i

1
M − r

M∑
i=r+1

σi

⎞
⎟⎟⎟⎟⎟⎠ +

1
2
r(2M − r) lnN (41)

In the above, M is the maximum model order in Eq. (1), and N is the number of data samples.
For a given number r of signals, the term in the parentheses simply denotes the ratio of geometric mean
to arithmetic mean of the smallest M − r singular values, and it is a measure of the error between
the truth and the model. The number of signals, i.e., the model order, is determined as the value of
r ∈ {1, 2, . . . (M − 1)} for which either the AIC or the MDL is minimized [68].

As an example, Fig. 1 shows the singular value spectrum (amplitudes in descending order of
magnitude) plotted against the model order for experimental RCS data on a right circular conical
stationary metallic target with and without a lossy dielectric coating [40]. It is seen that the transition
from strong signal components to small singular values is not well defined because of measurement noise.
AIC yields orders of 15 and 13 for bare (metallic) and dielectric-coated cones, while MDL yields model
orders of 4 and 7, respectively. Due to measurement noise, AIC usually gives a larger estimate than
MDL, and modelers usually choose an order no smaller than the AIC prediction. Therefore, an order
of 15 has been chosen in [40] to extract the wave features of interest for both metallic and coated cones.
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Figure 1. Singular value spectrum vs. model order for measured RCS on a cone. Circles denote MDL
and diamonds denote AIC [40].

3.2. Estimation of Signal-to-Noise Ratio

The SNR of the radar system is influenced by noise contributed by several sub-systems, such as oscillator
phase noise, mixer 1/f noise, thermal noise, antenna leakage, and mixer leakage. It is cumbersome and
often inaccurate to estimate these random noise levels in the radar sub-systems using circuit models [70].
SSM considers this noise through decomposition of the Hankel matrix into signal and noise subspaces
using the singular value decomposition.

The threshold for such decomposition is based on the dynamic range and SNR, which can be
estimated from power spectrum of the original measured or simulated data, as discussed next. First,
we consider measured data on the chest wall displacement of a human subject to extract the heart and
respiration rates [41]. UWB radar with a center frequency of 2.4 GHz, bandwidth of 2 GHz, and pulse
repetition frequency (PRF) of 75 Hz is used to collect the data. The complex signal I + jQ of the radar
returning from a human subject located 1m from the radar is plotted in Fig. 2 [41]. Random fluctuations
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Figure 3. SNR estimate from UWB radar data
on a human subject [41].

caused by measurement noise are evident. The complex signal in Fig. 2 is transformed with FFT using
a Hamming window to suppress the sidelobes. This does not affect the peak signal but clearly defines
the noise floor relative to the peak. Therefore, the dynamic range and SNR can be estimated from the
compressed (or transformed) signal plotted as a function of Doppler frequency proportional to the chest
wall displacement. Fig. 3 shows that the SNR for Channel 3 data is moderately high (around 24 dB),
as one may expect from indoor laboratory RCS measurements, which are not subject to multipath and
clutter encountered by fielded radar systems. Next, we consider SNR evaluation for simulated data.

In simulated data, the difference between the desired and modeled signals, as defined in Eq. (1),
is a combination of model mismatch error and any noise intentionally added to the signal to determine
statistical effects of random variation in parameters (e.g., Monte Carlo trials). In the absence of any
added noise, the model mismatch error can be treated as noise. The SNR can be defined as the ratio
of variance of the signal data sequence to the variance of the noise sequence,

SNR = 10 log
(

V {ŷ(k)}
V {y(k) − ŷ(k)}

)
, k = 1, 2, . . . , N (42)

where V stands for the variance defined by

V {f(k)} =
1

N − 1

N∑
k=1

|f(k) − μ|2, (43)

and μ is the mean of f(k), given by

μ =
1
N

N∑
k=1

f(k). (44)

In a noise-free situation, if the SSM estimates defined by Eq. (34) closely match the data samples,
the SNR defines the dynamic range of the model. Thus, the number of scatterers or signals giving
rise to the estimates corresponds exactly to the number of sinusoids embedded in the data. In a noisy
situation, it is important to use caution so that the estimates are not direct replicas of the noisy samples.
Therefore, an “optimal” model order should provide appropriate SNR or dynamic range for a sinusoid
being modelled. This will be illustrated by examples next.

