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Boundary Value-Free Magnetic Resonance Electrical Properties
Tomography Based on the Generalized Cauchy Formula

with the Complex-derivative Boundary Condition

Motofumi Fushimi* and Takaaki Nara

Abstract—Recently, magnetic-resonance-based electrical properties tomography, by which the
electrical properties (EPs), namely conductivity and permittivity, of biological tissues are reconstructed,
has been an active area of study. We previously proposed an explicit reconstruction method based on
the Dbar equation and its explicit solution given by the generalized Cauchy formula. In this method,
as in some other conventional methods, the values of EPs on the boundary of the region of interest
must be specified by the Dirichlet boundary condition of the partial differential equation. However,
it is difficult to know the precise values in practical situations. In this paper, we propose a novel
method that reconstructs EPs without the prior information of boundary EP values by deriving a new
representation formula of the solution of the Dbar equation with the complex-derivative boundary
condition. Numerical simulations and phantom experiments show that the proposed method can
reconstruct EPs without knowledge of the boundary EP values. Therefore, the proposed method greatly
enhances the applicability of the current EPT methods to practical situations.

1. INTRODUCTION

Electrical properties (EPs), namely electric conductivity and dielectric permittivity, of biological tissues
provide valuable information for clinical diagnoses of cancerous tissues [1–3]. Among several techniques
to noninvasively image EPs, electrical impedance tomography (EIT) has been well studied in the past
decades. The main limitation of EIT is that the resolution of the reconstructed image is low due to the
ill-posed nature of the inversion from the surface measurement [4].

Recently, electrical properties tomography (EPT) based on magnetic resonance imaging (MRI) has
attracted attention as an emerging modality that noninvasively reconstructs the electrical properties of
biological tissues from the magnetic field inside the body measured using an MRI scanner [5, 6]. The
electromagnetic fields transmitted by radiofrequency coils are governed by the following time-harmonic
Maxwell’s equations:

∇× E(r) = −iωμ0H(r), (1)

∇× H(r) = iω
(

εr(r)ε0 − i
σ(r)
ω

)
E(r) = iωκ(r)E(r), (2)

where r ∈ Ω and Ω represents the body. μ0 and ε0 are the magnetic permeability and dielectric
permittivity of free space, respectively, and ω/2π is the Larmor frequency of proton nuclei. We define
the complex permittivity, κ, as εrε0 − iσ/ω, where εr and σ are relative permittivity and conductivity,
respectively. The magnetic permeability is assumed to be constant and identical to μ0 throughout
the entire body [7]. Using receiver coils, the positively rotating component of the magnetic field,
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H+ ≡ (Hx + iHy)/2, where the z-axis is set parallel to the body axis, can be measured inside Ω.
Therefore, the EPT problem is to reconstruct κ inside the region of interest (ROI) denoted by D ⊂ Ω
from the measured H+ data.

A typical approach for the EPT problem is to derive Helmholtz’s equation for H+ by neglecting
the spatial variation of κ [8, 9]. However, it has been reported that serious artifacts appear at tissue
transition regions where EPs vary [10].

Several methods for removing the artifacts have been proposed [11–14]. Balidemaj et al. proposed
the contrast source inversion EPT (CSI-EPT) method [12], in which the nonlinear integral equations
for EPs and the electric field are solved in an iterative manner. As pointed by Arduino et al. [13], a
linear partial differential equation (PDE) must be solved at each iteration by the finite element method
(FEM) to properly account for the radiofrequency shield of the MRI coil, making its computational
cost very high. Hampe et al. proposed the dictionary based EPT (bd-EPT) method, in which EPs are
reconstructed so that the measured magnetic field pattern matches with the dictionary data constructed
by simulations in advance [14]. Although bd-EPT showed superior noise behavior, the effectiveness of
the method for the cases not included in the dictionary data is still unclear. Hafalir et al. proposed
the cr-MREPT method [11], in which a linear PDE for the inverse of κ is solved by the FEM. This
method can reconstruct EPs directly without iterative calculations nor the dictionary data. However,
EP values on the boundary of the ROI must be given as the Dirichlet boundary condition (BC) of the
PDE. Moreover, the Laplacian of the measured magnetic field data must be calculated, which amplifies
noise.

