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Rigorous Quantum Formulation of Parity-Time Symmetric
Coupled Resonators

Shaolin Liao1, * and Lu Ou2

Abstract—Rigorous quantum formulation of the Parity-Time (PT) symmetry phenomenon in the
RF/microwave regime for a pair of coil resonators with lump elements has been presented. The coil
resonator is described by the lump-element model that consists of an inductor (L), a resistor (R), and
a capacitor (C). Rigorous quantum Hamiltonian for the coupled RLC coil resonators system has been
derived through twice basis transforms of the original basis. The first basis transform rotates the original
basis such that off-diagonal terms of the governing matrix of the equation system of the coupled coil
resonators is reduced to constants. Then a second basis transform obtains the quantum Hamiltonian,
including the diagonal effective complex frequencies and off-diagonal coupling terms, together with
the transformed basis. With the obtained quantum Hamiltonian, the eigenvalues and eigenvectors of
the coupled coil resonators can be obtained as usual as the quantum Hamiltonian. Finally, numerical
simulation verifies the correctness of the theory. The quantum formulation of the coupled coil resonators
can provide better guideline to design a better PT-symmetric system.

1. INTRODUCTION

Parity-Time (PT) symmetry has shown great potential as ultra-sensitive sensors [1, 2], Wireless Power
Transfer (WPT [3–5]), gain/loss controlled lasers [6], and absorber [7], in both the photonics [8, 9] and
microwave [10] regimes. PT symmetry is a physics phenomenon that originates from the quantum
community: it was first proposed in quantum mechanics by Bender and Boettcher in 1998 [11].
Counterintuitively, it is argued that real eigenfequencies exist even for a non-Hermitian Hamiltonian
when a quantum system is invariant under operations of spatial reflection P(x) and time reversal T (t)
operations. This can be made clear by looking at the Hamiltonian given below [12],

H(ω) =
[
Ω − jg 1

1 Ω + jg

]
, (1)

where the Hamiltonian has been normalized by the diagonal coupling strength κ; Ω is the normalized
natural frequency of the two identical coupled resonators; ±g are the normalized gain/loss of the coupled
resonators. The eigenfrequencies of the Hamiltonian in Eq. (1) are given by,

Ω± = Ω ±
√

1 − g2, (2)

from which it can be seen that the eigenfequencies are real when the gain/loss is smaller than the coupling
strength, i.e., g < 1 and are imaginary when the gain/loss is larger than the coupling strength, i.e.,
g > 1; finally, when the gain/loss is equal to the coupling strength, i.e., g = 1, the two eigenfrequencies
coalesce to an identical eigenfrequency, which is called the Exception Point (EP).
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The existence of PT-symmetric quantum system has not been experimentally demonstrated due to
the difficulty of generating the non-Hermitian quantum system. However, gain and loss can be readily
introduced in photonics [13–20]. So PT symmetry can be introduced by designing the proper gain-loss
profile so that the PT symmetry phenomenon happens. Following the pioneering theoretical work by
El-Ganainy et al. [21], the feasibility of translating this quantum-inspired symmetry to the optics regime
has been demonstrated in a various contributions and, specifically, in coupled optical structures [22–
27]. Later, it has also been demonstrated in the electromagnetic and acoustic systems [28, 29], whose
governing Helmholtz equation [30–47] is similar to the Schrödinger equation in the quantum physics.
These PT-symmetric wave systems are usually realized by introducing the spatial distribution of
balanced gain-loss profiles.

In particular, at RF and microwave frequencies, a PT-symmetric system can be readily realized with
transmission-line networks or lumped-element circuits [48–51]. However, most of the works above take
the quantum Hamiltonian as granted, assuming that the diagonal natural frequencies are the resonant
frequencies of the coupled coil resonators and that the off-diagonal coupling terms are known. Also,
it is generally assumed that the basis of the quantum Hamiltonian consists of stored energies in the
coupled coil resonators, but no clear formula exists. In this paper, rigorous quantum formulation has
been derived, and all of these will be clear, providing guideline to design a better coupled coil resonators
and its system [1, 52, 53].