4. RESULTS AND DISCUSSION

In this section, two examples based on simulated data are presented to illustrate the state space method.
In the first example, we consider a planar dielectric slab illuminated by a plane wave at normal incidence
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and isolate the reflection off the front face using range-classified poles pertinent to the specular reflection.
The subsequent radar-return signals also enable the classification of multiple internal reflections. In the
second example, we consider Mie scattering from a sphere in the absence of noise, extract the creeping
wave that circumnavigates the shadow zone and returns to the radar, and examine accuracy of the SSM
estimates by comparison with an analytically derived expression of the creeping wave. Next, random
white Gaussian noise is added to the Mie series solution, and Monte Carlo simulation is performed to
examine robustness of the estimates to noise. Numerical considerations such as SNR, singular value
spectrum, and model order estimation are addressed in detail for both of these examples.

4.1. Reflection by a Dielectric Slab

Plane wave reflection from a 15-mm thick lossy dielectric slab with dielectric constant εr = (5,−0.01)
is considered, and it is shown that the response of the front face of the slab as well as multiple internal
reflections can all be isolated from the composite response using SSM. Each of these contributions is
specifically mapped to a range-gated pole. The slab of thickness d is located in free space. Its Fresnel
reflection coefficient is calculated as

y(ω) = Γ =

(
η2
1 − η2

0

)
tanh (γ1d)

2η1η0 +
(
η2
1 + η2

0

)
tanh (γ1d)

, (45)

γ1 = jk1, k1 = k0
√
εr, k0 = ω

√
μ0ε0,

η1 = η0/
√
εr, η0 = 120π. (46)

Without loss of generality, normal incidence is considered for illustration. The complex propagation
constant and intrinsic impedance in the lossy dielectric are given by γ1 and η1, respectively. The phase
constant and the intrinsic impedance of free space are denoted as k0 and η0, respectively, while ω is the
angular frequency. The reflection coefficient is calculated at normal incidence over 2–20 GHz bandwidth
and Fourier transformed, using a Hamming window to suppress the sidelobes, to obtain the composite
response shown in Fig. 4. The transform employs distance to the scatterer (or range) instead of time,
an operation known as pulse compression.

Figure 4. Range response of the 15-mm thick
slab reflection coefficient.

Figure 5. Reflection diagram in analogy with
transmission line circuit [71].

Because the phase reference is at the front face, the pulse with peak at zero range is the reflection
off the slab-front; the second pulse is the first reflection off the back face arriving coherently at the
“receiver”; the third pulse is the second re-reflection off the back, and so on, as illustrated geometrically
in Fig. 5 using transmission line analogy [71].

Next, a 10th order state-space model (see Eq. (1)) is estimated from the simulated data. The
model parameters are listed in Table 1, where the poles and signal amplitudes are classified in terms
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Table 1. SSM parameters for model order M = 10.

Index Pole Location Complex Amplitude Abs (Amp) Range (m) Notes

1 1.0000 − j0.0000 −0.3820 + j0.0004 0.381967 0.0000 Front

2 1.0000 − j0.0070 −0.3077 − j0.1057 0.325323 0.0150 Refl. 1

3 0.9999 − j0.0140 0.0374 + j0.0290 0.047331 0.0300 Refl. 2

4 0.9998 − j0.0211 −0.0038 − j0.0058 0.006886 0.0450 Refl. 3

5 0.9996 − j0.0281 0.0002 + j0.0010 0.001002 0.0600 Refl. 4

6 0.9993 − j0.0351 0.0000 − j0.0001 0.000146 0.0750 Refl. 5

8 0.9991 − j0.0421 0.0000 + j0.0000 0.000021 0.0900

9 0.9987 − j0.0492 0.0000 − j0.00000 0.000003 0.1050

10 0.9984 − j0.0562 0.0000 + j0.0000 0.000000 0.1200

7 0.9979 − j0.0632 0.0000 − j0.00000 0.000000 0.1350

(a) (b) 
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Figure 6. Corroboration between SSM model and the truth (Eq. (45)) using only the first five signals
in Table 1. (a) Magnitude, (b) Phase.

of scatterers of interest highlighted in the last column. The rows are sorted in descending order of the
peak amplitude. All the poles lie within or on the unit circle, validating the stability of the system.

