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Microwave Staring Correlated Imaging Based on Quasi-Stationary
Platform with Motion Measurement Errors
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Abstract—Microwave staring correlated imaging (MSCI) is a promising technique for remote sensing
due to its ability to achieve high-resolution microwave imaging without the limitation of relative motion
between target and radar. In practical applications, unsteady quasi-stationary platforms, such as
tethered aerostat, are often used as carriers of MSCI radar. However, these platforms cannot keep
ideally stationary during the imaging process. The platform’s motion caused by atmospheric effects
will cause time-varying inaccuracy of observation positions. Although navigation systems can measure
the platform’s motion to compensate for the errors of observation positions, the imaging performance
of MSCI may still suffer from degradation due to the measurement errors of navigation systems since
MSCI is sensitive to model error. This paper focuses on MSCI based on the quasi-stationary platform
with motion measurement errors. First, the MSCI model based on the quasi-stationary platform with
motion measurement errors is established under the assumption that the translation and the rotation
of the platform are uniform during a coherent imaging interval. Then we propose a self-calibration
imaging method for MSCI based on the quasi-stationary platform with motion measurement errors.
This method iterates over the steps of target reconstruction and motion measurement errors correction
until convergent conditions are met. Simulation results show that the proposed method can correct the
motion measurement errors and improve imaging performance significantly.

1. INTRODUCTION

Microwave staring correlated imaging (MSCI), motivated by classical coincidence imaging in optical
systems, can achieve high-resolution imaging without relative motion between radar and target [1–
3]. The essential principle of MSCI is to construct the temporal-spatial stochastic radiation field
(TSSRF) in the imaging region, which is typically realized by a multi-transmitters configuration emitting
independent stochastic modulated signal [4, 5]. By correlated imaging process (CIP), targets within the
antenna beam could be distinguished.

In practical applications, to achieve continuous observation of critical areas, MSCI radar is often
raised to a certain height by airborne quasi-stationary platforms, such as tethered aerostat. These
quasi-stationary platforms cannot keep ideally stationary due to atmospheric effects. The unknown
motion of the carrier platform will cause time-varying inaccuracy of observation positions and defocus
the reconstructed image. Navigation systems, like the inertial navigation system (INS) and the
global positioning system (GPS), can be used to measure the platform’s motion. Due to the limited
measurement accuracy, the measurement data is not completely accurate. Since MSCI depends on the
precise observation model and is sensitive to the model error, the residual motion measurement errors
may degrade the imaging performance of MSCI.
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Many studies have investigated the motion error problem in the field of airborne SAR imaging. A
combination of the inertial navigation system (INS)/global positioning system (GPS)-based approach
and the data-driven autofocus approach is usually employed to eliminate the motion errors in airborne
SAR [6–9]. However, these methods cannot be applied to MSCI since the observation model of MSCI
is different from SAR. For the model error problem in MSCI, most research focuses on the gain-phase
error [10–13], off-grid error [14, 15], antenna position error [16] and target-motion-induced error [17]
in MSCI based on the stationary platform. Few studies are concentrated on the errors caused by the
motion of the platform. As far as we know, only [18] proposes to compensate for the motion errors by
the polynomial fitting of the data of the position and orientation system (POS). The study also points
out that MSCI is sensitive to motion measurement errors. Since MSCI based on the quasi-stationary
platform is an essential issue in practical applications, it should be further investigated.

In this paper, we focus on MSCI based on the quasi-stationary platform with motion measurement
errors. First, the MSCI model based on the quasi-stationary platform with motion measurement errors
is established under the assumption that the translation and the rotation of the platform are uniform
during a coherent imaging interval. The assumption is reasonable because a coherent imaging interval is
usually very short. Then a joint target reconstruction and motion measurement errors correction method
is proposed. The method involves an iterative algorithm that cycles through target reconstruction and
motion measurement errors correction. The target image is recovered by Tikhonov regularization, and
the motion measurement errors are corrected by the Newton method at each iteration. Compared
with [18], this paper not only uses POS data to compensate for the motion errors, but also proposes
a self-calibration imaging algorithm to estimate and correct the measurement errors. Therefore, the
imaging performance of MSCI based on quasi-stationary platform is improved.