2. THE COUPLED RLC COIL RESONATORS

A resonant coil can be modeled as an RLC tank that consists of 3 components in parallel: an inductor
with inductance L, a capacitor with capacitance C, and a resistor R. The RLC tank in series can be
converted to the RLC tank in parallel through the Kirchhoff Voltage Law (KVL) and Kirchhoff Current
Law (KCL).

2.1. The Governing Equations System

When a pair of RLC resonant tanks are brought close to each other, they are coupled together through
magnetic flux of the two inductive coils, which can be characterized by the mutual inductance M . The
coupled resonant coils can be analyzed by the physical quantities of currents i1/i2 and voltages v1/v2

through the indicators of the two coupled coil resonators,

v1 = L1
di1
dt

+ M
di2
dt

, v2 = L2
di2
dt

+ M
di1
dt

. (3)

The Kirchhoff Current Law (KCL) connects the currents through the inductor with inductance L,
the capacitor with capacitance C, and the resistor with conductance G as follows,

i1 + C1
dv1

dt
+ G1v1 = 0, i2 + C2

dv2

dt
+ G2v2 = 0. (4)

Taking Fourier transforms on Eq. (3) and Eq. (4), after some mathematics, the following is obtained,(
−ω2

ω2
1

+
jω

α1
+ 1
)

v1(ω) +
(
−ω2

κ2
2

+
jω

γ2

)
v2(ω) = 0(

−ω2

ω2
2

+
jω

α2
+ 1
)

v2(ω) +
(
−ω2

κ2
1

+
jω

γ1

)
v1(ω) = 0,

(5)

with

ω1 =
1√

L1C1
, α1 =

1
L1G1

, κ1 =
1√

MC1
, γ1 =

1
MG1

,

ω2 =
1√

L2C2
, α2 =

1
L2G2

, κ2 =
1√

MC2
, γ2 =

1
MG2

.
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Equation (5) can be normalized by scaling the frequency ω̃ = ω/ω1 as follows,(
−ω̃2 +

jω̃

α̃1
+ 1
)

v1(ω̃) +
(
−ω̃2

κ̃2
2

+
jω̃

γ̃2

)
v2(ω̃) = 0,(

−ω̃2

ω̃2
2

+
jω̃

α̃2
+ 1
)

v2(ω̃) +
(
−ω̃2

κ̃2
1

+
jω̃

γ̃1

)
v1(ω̃) = 0,

(6)

with

α̃1 =
1

G̃1

, κ̃1 =
1√
M̃

, γ1 =
1

M̃G̃1

,

ω̃2 =
1√

L̃2C̃2

, α̃2 =
1

L̃2G̃2

, κ̃2 =
1√

M̃C̃2

, γ2 =
1

M̃G̃2

,

and the normalized quantities defined below,

G̃1 =
√

L1

C1
G1, M̃ =

M

L1
,

L̃2 =
L2

L1
, C̃2 =

C2

C1
, G̃2 =

√
L1

C1
G2.

In terms of matrix form, Eq. (6) can be expressed as follows,

M(ω̃)
[
v1(ω̃)
v2(ω̃)

]
= 0, (7)

with

M(ω̃) =

⎡
⎢⎢⎢⎣
−ω̃2 +

jω̃

α̃1
+ 1

−ω̃2

κ̃2
2

+
jω̃

γ̃2

−ω̃2

κ̃2
1

+
jω̃

γ̃1

−ω̃2

ω̃2
2

+
jω̃

α̃2
+ 1

⎤
⎥⎥⎥⎦ .

2.2. The Hamiltonian of the Coupled RLC Coil Resonators

From Eq. (7), it can be seen that matrix equations contain second order frequency components. To
cast the matrix equation into the Hamiltonian of a coupled resonators, two times of changes of basis
are required.