It is interesting that the signal peaks are separated in SSM-computed range (see Eq. (38)) by
exactly 15 mm, the thickness of the slab. The dominant pole, located at (1, 0) with amplitude of 0.382
and phase π, is found to have zero range. This signal corresponds to the isolated front face reflection.
The subsequent poles, consecutively spaced at 15 mm, represent the isolated secondary reflections off
the back face, as illustrated in Fig. 4. The first five signals of interest in Table 1 appear to have the
maximum spectral content, as the sixth term is three orders of magnitude smaller than the dominant
signal. Using the coherent summation of only these first five terms in the state space model of Eq. (1),
we have computed the frequency response of the composite signal. Fig. 6 compares the “truth” with
the state space model in both magnitude and phase, and the two sets of curves overlap each other,
signifying excellent model fidelity.

As alluded, one can isolate the front face response by using only the dominant pole at zero range.
The reflection coefficient of this isolated pulse is the same as that of the half-space problem because
the delayed reflections off the back face are not included. Therefore, using the constant amplitude of
Γf = −0.382 + j0.004 from Table 1, the slab’s dielectric constant can be determined as

εr =
(

1 − Γf

1 + Γf

)2

. (47)
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Eq. (47) yields εr = 5−j0.01 exactly, verifying the accuracy of the signal extraction. It is imperative that
isolation of individual signals of interest requires adequate bandwidth to provide the spectral resolution
needed to separate the peaks.

When the thickness of the slab is reduced to 5 mm, one obtains the compressed range response
shown in Fig. 7, which clearly shows the impending merging of the first two peaks. Using a bandwidth
of 18 GHz, these two peaks are very close in amplitude and may not be adequately resolved in range,
but when the bandwidth is increased to 28 GHz, the peaks can be isolated. Furthermore, in the
latter case, the markers also indicate secondary fluctuations appearing at approximately 10 and 15 mm,
corresponding to re-reflections off the back face. However, in measured data, such small fluctuations of
the main lobe may be masked by noise, and a larger bandwidth may not necessarily improve the SNR.

Figure 7. Range response of the 5-mm thick slab
reflection coefficient.

Figure 8. Model error in magnitude of the SSM
frequency response.

Figure 8 plots the model error magnitude of the frequency-domain response for SSM with order
M = 5 (the first five terms in Table 1) and d = 15 mm. The mean error is −77.3 dB, proving that all
the significant signals have been modeled. A similar agreement between raw data and SSM is observed
in the phase too, with mean error of 0.2◦.

The model error for M = 10 and M = 15 does not decrease beyond the error depicted in Fig. 8 for
M = 5. A performance measure for evaluation of the model error is the SNR in Eq. (42). Table 2 lists
the SNR for a few model orders ranging from 5 to 15. It is evident that SSM with M = 10 gives the
highest SNR, and any further increase in the order does not impact the error.

Table 2. SNR as a function of model order for the slab problem.

Model Order 5 10 15
SNR (dB) 67.4 101.1 101.1

A deeper understanding of the sources of modeling error in SSM can be obtained by examining the
error for various model orders relative to the compressed SSM signal. Along with the singular value
spectrum, to be discussed shortly, this will help us in evaluating impact of the signals discarded in the
model as “noise.” Fig. 9 displays the error responses for model orders M = 5 and M = 10, compressed
using a 4,096-point FFT on sequences of length 3,601, with a Hamming window to suppress the noise
sidelobes. For comparison, the compressed SSM signal estimate, identical for the two model orders, is
also shown. The range coordinate for each peak (in mm) is annotated in the graph. We observe that
the SSM signal, ŷ(k), models the five dominant reflections signified by the first five poles (see Table 1),
and the remaining signals are embedded in noise. Because these discarded signals are there in the truth
data of Eq. (45), it is not surprising that the range spectra of the error signal, y(k) − ŷ(k), depict
these discarded noise peaks precisely. The number of such noise peaks embedded in the error sequence
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Figure 9. Comparison of the compressed signal
and noise (error) responses for two model orders.
The numbers above each peak indicate the range
in mm.

Figure 10. Singular value spectrum to determine
the model order.

depends on the model order. For example, with M = 5, we calculate a noise floor of −110 dB (the mean
square of the compressed error pulse) and identify the three noise peaks at 75, 90 and 105 mm. With
M = 10, we can identify the noise peaks at 105, 120 and 135 mm.

The noise spectrum did not change with any further increase in model order beyond 10. Thus, the
last noise peak that one can identify is at 135 mm. As the highest noise peak (at 75 mm) is 90 dB down
from the main reflection at zero range, none of these discarded noise peaks has any influence on the
SNR.