We previously proposed a Dbar-equation-based reconstruction method [15, 16]. In this method,
with the two-dimensional (2D) plane approximation Hz = 0 and ∂zH

+ = 0, the following complex form
of Maxwell’s equations was derived:

∂̄Ez(ζ) = ωμ0H
+(ζ), (3)

4∂H+(ζ) = −ωκ(ζ)Ez(ζ), (4)

where ζ = x+iy, ζ ∈ D (D begins 2D ROI), and ∂ and ∂̄ are the complex differential operators defined
by

∂ ≡ 1
2
(∂x − i∂y), ∂̄ ≡ 1

2
(∂x + i∂y). (5)

In this method, first, we solve Eq. (3) for Ez. This type of PDE is known as the Dbar equation. An
explicit representation of the solution is given by the generalized Cauchy formula [17]. Once we obtain
Ez, κ is directly reconstructed as the ratio of ∂H+ to Ez from Ampere’s law as given in Eq. (4). Because
this method does not need to calculate the second derivative of H+, it is more robust against noise.

However, in this method, as in the cr-MREPT method, EP values on the boundary of the ROI
must be specified, limiting the applicability of the method in practical situations. In this paper, we
propose a reconstruction method that does not require boundary EP values. To this end, we solve the
Dbar equation with the boundary value of the complex-derivative of the electric field instead of giving
the Dirichlet boundary values of EPs. This is a generalization of our previous method [16] that solves
the Neumann problem without the Dirichlet boundary value, although that method is valid only for the
special case that the ROI is a circular domain.

2. THEORY

2.1. An Explicit Solution of the Dbar Equation with a Complex-Derivative Boundary
Condition

In this section, we derive the representation formula of the solution of the Dbar equation with a complex-
derivative BC.

Let D be a domain whose boundary and C a smooth Jordan curve. If φ is a holomorphic function
in D and continuous in D, then ∂φ is also holomorphic, and thus, the following Cauchy formula holds:

∂φ(ζ) =
1

2πi

∫
C

∂φ(ζ ′)
ζ ′ − ζ

dζ ′, (6)
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where ζ ′ = x′ + iy′. By integrating both sides of Eq. (6) with respect to ζ, it follows that

φ(ζ) = − 1
2πi

∫
C

log
(

1 − ζ

ζ ′

)
∂φ(ζ ′)dζ ′ + c, (7)

where c is a complex constant. This is a representation formula of a holomorphic function φ in D by
∂φ on C. In contrast to the ordinary Cauchy formula, which represents φ by the value of φ itself on the
boundary, Eq. (6) uses the boundary value of its complex derivative ∂φ.

Next, we extend Eq. (6) to the case of a function f that is not necessarily holomorphic in D.
Following Vekua [17], we introduce the following integral operators:

T [f ](ζ) ≡ − 1
π

∫∫
D

f(ζ ′)
ζ ′ − ζ

dx′dy′, (8)

Π[f ](ζ) ≡ − 1
π

∫∫
D

f(ζ ′)
(ζ ′ − ζ)2

dx′dy′, (9)

where the integrals have been proved to exist in the sense of Cauchy’s principal value integral [17]. Here,
the derivatives of T [f ] are represented as follows [17]:

∂̄T [f ] = f, (10)
∂T [f ] = Π[f ]. (11)

Then, it is easy to see that f − T [∂̄f ] is holomorphic since

∂̄(f − T [∂̄f ]) = ∂̄f − ∂̄T [∂̄f ] = ∂̄f − ∂̄f = 0. (12)

Therefore, we can apply Eq. (7) to f − T [∂̄f ], giving our main result of this paper:

f(ζ) = − 1
2πi

∫
C

log
(

1 − ζ

ζ ′

)
(∂f(ζ ′) − Π[∂̄f ](ζ ′))dζ ′ − 1

π

∫∫
D

∂̄f(ζ ′)
ζ ′ − ζ

dx′dy′ + c. (13)

This is a representation formula of a function f not necessarily holomorphic in terms of its complex
derivative ∂f on the boundary and ∂̄f inside the region. In other words, in contrast to the generalized
Cauchy formula, which solves the Dbar equation with the Dirichlet BC, Eq. (13) solves the Dbar equation
with the complex-derivative BC. In our previous method [16], we used the Neumann derivative ∂nf ,
where ∂n represents the normal derivative on C. Thus, the previous representation formula was only
valid for a circular region. Eq. (13) is, on the other hand, valid for regions of any shape.

2.2. Reconstruction Formula without the Boundary Value of EPs

In this section, we apply Eq. (13) to the EPT problem and derive the reconstruction formula of EPs
that does not require boundary EP values.