During the first basis change, M(ω̃) is transformed such that the diagonal terms are reduced to
zeros, and the following transformation matrix T 1 is given below,

T 1 =
[

L2 −M
−M L1

]
. (8)

Then a second change of basis is performed with the transformation matrix T 2, and the Hamiltonian
equations of the coupled resonators can be expressed as follows,

T 1M(ω̃)
[
v1(ω̃)
v2(ω̃)

]
=
[
ω̃I −H(ω̃)

]
T 2

[
v1(ω̃)
v2(ω̃)

]
= 0, (9)

where I is the unit matrix and

H(ω̃) =
[

Ω̃1 κ1,2

κ2,1 Ω̃2

]
, (10)

and the following transformation matrix,

T 2 =
[
ω̃ − Ω̃′

1 κ′
1,2

κ′
2,1 ω̃ − Ω̃′

2

]
. (11)

Substituting Eq. (11) into Eq. (9), the following is obtained,

T 1M(ω̃) =
[
ω̃I −H(ω̃)

]
T 2, (12)

from which all the unknown parameters can be solved.
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2.3. The Eigenvalues and Eigenvectors

With the obtained Hamiltonian H, the eigenvalues of the coupled resonant coils are given by,

Ω̃± =
Ω̃1 + Ω̃2

2
±

√√√√κ12κ21 +

(
Ω̃1 − Ω̃2

2

)2

, (13)

and the corresponding eigenvectors are as follows,

v± =
[

κ12

Ω̃± − Ω̃1

, 1
]T

. (14)

2.4. Solutions of the Hamiltonian

The solution of the Hamiltonian H and the corresponding basis transform matrix U can be obtained
by solving Eq. (12), which are shown as follows,

Ω̃±
1 = j

G1

2
± Ω̃

(
Ω̃±

2

)
, (15)

with {[
Ω̃
(
Ω̃±

2

)]2
− Γ2

}{[
Ω̃±
(
Ω̃±

2

)]2
− Γ′2

}
+ M2 = 0,

and the following parameters,

Ω̃
(
Ω̃±

2

)
=

√(
Ω̃±

2 − j
G2

2C2

)2

+ (Γ2 − Λ2),

Ω̃±
(
Ω̃±

2

)
= Ω̃±

2 ± Ω̃
(
Ω̃±

2

)
− j

G2

2C2
,

Λ =
1

2C2

√
4C2 − G2

2L2 + G2
2M

2

L2 − M2

Γ =
1
2

√
4L2 − G2

1L2 + G2
1M

2

L2 − M2
, Γ′ = j

(
G2

2C2
− G1

2

)
.

Also, the coupling terms κ12 and κ21 are obtained as follows,

κ12 =
M

−j G2
C2

+ Ω̃1 + Ω̃2

; κ21 =
Γ2 −

(
Ω̃1 − j G1

2

)2

κ12
. (16)

Finally, other parameters such as Ω̃′
1, Ω̃

′
2, κ

′
12, κ

′
21 of the transformation matrix T 2 can be obtained

accordingly.

Ω̃′±
1 = jG1 − Ω̃±

1 , Ω̃′±
2 =

C2M

jG2 − C2Ω̃±
1 − C2Ω̃±

2

,

κ′
12 = c3Ω̃±3

1 + c2Ω̃±2
1 + c1Ω̃±

1 + c0, κ′
21 = Ω̃±

2 − j
G2

C2
,

(17)

with

c1 =
jG1Ω̃±

2

M
+

L2

M(L2 − M2)
+

G1G2

C2M
,

c2 = − Ω̃±
2

M
+ j

(
G1

M
+

G2

C2M

)
,

c3 = − 1
M

, c0 = L2
C2Ω̃±

2 − jG2

C2M(L2 − M2)
.



Progress In Electromagnetics Research M, Vol. 96, 2020 133

3. DISCUSSION

Analytical solutions exist for some special cases. Also, the Hamiltonian can be normalized to give the
unit frequency of one coil resonator, i.e., ω1 = 1.