Lastly, we estimate the model order by examining the singular value spectrum plotted in Fig. 10
as a function of its index, r. The SVs are normalized to the largest value (r = 1). The model order can
be determined subject to the threshold [56] σr/σ1 ≈ 10−p, where p is the number of significant decimal
places in the truth data. Thus, if the data are accurate to 7 places, the SV spectrum predicts a model
order of r = 10. In practice, the data may be accurate to the third or fourth decimal place, but not till
the seventh as the simulated reflection coefficient in Eq. (45) for this simple illustrative problem. For
three-digit accuracy, Table 1 indicates that a model order of 10 yields 5 signal poles and 5 noise poles
(weak signals embedded in noise). Indeed, the error analysis in Figs. 8 and 9 validates this observation.

4.2. Scattering by a Sphere

Let us consider the extraction of creeping waves from the canonical problem of scattering by a perfect
electrically conducting (PEC) sphere using the SSM. The scattered field for plane wave incidence is
computed analytically using the Mie series [72], first in the absence of noise, and then with the influence

Figure 11. Normalized RCS of a PEC sphere,
computed using Mie series.

Specular

Creeping wave
peak at 0.455 m vs.
0.455 m predicted

Figure 12. Range profile of the back-scattered
field.
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of additive Gaussian noise. The model order is estimated in each case by examining the singular
value spectrum, and the accuracy of the extracted creeping wave is established by comparison with an
analytically derived asymptotic expression of the creeping wave [73].

4.2.1. Baseline without Noise

The monostatic RCS is calculated for a PEC sphere of radius a = 17.7 cm using the Mie series and is
plotted against frequency over a range of 2 to 20 GHz in Fig. 11. As the radius becomes much larger than
the wavelength, the normalized RCS asymptotically approaches πa2. The contribution to back-scattered
field comes from a specularly reflected ray emanating from point A, and a creeping wave, which attaches
to the sphere tangentially at point B, navigates half the circumference and detaches at the symmetrical
tangential location C, as shown in the inset in Fig. 11. The specular contribution is governed by
geometrical optics (GO) approximation and can be analytically calculated [74]. The creeping wave
diffracted field can be approximated by asymptotic evaluation of the Fock integrals [73, 74].

In order to isolate the scattering centers pertinent to the specular and the creeping wave, we first
compute the range profile of the back-scattered field, displayed in Fig. 12, by FFT of the Mie series
frequency response using a Hamming window to suppress the sidelobes. The phase reference is chosen
such that the point of specular reflection is at zero range. The second peak which corresponds to the
creeping wave is at 0.454 m range, in agreement with the range predicted from ray path geometry (see
the inset of Fig. 11) as 0.455 m, i.e., R = (π/2 + 1)a.

Next, SSM is applied to extract range-isolated poles specific to the creeping wave, and their
cumulative frequency response is calculated. A 10th order state space model is computed from the
Mie series frequency response shown in Fig. 11. We have observed excellent corroboration between
the estimated SSM model and the truth data in Fig. 11 over the entire 18 GHz band. For brevity, we
focus only on representation of the creeping wave using the corresponding range-isolated poles from the
SSM. As described in Section 2, an advantage of using range processing with the spectral estimation
method is the direct relation between range and pole phase (see Eq. (38)). Thus, one may isolate a
given scattering mode by adding contributions from only the poles associated with the range window of
that mode. Of the 10 poles used in the SSM to represent the entire signal in Fig. 11, only two poles are
identified with model-computed range of 0.454 m, relevant to the creeping wave peak. By coherently
summing the contributions of only these two poles, we obtain the extracted frequency response shown
in Fig. 13.

In order to demonstrate baseline validation with no noise present in the data, we also plot in
Fig. 13 an analytical solution for the spherical creeping wave from [73], which essentially overlaps with
the SSM-estimated data. The signal amplitudes for the two creeping wave poles are observed to be
around −36 dB, signifying high accuracy in the model even for small signals. Later, we will evaluate
model robustness using Monte Carlo analysis with Gaussian noise added to the Mie series. The absolute
model prediction error for the creeping wave estimation is plotted in Fig. 14. A similar agreement with
the analytical solution is also observed for the specular peak extracted from the Mie series in Fig. 11.

Figure 13. Comparison of SSM-extracted creep-
ing wave with the analytical solution from [73].

