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An Oscillator Type Active Integrated Antenna Using GaN/AlGaN
HEMT with Maximum Power at Second Harmonic
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Abstract—In this paper an oscillator-type GaN HEMT based active integrated antenna is proposed
where the active part of the circuit and patch antenna are in series. The patch antenna is designed
to offer optimum impedance at second harmonic to generate maximum power at second harmonic and
overall negative resistance at fundamental frequency for sustained oscillation. The circuit has been
designed, fabricated, and characterized. The fundamental frequency of oscillation of this circuit is
1.5 GHz. This circuit has Effective Isotropic Radiated Power (EIRP) of 32.1 dBm at 3GHz. Power at
the fundamental frequency is suppressed due to mismatch of input impedance of patch antenna and
deviation from optimum load required for maximum radiation at fundamental frequency. The power
radiated at fundamental frequency is 15.7 dB lower than the power radiated at second harmonic. This
design technique can be used for radiating useful high power much beyond the cutoff frequency of the
transition of active device.

1. INTRODUCTION

Microwave and millimeter-wave communication system and radar system have several advantages over
low frequency systems e.g., wide bandwidth and compact system. These systems require high power
signal source with low phase noise [1]. To get the signal source at high frequency, multiplier is used in
conjunction with low frequency oscillator due to limited power source at higher frequency which causes
increase in phase noise of the signal source and increase in size of the circuit.

Power handling of solid state device decreases with increase in frequency. GaN/AlGaN HEMT
has high power handling capability due to high breakdown voltage and high current density [2–8].
So, GaN/AlGaN HEMT is expected to generate high power. An active integrated antenna (AIA)
approach has been employed in RF front end application. In this approach, active circuit and antenna
are designed simultaneously with antenna performing multiple functions, e.g., load, radiator, filter,
frequency conversion, and matching network. Active circuit and antenna are connected directly. Direct
integration of antenna and oscillating circuit leads to elimination of feed line and some part of the
circuit which minimizes circuit size and loss [8–14]. At millimeter wave power can be increased to very
high level using spatial power combining technique and AIA concept [15]. As a radiating element patch
antenna is used as it is simple and can be integrated with planar microwave circuit.

In this paper, a new technique for oscillator type AIA using GaN/AlGaN HEMT is proposed which
can generate maximum power at second harmonic. So the frequency of the signal source can be increased
without using multiplier, and high power can be generated, in principle much beyond ft of the transistor
using this technique.
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2. DESIGN METHODOLOGY

At microwave frequency, oscillator is designed using negative impedance technique if the device is
potentially unstable at desired frequency. In conventional design, terminating network is designed at
fundamental frequency at one port to select potentially unstable region at another port. Matching
network and load are designed at fundamental frequency of oscillation at another port [16]. In this
architecture for oscillator type AIA terminating network is designed at fundamental frequency at input
port, and based on terminating network, output impedance is calculated at the output of an active
device at both fundamental frequency and second harmonic. Patch antenna is designed with resonance
frequency above oscillation frequency of oscillator in such a way that input impedance offered by
the patch antenna at second harmonic frequency also has optimum impedance for maximum power
generation at second harmonic in an active circuit. The input impedance at fundamental frequency is
lower than the magnitude of output impedance of oscillator at fundamental frequency to have overall
negative resistance at fundamental frequency to maintain sustained oscillation. Patch antenna acts as
matching network, resonator, harmonically tuned load at fundamental frequency and second harmonic
and radiator for this oscillator type AIA. As shown in Figure 1, the architecture of this oscillator type
AIA consists of terminating network, GaN/AlGaN HEMT with a biasing network and patch antenna.
Terminating network is designed at 1.6 GHz, and the patch antenna is designed with resonance frequency
above the fundamental frequency of oscillator with optimum impedance for maximum power generation
at second harmonic and sustained oscillation. The antenna is directly connected to an active part of
the oscillator. This circuit radiates maximum power at second harmonic frequency and acts to double
the frequency of oscillator.

Vgs Vds

Terminating 
N/w @fo

Optimum  
matching 
@2fo

Negative resistance@fo
(-Rinof transistor>Rinof patch)

Figure 1. Architecture to double the frequency of oscillator using AIA.

3. AIA SIMULATION

A GaN HEMT based negative resistance oscillator is designed at 1.6 GHz in Keysight Advanced Design
System (ADS) software using Cree CGH40010 device on a Roger 4350 substrate. The first device is
biased at V ds = 29 V and V gs = −2.1 V and simulated to check the stability factor in ADS. Since
the device is potentially unstable at 1.6 GHz, the terminating network is designed at input port to
generate negative resistance at output port. Output impedance of transistor with terminating network
at fundamental frequency is (−2.3 + j ∗ 4.25)Ω and at second harmonic is (21.7 + j ∗ 26.15)Ω. The
patch antenna is designed in CST Microwave Studio with resonance frequency and second harmonic at
1.642 GHz and 3.284 GHz, respectively. Input impedance of antenna at 1.6 GHz is (0.25 + j ∗ 19.55)Ω
and at 3.201 GHz is (54.7 + j ∗ 125.05)Ω. S-parameter of patch antenna is imported into ADS, and the
patch antenna is directly connected with the active circuit in ADS. This circuit has overall negative
resistance at 1.6 GHz for sustained oscillation and nearly optimum load required for power generation
at second harmonic. The patch antenna has a gain somewhat less than usual, since the frequency of
oscillation of circuit does not match with resonance frequency of patch antenna.