3.1. Identical Resonant Frequencies and Decay Rates

When the two resonant coils have identical resonant frequencies and decay rates, the following is satisfied,

ω1 =
1√

L1C1
= ω2 =

1√
L2C2

; τ1 =
G1

C1
= τ2 =

G2

C2
,

from which Eq. (15) has the following four solutions,

Ω̃1 = Ω̃2 = ±
√

Γ2 ±
√
−M2 + Γ4

√
2

+ j
G1

2
.

3.2. Parity-Time Symmetry

When the loss and gain of the resonant coils balance each other, the following is satisfied,

ω1 =
1√

L1C1
= ω2 =

1√
L2C2

; τ1 =
G1

C1
= τ2 = −G2

C2
,

from which Eq. (15) has the following six solutions,

Ω̃1 = −Ω̃2 = j

(
G1

2
±
√

M2 − G2
1Γ2

G1

)
, (18)

and

Ω̃1 = Ω̃2 + jG1,

Ω̃2 = ±

√
Γ2 − G2

1
4 ±

√
−M2 +

(
Γ2 + G2

1
4

)2

√
2

− j
G1

2
.

3.3. Identical Lossless Resonators Frequencies

When the two resonant coils have identical resonant frequencies and lossless,

ω1 =
1√

L1C1
= ω2 =

1√
L2C2

; G1 = G2 = 0,

and the following solutions are obtained,

Ω̃1 = Ω̃2 = ±

√
L2 ±

√
L2

2 − M2(M2 − L2)2

2(L2 − M2)
, (19)

and
κ12 = κ21 =

M

2Ω̃1

,

which gives the the eigenvalues and eigenvectors according to Eq. (13) and Eq. (14) as follows,

Ω̃± = Ω̃1 ± κ12, v± = [±1, 1]T , (20)

agreeing with symmetric/anti-symmetric eigenmodes due to the off-diagonal coupling.
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3.4. Applications

The derived rigorous eigenfrequencies and eigenvectors have many potential applications. For example,
to design an optimal dynamic WPT system [4] where the Hamiltonian of the coupled PT resonant coils
changes with time, rigorous eigenvectors that change with time can be used to achieve the optimal
adiabatic PT WPT system.

4. SIMULATION RESULTS

Numerical simulation with Python has been performed to confirm the correctness of the quantum
formulation. Simulation results of two typical cases are shown here: 1) identical resonant frequencies
and decay rates case as shown in Section 3.1; and 2) PT symmetry case as shown in Section 3.2.

Figure 1 shows the surface and contours plots for case 1) with ω1 = 1/
√

L1C1 = ω2 = 1/
√

L2C2 = 1
and G1 = G2: a) real part of the mean of the two eigenfrequencies, i.e., �{Ω̃} = (�{Ω̃+} + �{Ω̃−)/2};
b) imaginary part of the mean of the two eigenfrequencies, i.e., �{Ω̃} = (�{Ω̃+} + �{Ω̃−)/2}; c)
deviation of real part of one eigenfrequency from the real part of the two eigenfrequencies’ mean, i.e.,
�{Ω̃+} − �{Ω̃}; and d) deviation of real part of the other eigenfrequency from the real part of the
two eigenfrequencies’ mean, i.e., �{Ω̃−} − �{Ω̃}. Fig. 1(a) shows that the two eigenfrequencies’ mean
value increases for an increasing coupling coefficient M . Also, Fig. 1(b) shows an increasing imaginary
part of the mean eigenfrequency when the losses of the coil resonators G1 = G2 increase. Note that

(a) (b)

(c) (d)

Figure 1. Simulation result for the coupled coil resonators pair with identical resonant frequencies and
decay rates: (a) the real part of the mean of the two eigenfrequencies; (b) the imaginary part of the
mean of the two eigenfrequencies; (c) the deviation of the real part of eigenfrequency #1 from the real
part of the eigenfrequency mean; and (d) the deviation of the real part of eigenfrequency #2 from the
real part of the eigenfrequency mean.
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(a) (b)