Figure 14. Model prediction error for the
extracted creeping wave relative to the analytical
solution from [73].
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4.2.2. Monte Carlo Analysis

The SSM extraction of signals of interest from Mie series in the presence of noise is considered next.
Monte Carlo (MC) analysis is performed by adding random noise of a given SNR to the Mie series
solution for the PEC sphere and evaluating the accuracy of the SSM-extracted components, namely,
the creeping wave and the specular. The measurement noise w(k) (see Eq. (1)) is assumed to be complex
white Gaussian with variance σ2

n, defined by peak signal-to-noise ratio

SNR = 20 log
(
σsn

σn

)
, (48)

where σ2
sn denotes the signal variance. For a given SNR, 1000 independent trials are executed on the Mie

series solution, and the state space method is applied to process each noise-corrupted data sequence and
extract the wave constituents of interest. In order to assess the quality of the data, the noise-corrupted
Mie series (truth) data is plotted in Fig. 15 against SSM model (with order M = 10) of the total
response for the mean of 1000 MC trials with SNR = 20 dB. It is observed that coherent averaging of
the MC trials reduces the influence of noise considerably. As the electrical size of the sphere increases,
the asymptotic limit of SSM correctly reaches πa2.

Next, we consider the extraction of the specular wave. Fig. 16 depicts the frequency response
corresponding to SSM processing of the average of 1000 MC trials, with SNR ranging from 5dB to
20 dB. Only two poles are used in the SSM for the extraction. The response for each SNR is observed
to track the analytical (noise-free) solution quite well. The worst-case error relative to the reference
solution is about 0.05 dB and occurs for SNR = 5 dB. More importantly, because of the relatively large
amplitude of the specular (about −10 dB), we have observed good correlation between corresponding
pole locations for each trial. For brevity, the pole plots are not included.

Figure 15. Average of the SSM-extracted Mie
series composite signal over 1000 Monte Carlo
trials.

Figure 16. Average of the SSM-extracted
specular wave signal over 1000 Monte Carlo trials.

We address Monte Carlo analysis of the creeping wave next. As seen in Fig. 13, the noise-free
creeping wave signal has an amplitude of −20 to −70 dB, and therefore, adding noise before the creeping
wave extraction would considerably stress the state space algorithm. Fig. 17 displays the performance
of SSM in extracting the creeping wave for various SNRs, relative to the reference analytical solution
from [73].

The extracted signal is in reasonable agreement with the analytical solution for SNR ≥ 10 dB. The
SSM estimate deviates significantly from the reference solution at frequencies greater than 10 GHz for
SNR = 5dB. For SNRs between 5 and 15 dB, the error increases with frequency for f > 16 GHz, but the
RCS response is around −70 to −65 dB, which is approaching the noise floor. It has been observed that
the pole drift from trial to trial becomes significant for SNR = 5dB, and in fact, for signals smaller than
−60 dB, it becomes difficult to discriminate noise poles from the signal poles. Therefore, for weak signals
such as creeping waves, caution should be exercised in extracting the signal under low SNR conditions.
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Figure 17. Comparison of SSM-extracted
creeping wave for the average of 1000 MC trials
with the analytical solution from [73].

Figure 18. Model prediction error for the
extracted creeping wave relative to the analytical
solution from [73] after 1000 MC trials.

Nevertheless, the worst-case performance of SSM under the stressing conditions depicted in Fig. 17 is
gratifying, given that the frequency response of the creeping wave signal for each SNR, extracted from
the average of 1000 MC trials of the Mie series, follows the overall analytical trend. One can improve
the noise performance by employing two-dimensional data, e.g., aspect- and frequency-dependent RCS,
which improves the SNR by coherent integration of frequency samples over many pulses [61, 62].

The absolute model prediction error for the creeping wave estimation from the average of 1000
MC trials on the Mie series is plotted in Fig. 18 in terms of the SNR. It is evident that the worst-case
error for SNR = 5 dB is between two and four orders of magnitude larger than the model error for the
noise-free case shown in Fig. 14. For SNR ≥ 10 dB, the error is only slightly larger than that in Fig. 14.

Lastly, we investigate the model order by computing the singular value spectrum as well as AIC
and MDL estimates. It is seen in Fig. 19 that the transition from strong signal components to small
singular values is not well defined because of noise. AIC yields model order of 20 while MDL yields 7.
Due to measurement noise, AIC usually gives a larger estimate than MDL, and modelers usually choose
an order no smaller than the AIC prediction. Therefore, an order of 20 has been chosen to extract the
wave features of interest for the sphere. Compared to estimates in the dielectric slab case, which have
a very high SNR (see Table 2), the accuracy in the SSM estimate for the MC trials is much lower, of
the order 0.001.