P = 0.5Real[V ∗ Conjugate (I)] (1)
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Figure 2. Simulated generated power at input of patch antenna.

Figure 3. Transient Simulated voltage at input of patch antenna.

Harmonic balance simulation is done in ADS to simulate the frequency of oscillation, voltage, and
current in circuit. Power generated at the input of patch antenna is calculated by Equation (1). In
Eq. (1) P is the power generated at the input of patch antenna, and V and I are the voltage and current
generated at the input of patch antenna at the frequency of oscillation for radiation.

Figure 2 shows the frequency of oscillation and simulated generated power at the input of patch
antenna in ADS. Simulated generated power at second harmonic is 32 dBm which is 11.5 dB higher than
the power generated at fundamental frequency. Transient simulation is also done in ADS to see the
sustained oscillation. Figure 3 shows the transient simulation of generated voltage at input of patch
antenna in ADS. Generated voltage shows that this circuit has sustained oscillation.

4. MEASUREMENT RESULT AND DISCUSSION

Oscillating AIA is fabricated. Active component GaN HEMT and passive components are mounted
on the fabricated circuit substrate. The fabricated circuit is fixed on an aluminum plate for fast heat
dissipation during measurement. Figure 4 shows a photograph of the fabricated circuit with all mounted
components. Measurement is performed in an anechoic chamber. The output power of oscillating
antenna is measured in far field using a horn antenna placed 2.25 meters away from the fabricated
AIA. A Keysight EXA Signal Analyzer is used to measure the power radiated from antenna. Signal
Analyzer is connected to receiving horn antenna via cable. EIRP is calculated using Friis transmission
equation [2].

EIRP =
(Prec)

Gr

(
λ

4πr

)2

(CableLoss)

(2)

In Equation (2), Prec is the received power in spectrum analyzer, Gr the gain of receiving Horn antenna
used for measurement, and (λ/4πr)2 the free-space loss. Note that cable loss is taken care by dividing
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Figure 4. Photograph of fabricated active
integrated antenna.

Figure 5. Measured EIRP of active integrated
antenna.

received power with measured cable loss. Measured received power in signal analyzer is −13.89 dBm at
second harmonic frequency 3.016 GHz. Measured cable loss at 3.016 GHz is −5.98 dB. Free path loss
is −49.138 dB. The gain of horn antenna is 9.1 dB. EIRP calculated from Friis transmission equation
is 32.128 dBm at 3 GHz. Figure 5 shows the spectrum of measured EIRP. The highest EIRP achieved
is 32.13 dBm at bias voltages V ds = 29 V and V gs = −2.1 V. The EIRP achieved at fundamental
frequency is 16 dB lower than EIRP at second harmonic. The highest dc to RF conversion efficiency
achieved is 24% with V ds = 27 V and V gs = −2.1 V, and the EIRP calculated at highest conversion
efficiency is 32 dBm. The comparison of EIRP of previously reported self oscillating AIA with this work
is reported in Table 1. This GaN/AlGaN PHEMT based circuit achieves the highest EIRP and very
good DC to RF efficiency using single active device. Even excluding antenna gain which is not high,
the power radiated is quite substantial. This circuit also proves the concept to double the frequency of
oscillation of oscillator using AIA concept.

Table 1. Comparison of EIRP of previously reported self oscillating AIA with this work.

Refs
Frequency

(GHz)
Active

Device used
EIRP
(dBm)

DC to RF
Efficiency (%)

No of
device

[17] 5.8 GaAs MESFET 12.83 25.7 1

[18]
0.87
2.77

HJ-FET
7.53
5.1

31
43

1
1

[19] 5.05 HJ-FET 10.1 - 1
[20] 5.267 HJ-FET 18.37 31.3 1
[21] 69.6 GaAs PHEMT −13.2 0.12 2

This work 3.01 GaN PHEMT 32.13 24 1

5. CONCLUSION

This paper presents a novel design technique to increase th efrequency of oscillation and the EIRP of
self oscillating AIA. An oscillator is integrated with a patch antenna which acts as resonator, output
matching network, and harmonically tuned load, which leads to compact size and improved DC-RF
efficiency. Improvement in matching of antenna at output of oscillator at second harmonic leads to the
increase in EIRP at higher frequency. The proposed oscillator type AIA generates high EIRP of 32 dBm
at 3GHz (second harmonic frequency) of oscillator with 24% dc to RF conversion efficiency. Therefore,
the proposed GaN HEMT based AIA concept can be used to generate useful power at higher frequency.
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