(c) (d)

Figure 2. Simulation result for the PT-symmetric coupled resonator pair with balanced gain and loss:
(a) the deviation of the real part of eigenfrequency #1 from the eigenfrequency mean; (b) the deviation
of the imaginary part of eigenfrequency #1 from the eigenfrequency mean; (c) the deviation of the real
part of eigenfrequency #2 from the eigenfrequency mean; (d) the deviation of the imaginary part of
eigenfrequency #2 from the eigenfrequency mean.

the imaginary parts of the two eigenfrequencies are identical due to symmetry. Finally, Fig. 1(c) and
Fig. 1(d) show the deviation of the real parts of the two eigenfrequencies from that of the eigenfrequency
mean: it is clear that the deviations are anti-symmetric due to symmetry and repelling coupling effect.

Figure 2 shows the surface and contour plots for PT-symmetry case 2) with ω1 = 1/
√

L1C1 = ω2 =
1/
√

L2C2 = 1 and G1 = −G2: a) deviation of the real part of the eigenfrequency #1 from that of the
eigenfrequency mean, i.e., �{Ω̃+} − �{Ω̃}; b) deviation of the imaginary part of the eigenfrequency
#1 from that of the eigenfrequency mean, i.e., �{Ω̃+} − �{Ω̃}; c) deviation of the real part of the
eigenfrequency #2 from that of the eigenfrequency mean, i.e., �{Ω̃−} − �{Ω̃}; and d) deviation of the
imaginary part of the eigenfrequency #2 from that of the eigenfrequency mean, i.e., �{Ω̃−} − �{Ω̃}.
Comparing Fig. 2(a) to Fig. 2(c), and Fig. 2(b) to Fig. 2(d), it is clear that the deviation of both the
real part and imaginary part of the eigenfrequencies is anti-symmetric, due to the anti-symmetry of the
PT-symmetric gain/loss profile. More importantly, Fig. 2(a) to Fig. 2(d) clearly show the evolution
of the real eigenfrequencies to the imaginary eigenfrequencies when the gain/loss G1 = −G2 becomes
larger than the coupling coefficient M , confirming the EPs of the PT-symmetric system. At last, when
the gain/loss is large enough, no real eigenfrequencies exist for such non-Hermitian Hamiltonian system.

5. CONCLUSION

Quantum formulation of the PT symmetric coupled RLC coil resonators system has been derived.
Starting from the governing equation system, two basis transforms are performed to transform the
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second order frequencies equations system in the frequency domain to a quantum Hamiltonian and the
corresponding new basis. The first basis transform is to make off-diagonal terms of the equations system
to be constant values that contain no frequency term. Then a second basis transform is performed
to obtain the quantum Hamiltonian with the off-diagonal effective complex frequencies and the off-
diagonal coupling terms, together with the new basis that denotes the coupled quantum states. With
the obtained quantum Hamiltonian, eigenvalues and the corresponding eigenvectors can be obtained
as usual. Finally, numerical simulation confirms the correctness of the theory. It is expected that
the quantum formulation of the coupled coil resonators provides helpful insight and guideline for the
PT symmetric RF/microwave resonators and systems. Potential applications include the design of an
optimal dynamic PT WPT system.
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29. Savoia, S., G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “PT symmetry-induced wave
confinement and guiding in ε-near-zero metamaterials,” Physical Review B, Vol. 91, No. 11, 115114,
March 2015.

30. Liao, S. and R. J. Vernon, “On the image approximation for electromagnetic wave propagation and
PEC scattering in cylindrical harmonics,” Progress In Electromagnetics Research, Vol. 66, 65–88,
2006.

31. Liao, S. and R. J. Vernon, “The near-field and far-field properties of the cylindrical modal
expansions with application in the image theorem,” 2006 Joint 31st International Conference on
Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 260–260,
September 2006.