Figure 19. Singular value spectrum vs. model order for noisy data with SNR = 5. MDL yields a
model order of 7 and AIC, an order of 20.
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5. EXTRACTION OF PARAMETERS FROM MEASURED DATA

Section 4 presented a detailed description of the process to extract parameters of interest from simulated
data on two canonical objects, namely, dielectric slab and sphere. In this Section, we briefly summarize
efforts on the application of SSM to the measured data on relatively complex EM problems, including
canonical radar target scattering, biomedical radar and microwave circuits.

5.1. Canonical Target Scattering

The reader refers to [40] for application of the SSM to wave-oriented feature identification using
monostatic RCS measured data on a large conical metallic target with and without a lossy dielectric
coating. The results therein demonstrate the isolation of electromagnetic wave species of interest, such
as creeping waves, multiply diffracted waves and specular scattering, using a small number of range-
classified poles specific to each species. Detailed study of the isolated wave species yields a better
understanding of the physics behind wave propagation around curved dielectric and coated structures,
thereby improving the accuracy of feature extraction or target identification. For example, it has been
shown that a thin dielectric coating enhances the creeping wave contribution significantly in certain
directions compared to the metallic cone, suggesting efficacy of the coating to absorb EM wavesat certain
incident angles and frequencies [40], which may be of significant interest in military applications.

5.2. Biomedical Radar

SSM has been successfully applied to estimate cardiopulmonary parameters of a stationary human
subject in [41–43]. The biomedical UWB radar [41–43] uses narrow pulses to probe the human body and
track tiny cardiopulmonary chest movements by spectral analysis of the backscattered EM field. With
the help of super-resolution spectral algorithms [52], the UWB radar is capable of increased accuracy in
estimating vital signs such as heart and respiration rates in adverse signal-to-noise conditions. A major
challenge for the biomedical radar system is detection of the heartbeat with high accuracy, because of
minute thorax motion (less than 0.5 mm) caused by heartbeat. The problem becomes compounded by
EM clutter and noise in the ambient environment. We have shown that SSM processing of the UWB
radar data on an indoor stationary human subject consistently produces accurate estimates of the vital
signs for several independent channels of UWB data without producing harmonics and inter-modulation
products that plague signal resolution in the widely used FFT spectrograms [41]. Our extensive work on
state-space methods to process biomedical radar data [41–43, 75, 76] suggests that the SNR of vital sign
detection can be substantially improved, and additional features such as subject localization, motion
compensation, gait analysis, etc., can be estimated, using block-processing of one-dimensional data (in
the frequency domain) to attain considerably improved accuracy over FFT-based methods.

5.3. Isolation of Discontinuity Effects in a MEMS Interconnect

A variety of MEMS series and shunt switches, varactors and other circuits have been developed at MIT
Lincoln Laboratory which operate over 100 GHz bandwidth with low insertion loss (cf. [77]). Muldavin et
al. reported a low-loss MEMS packaging technology which facilitates these devices to be integrated with
other RF circuits on the same wafer using CMOS-compatible fabrication methods [78]. This package
features interconnects (transmission lines) based on inverted suspended microstrip configuration, with
insertion loss typically less than 0.1 dB for a 100 µm long line over 50 GHz bandwidth and absolute
phase error less than 1◦ for 10.8 mm long line.

The physical layout of the packaged interconnect is shown in Fig. 20 [78]. The circuit consists
of an inverted microstrip transmission line, 10.8 mm long, on a 25 µm-thick silicon-on-insulator (SOI)
layer, with low-inductance vias through the wafer providing the ground connection. Electrically isolated
posts in the cavity provide support for bump bonds on the center conductor. The S-parameters of this
packaged transmission line were measured from 100 MHz to 40 GHz using an Agilent Vector Network
Analyzer (VNA) and a Cascade Summit Probe Station [78]. An SOLT calibration substrate was used
to calibrate the measurements to the probe tips. The circuit between the probe tips includes two
CPW-to-inverted microstrip transitions through the package vias (see Fig. 20), and their influence has
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Figure 20. Illustration of the packaged MEMS interconnect [78] (with permission from IEEE).
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Figure 21. S11 and S21 range profiles for 10.8 mm line [36].

to be “gated out” in order to extract the desired transmission line parameters of the interconnect from
measurements.