By taking the (x − iy)-component of Eq. (1), it holds that

∂Ez = −ωμ0H
− + ∂zE

− = −ωμ0H
− − ∂zH

−

4∂̄H− Ez, (14)

where E− ≡ (Ex − iEy)/2 and H− ≡ (Hx − iHy)/2. Here, we use the relations ∂zH
− = −ωκE− and

4∂̄H− = ωκEz, which are deduced by taking the (x − iy)- and z-components of Eq. (2). Thus, under
the assumption that ∂zH

− = 0, we get

∂Ez = −ωμ0H
−. (15)

Applying f = Ez to Eq (13), we have

Ez(ζ) = − 1
2πi

∫
C

log
(

1 − ζ

ζ ′

)(
ωμ0H

− − Π[ωμ0H
+](ζ ′)

)
dζ ′ − 1

π

∫∫
D

ωμ0H
+(ζ ′)

ζ ′ − ζ
dx′dy′ + c, (16)

since ∂̄Ez and ∂Ez are given by Eqs. (3) and (15), respectively. It is known that |H+| � |H−|
when the body is excited using a quadrature birdcage coil (QBC), which is commonly used in modern
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MRI systems [18]. Hence, substituting Eqs. (3) and (15) into Eq. (13) under the condition that
|H−| � |Π[H+]| gives

Ez(ζ) =
1

2πi

∫
C

log
(

1 − ζ

ζ ′

)
Π[ωμ0H

+](ζ ′)dζ ′ − 1
π

∫∫
D

ωμ0H
+(ζ ′)

ζ ′ − ζ
dx′dy′ + c. (17)

The validity of the assumption |H−| � |Π[H+]|] is shown using numerical simulations in Section 4.
Eq. (17) gives Ez using only H+ up to a constant c.

The constant c can be determined as follows. It is known that in the QBC setting, the zero point
of Ez appears around the center of the body [11]. Accordingly, from Eq. (4), ∂H+ = 0 here. From
this fact, we determine the zero point ζ∗ of Ez as the point where ∂H+, which is computed from the
measured H+, is minimal as follows:

ζ∗ = arg min
ζ∈D

∣∣∂H+(ζ)
∣∣ . (18)

Then, c is obtained from

Ez(ζ∗) = − 1
2πi

∫
C

log
(

1 − ζ∗

ζ ′

)
(ωμ0H

−(ζ ′) + Π[ωμ0H
+](ζ ′))dζ ′

− 1
π

∫∫
D

ωμ0H
+(ζ ′)

ζ ′ − ζ∗
dx′dy′ + c = 0. (19)

Using this c, Ez can be determined uniquely by Eq. (17). Once Ez is obtained, κ can be directly
calculated as a ratio of −4∂H+ to ωEz according to Eq. (4). Here, we estimate κ using the total
variation regularization by minimizing the function

κ̂(ζ) = arg min
κ

∥∥4∂H+(ζ) + ωEz(ζ)
∥∥2

2
+ λ ‖|∇κ(ζ)|‖1 (20)

to suppress the artifact caused by the zero point of Ez [11].

3. METHODS

3.1. Numerical Simulations

Following the method proposed by Gurler and Ider [19], a 16-leg high-pass shielded QBC was
constructed, and two phantoms (a cylindrical phantom and the Shepp-Logan phantom [20]) were loaded
into the coil. The magnetic field was excited at 123.2 MHz. H+ was obtained on a 180mm × 180 mm
square region centered at the origin with a matrix size of 128× 128 for both phantoms. Both phantoms
have a few inclusions where EPs are different from those of the background region. Specifically, the
cylindrical phantom has three cylindrical inclusions whose radii are 5mm, 10mm, and 15mm, and
heights are all 20mm. The EP values are (σ, εr) = (1 S/m, 50) for the inclusions and (σ, εr) =
(0.5 S/m, 80) for the background. We set the ROIs in a way that these inclusions were on the boundaries
of the ROIs as shown in Figs. 2(a) and 3(a).

The computation of H+ was performed using the FEM software, COMSOL Multiphysics 5.3
(COMSOL Inc.). MATLAB R2019a (The MathWorks Inc.) was used for all reconstruction processes.

3.2. Phantom Experiments

A phantom composed of two cylindrical regions (inner and outer regions) was used. The conductivity
of the phantom was adjusted by adding NaCl. The conductivities of the inner and outer regions were
0.94 and 0.43 S/m, respectively, as measured using a conductivity meter (HI 8733, Hanna Instruments).
The permittivity was constant and identical to that of water.

The magnitude of H+ can be measured using the B1 mapping technique. We used the double angle
method proposed in [21]. Note that we used the transceive phase approximation [18] to extract transmit
phase ∠H+ from the transceive phase. We set the ROI in a way that the inner region intersected the
boundary in order to consider the practical situations where the positions of the inclusions are unknown.