32. Liao, S. and R. J. Vernon, “A new fast algorithm for calculating near-field propagation
between arbitrary smooth surfaces,” 2005 Joint 30th International Conference on Infrared and
Millimeter Waves and 13th International Conference on Terahertz Electronics, Vol. 2, 606–607,
September 2005.

33. Liao, S., H. Soekmadji, and R. J. Vernon, “On fast computation of electromagnetic wave
propagation through FFT,” 2006 7th International Symposium on Antennas, Propagation EM
Theory, 1–4, October 2006.

34. Liao, S. and R. J. Vernon, “The cylindrical Taylor-interpolation FFT algorithm,” 2006 Joint
31st International Conference on Infrared Millimeter Waves and 14th International Conference
on Teraherz Electronics, 259–259, September 2006.



138 Liao and Ou

35. Liao, S., “Beam-shaping PEC mirror phase corrector design,” PIERS Online, Vol. 3, No. 4, 392–
396, 2007.

36. Liao, S., “Fast computation of electromagnetic wave propagation and scattering for quasicylindrical
geometry,” PIERS Online, Vol. 3, No. 1, 96–100, 2007.

37. Liao, S., “On the validity of physical optics for narrow-band beam scattering and diffraction from
the open cylindrical surface,” PIERS Online, Vol. 3, No. 2, 158–162, 2007.

38. Liao, S., R. J. Vernon, and J. Neilson, “A high-efficiency four-frequency mode converter design
with small output angle variation for a step-tunable gyrotron,” 2008 33rd International Conference
on Infrared, Millimeter and Terahertz Waves, 1–2, September 2008.

39. Liao, S., R. J. Vernon, and J. Neilson, “A four-frequency mode converter with small output
angle variation for a step-tunable gyrotron,” Electron Cyclotron Emission and Electron Cyclotron
Resonance Heating (EC-15), 477–482, World Scientific, April 2009.

40. Vernon, R. J., “High-power microwave transmission and mode conversion program,” Technical
Report DOEUW52122, Univ. of Wisconsin, Madison, WI (United States), August 2015.

41. Liao, S., “Multi-frequency beam-shaping mirror system design for high-power gyrotrons: Theory,
algorithms and methods,” Ph.D. Thesis, University of Wisconsin at Madison, USA, 2008.

42. Liao, S. and R. J. Vernon, “A fast algorithm for wave propagation from a plane or a cylindrical
surface,” International Journal of Infrared and Millimeter Waves, Vol. 28, No. 6, 479–490,
June 2007.

43. Liao, S.-L. and R. J. Vernon, “Sub-THz beam-shaping mirror system designs for quasi-optical mode
converters in high-power gyrotrons,” Journal of Electromagnetic Waves and Applications, Vol. 21,
No. 4, 425–439, Taylor & Francis, January 2007.

44. Liao, S., “Miter bend mirror design for corrugated waveguides,” Progress In Electromagnetics
Research, Vol. 10, 157–162, EMW Publishing, 2009.

45. Liao, S. and R. J. Vernon, “A fast algorithm for computation of electromagnetic wave propagation in
half-space,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2068–2075, July 2009.

46. Liao, S., N. Gopalsami, A. Venugopal, A. Heifetz, and A. C. Raptis, “An efficient iterative algorithm
for computation of scattering from dielectric objects,” Optics Express, Vol. 19, No. 4, 3304–3315,
Optical Society of America, February 2011.

47. Liao, S., “Spectral-domain MOM for planar meta-materials of arbitrary aperture waveguide array,”
2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics
Modeling and Optimization (NEMO), 1–4, May 2019.

48. Schindler, J., A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC
circuits with PT-symmetries,” Physical Review A, Vol. 84, No. 4, 040101, October 2011.

49. Schindler, J., Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric
electronics,” Journal of Physics A: Mathematical and Theoretical, Vol. 45, No. 44, 444029,
October 2012.
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