SSM has been used to derive an AR (all pole) system model from the measured S-parameters,
which extracts the transmission line parameters for the packaged MEMS circuit in Fig. 20 by isolating
and removing the CPW discontinuity effects [36]. Fig. 21 displays the range profile of the wideband
measured data for S11 and S21 on a 10.8 mm long MEMS line. This plot is similar to time-gated
waveforms seen on a VNA, except that post-processing allows better noise filtering and improves the
resolution. The peak of S21 corresponds to the leading edge of the line, and the small S11 peak directly
below it gives the reflection off the line. The two larger peaks in S11 (on either side of the center)
correspond to the leading and trailing returns from the input and output transitions, respectively.

Good agreement is observed between the measured S-parameters and the 4-pole SSM model derived
in [36]. In general, the magnitude discrepancy for the model fit is less than 0.5 dB, and the phase
discrepancy is within 0.4◦ over 40 GHz bandwidth. Of these four poles, only one has zero range that
corresponds to the line input reference. The other poles are associated with the transitions and are not
considered in evaluation of the line parameters.
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Attenuation and Phase Constants. 10.8 mm MEMS Line.
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Figure 22. Attenuation and phase constants
computed from S21 [36].
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Figure 23. Characteristic impedance computed
from isolated S11 [36].

The attenuation and phase constants are computed using the single pole corresponding to the
peak of S21 and are plotted in Fig. 22. The line loss is determined to be 0.75 dB/cm at 20 GHz and
1.04 dB/cm at 40 GHz, which compare very well with the values estimated in [78] using differential line
measurements. The phase changes linearly with frequency and yields an effective dielectric constant of
2.85 to 2.9 between 1 GHz and 40 GHz, again in excellent corroboration with independent calculations
in [78]. Using the isolated peak of S11 at zero range (see Fig. 21), we have also computed the
characteristic impedance of the line, assuming a reference termination of 50 Ω. The resulting plot
(Fig. 23) shows that the impedance (real part) is within 0.1 Ω of the nominal value over the wide
40 GHz bandwidth, attesting to the accuracy of the state space model. The imaginary part is less than
65 m Ω over the entire 40 GHz band. It is emphasized that network synthesis using lumped equivalent
circuit models over such a large bandwidth is excessively cumbersome and entails a large model order
even if a model can be found [79, 80].

6. CONCLUSIONS

A spectral model based on state-space ARMA representation has been presented to isolate and extract
modal EM responses, such as creeping waves and multiply reflected or diffracted waves, which are of
interest in radar target identification, and feature extraction. The eigenvalues of the open-loop system
matrix, i.e., poles of the ARMA transfer function, provide the range and frequency-dependent amplitude
decay/growth rate of the field data. The amplitudes in the complex exponential model are obtained
by least squares modal decomposition involving the state matrices. Range classification of the poles
allows for the isolation of desired responses in the EM signature via pulse compression and spectral
decomposition. For purposes of illustration, in this paper the SSM is reviewed by application to two
simple EM problems, namely, Fresnel reflection by a dielectric slab and the extraction of creeping waves
using Mie scattering by a PEC sphere. The method has been applied to isolate the leading-edge reflection
and multiple internal reflections of the slab. It is shown that range-classification of the singularities
in the response enables characterization of the isolated reflected waves using a low model-order SSM
representation. In the second example, we have analyzed the extraction of creeping waves from Mie
scattering by a PEC sphere in the absence of noise. The SSM estimates of the extracted creeping
wave have been validated by comparison with an analytically derived expression of the creeping wave.
Next, random white Gaussian noise is added to the Mie series solution, and Monte Carlo simulation is
performed to examine robustness of the SSM estimates to noise. Numerical considerations such as SNR,
singular value spectrum, and order determination are addressed in detail for both of these examples.

The extraction of EM parameters using SSM on the measured data for relatively complex EM
problems, including canonical radar target scattering, biomedical radar, and microwave circuits has
been summarized. A state-space spectral model has been presented for the parametric characterization
of wideband transmission lines in a MEMS package, including a detailed description on the removal
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of package-specific discontinuity effects. SSM enables the representation of measured S-parameters
using a compact low-order all-pole model, which filters out measurement noise and facilitates extraction
of distributed circuit parameters, such as propagation constant and characteristic impedance. It is
anticipated that direct equivalent circuit synthesis from the system model, as opposed to the measured
data, leads to more efficient optimization in circuit simulators.