The experiment was conducted using the 3T MR scanner Magnetom Prisma (Siemens) at the
University of Tokyo.
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4. RESULTS

4.1. Simulation Results

Figure 1 shows the H+ and H− maps obtained from the FEM calculation. As shown in Figs. 1(c)
and (d), |H−| � |H+| and |H−| � |Π[H+]| hold well. Note that the assumption that |H−| � |Π[H+]|
needs to hold only on the boundary of the ROI.
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Figure 1. Magnitude of magnetic field maps and their ratio for the cylindrical phantom. (a) |H+|, (b)
|H−|, (c) |H−|/|H+|, and (d) |H−|/|Π[H+]|.

Figure 2 shows the reconstruction results for the cylindrical phantom when 1% Gaussian noise was
added. As shown in Fig. 2(b), the previous method with the true boundary EP values yields accurate
results throughout the ROI. However, when the BC was specified as the background value of the true
EPs on the boundary, which would be the most natural choice, the reconstructed images were distorted,
as shown in Fig. 2(c). In contrast, the proposed method keeps the image quality as shown in Fig. 2(d).
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Figure 2. Reconstruction results of (top) conductivity and (bottom) relative permittivity for the
cylindrical phantom and a signal-to-noise ratio of 40 dB. (a) True, (b) previous method with the true
BC, (c) previous method with the background BC, and (d) proposed method.

Figure 3 shows the reconstruction results of the Shepp-Logan phantom. As in the case of the
cylindrical phantom, the results of the proposed method are less distorted, and two small inclusions
near the center are properly reconstructed, whereas large errors occur at these inclusions in the previous
method with the average BC.
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Figure 3. Reconstruction results of (top) conductivity and (bottom) relative permittivity for the
Shepp-Logan phantom and a signal-to-noise ratio of 40 dB. (a) True, (b) previous method with the true
BC, (c) previous method with the background BC, and (d) proposed method.

Table 1. Variance of relative error maps for the simulation phantoms. Units are (S/m)2 for conductivity.

True BC Background BC Proposed Method
Cylinder Conductivity 0.0054 0.0316 0.0055

Permittivity 0.0035 0.0888 0.0043
Shepp-Logan Conductivity 0.0146 0.0491 0.0236

Permittivity 0.0105 0.0298 0.0079
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Figure 4. Reconstruction errors of (a) conductivity and (b) relative permittivity for the cylindrical
phantom with a signal-to-noise ratio of 20–40 dB.

Table 1 shows the variances of the relative L2 error of each result. We observe that the proposed
method has smaller variance for both phantoms, which means that the proposed method yielded better
results throughout the ROI. We also tested the proposed method on the cylindrical phantom with
different SNR between 20 dB and 40 dB. Figure 4 shows the relative L2 error of the conductivity and
relative permittivity. The proposed method consistently has lower errors than the previous method with
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the background BC. It should be emphasized that the reconstruction results of our proposed method are
comparable to those of the previous method with the non-practical assumption that the true boundary
values of EPs are available. In contrast to the previous method, the proposed method does not use any
prior information of the boundary EP values, which means that the proposed method greatly enhances
the applicability of EPT to practical situations.

4.2. Experimental Results

Figure 5 shows the reconstructed conductivities of the experimental phantom. As shown in Fig. 5(b),
large error appears in the inner regions when the boundary EP values are given as the background
value. The proposed method yields a less distorted map even when no information of the EP values on
the boundary is given.
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Figure 5. Reconstruction results of conductivity for the phantom experiment. (a) Previous method
with the true BC, (b) previous method with the background BC, and (c) proposed method.

5. CONCLUSION

In this paper, we propose an explicit reconstruction method for EPT that does not require the prior
information of EPs on the boundary of the ROI. The proposed method solves the Dbar equation with the
novel complex-derivative BC instead of the Dirichlet BC. By assuming that |H−| � |Π[H+]|, EPs were
reconstructed from only the measurable quantity, H+ without the prior information of the EP values
on the boundary of the ROI. This is the generalization of our previous method using the Neumann
BC, which restricted to the special case of a circular-shaped ROI and can be applied to an arbitrarily-
shaped ROI. Although EPT reconstruction without boundary EP values on a general-shaped ROI is
fully accomplished by introducing the complex-derivative BC, other BCs such as Robin BC, which is the
combination of Dirichlet and Neumann BCs, may be considered depending on applications. Numerical
simulations and phantom experiments showed that the proposed method can reconstruct EPs without
the prior information of EPs on the boundary on the ROI. Currently, the proposed method is restricted
to two-dimensional problems where the object has homogeneous EPs along the body axis, and thus,
future work is to extend the method to the general three-dimensional problems.
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