APPENDIX A.

In terms of the finite-rank observability matrix Ω̃ ∈ C(N−L+1)×M computed from the SVD in (25) as

Ω̃ =
[
C CA CA2 . . . CAN−L−1 CAN−L

]T
, (A1)

the state transition or the open-loop matrix A ∈ CM×M is determined by the solution to the matrix
equation

Ω̃−r�A = Ω̃−r1, (A2)

with

Ω̃−r1 =
[
CA CA2 CA3 . . . CAN−L

]T
, (A3)

Ω̃−r� =
[
C CA CA2 . . . CAN−L−1

]T
. (A4)

It is observed that the matrices Ω̃−r1 and Ω̃−r� are obtained by deleting the first and last rows,
respectively, of the matrix Ω̃ in Eq. (A1). Using the pseudo-inverse least squares on Eq. (A2), we
obtain the state transition matrix A given in Eq. (26) and repeated below.

A =
(
Ω̃∗
−r�Ω̃−r�

)−1
Ω̃∗
−r�Ω̃−r1. (A5)

This matrix may also be derived from the controllability matrix Γ̃ ∈ CM×L derived from the SVD in
Eq. (25) as

Γ̃ =
[
B AB A2B A3B . . . AL−1B

]
. (A6)

It follows that the state transition matrix A satisfies the matrix equation

AΓ̃−c� = Γ̃−c1, (A7)

with

Γ̃−c1 =
[
AB A2B A3B . . . AL−1B

]
, (A8)

Γ̃−c� =
[
B AB A2B . . . AL−2B

]
. (A9)

Eqs. (A8) and (A9) are obtained by deleting the first and last columns, respectively, of the controllability
matrix Γ̃ in Eq. (A6). By solving Eq. (A7) for A using the pseudo-inverse least squares method,
equivalent to Eq. (A5), we obtain (also see Eq. (27))

A = Γ̃−c1Γ̃∗
−c�(Γ̃−c�Γ̃∗

−c�)
−1. (A10)

Next, we address the computation of control and observation matrices, B and C, respectively, using
two alternative approaches. In the first approach, it follows from Eq. (A1) that the observation matrix
C is simply given by the first row of the observability matrix,

C = Ω̃(1, :). (A11)

Alternatively, the IIR approximation, ŷ(k), of the data sequence y(k), k = 1, 2, . . . , N, can be computed
in terms of the state matrices using Eq. (16) as

ŷ(k) = CAk−1B, k = 1, 2, . . . , N. (A12)

We define the augmented observability matrix employing all the N samples:

Ω̃N =
[
C CA CA2 . . . CAN−1

]T
, (A13)
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which is related to the impulse response in Eq. (A12) as

Ω̃NB = ŷT . (A14)

Therefore, in order to minimize the error between the model ŷ and the measured data vector y, the
control matrix B is computed by the pseudo-inverse least squares method, as shown below.

B =
(
Ω̃∗

N Ω̃N

)−1
Ω̃∗

N ŷ
T . (A15)

In summary, in the first approach, one may calculate the matrices C and B from the observability
matrix Ω̃, using Eqs. (A11) and (A15), respectively.

Alternatively, in the second approach, B is computed from the first column of the controllability
matrix in Eq. (A6) as

B = Γ̃(:, 1), (A16)

and C follows from the least squares fit between the data sequence y(k), and the state-space IIR
approximation ŷ(k) in Eq. (A12), as shown next. In terms of the augmented controllability matrix

Γ̃N =
[
B AB A2B . . . AN−1B

]
, (A17)

the estimation problem for C may be written as

CΓ̃N = ŷ, (A18)

and its pseudo-inverse least squares solution yields

C = ŷΓ̃∗
N (Γ̃N Γ̃∗

N )−1. (A19)

To summarize, it is emphasized that there are two expressions for the state transition matrix, A,
and two corresponding alternative approaches to computing B and C. The matrix A may be computed
from either the observability matrix using Eq. (A5) or the controllability matrix using Eq. (A10).
Correspondingly, the matrices B and C must be computed by using either Eqs. (A15) and (A11),
or Eqs. (A16) and (A19), respectively. In order to improve the estimation accuracy in a low SNR
environment, we almost always employ the least-squares computations in Eqs. (A15) and (A19) to
estimate B and C, respectively, and seldom use Eqs. (A16) and (A11).
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