The rest of this paper is organized as follows. Section 2 presents the MSCI model based on
the quasi-stationary platform. In Section 3, a joint target reconstruction and motion measurement
errors correction method is proposed. In Section 4, numerical simulations are conducted to verify the
effectiveness of the method. Finally, Section 5 concludes this paper.

2. MSCI MODEL BASED ON QUASI-STATIONARY PLATFORM

In this paper, MSCI based on the quasi-stationary platform is considered. Fig. 1 illustrates the
imaging scene. The established Cartesian coordinate system O-XY Z is independent of the platform’s
motion. A quasi-stationary platform carries the MSCI radar system consisting of N transmitters and
one receiver. The navigation systems are mounted in the center of the antenna array to dynamically
measure the motion parameters of the antenna array. All transmitters emit stochastic modulated signals
simultaneously to construct the TSSRF in the imaging region. The signal from the n-th transmitter is

sn (t) =
Q∑

q=1

u [t − (q − 1) T ] exp {j2πfnq [t − (q − 1) T ]} (1)

where fnq is the frequency of the q-th pulse transmitted by the n-th transmitter. T is the pulse period.
u(t) = rect(t/Tp) is the rectangular function. Tp is pulse width. Q is the number of pulses in a coherent
processing interval.

The motion of the antenna array is decomposed into translation and rotation. The assumption that
the translation and the rotation of the antenna array are uniform during a coherent imaging interval is
made based on the fact that a coherent imaging interval is usually very short. The translation speed
of the antenna array is denoted as v = [vx, vy, vz]

T , where vx, vy and vz are the translation speed
components along the X, Y and Z-axis, respectively. The rotation angular velocity of the antenna
array is denoted as ω = [ωx, ωy, ωz]

T , where ωx, ωy and ωz are the rotation angular velocity components
around the X, Y , and Z-axis, respectively.

Matrix Ω is defined as

Ω =

[ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]
(2)
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Figure 1. The imaging scene of MSCI based on the quasi-stationary platform.

The rotation matrix Rro(t) can be expressed as

Rro (t) = exp
(
ωΩ̂t

)
= I + Ω̂ sin (ωt) + Ω̂2 (1 − cos (ωt)) (3)

where Ω̂ = Ω/ω and ω = ‖ω‖2.
Supposing that the receiver is located at the array center, its position vector at t is

r0 (t) = ‖r0 (0) + vt‖ (4)

where r0(0) is the position vector of the receiver at the beginning of the imaging process.
The position vector of the n-th transmitter at t can be written as

rn (t) =
∥∥r0 (0) + vt + Rro (t) · r′n (0)

∥∥ (5)

where r′n(0) = rn(0) − r0(0). rn(0) is the position vector of the n-th transmitter at the beginning of
the imaging process.

The received echo can be described as

Sr (t) =
L∑

l=1

N∑
n=1

σlsn

[
t − τ l

n (t)
]

+ w (t) (6)

where w(t) is the additive noise following Gaussian distribution. τ l
n(t) is the propagation delay from the

n-th transmitter to the receiver reflected by the target in the l-th imaging cell, and t′nl = t − τ l
n(t) is

the transmission time of the n-th transmitter with respect to the reception time t and the propagation
delay τ l

n(t).
The propagation delay τ l

n(t) can be expressed as

τ l
n (t) =

‖rl − rn (t′nl)‖ + ‖r0 (t) − rl‖
c

=
‖rl − r0 (0) − vt′nl − Rro (t′nl) · r′n (0)‖ + ‖r0 (0) + vt − rl‖

c
(7)
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where rl is the position vector of the l-th imaging cell. c is the light speed.
Assuming that the rotation angle of the antenna array is small during a coherent imaging interval,

the rotation matrix can be approximated as Rro(t) = I + Ωt. Thus the propagation delay τ l
n(t) can be

approximately written as

τ l
n (t) =

‖rl − rn (0) − vt′nl − Ω · r′n (0) t′nl‖ + ‖r0 (0) + vt − rl‖
c

(8)

Since the imaging range is much larger than the size of the imaging region, the following
approximations are made:∥∥rl − rn (0) − vt′nl − Ω · r′n (0) t′nl

∥∥ ≈ ‖rl − rn (0)‖ − αnl ·
(
vt′nl + Ω · r′n (0) t′nl

)
(9)

‖r0 (0) − rl + vt‖ ≈ ‖r0 (0) − rl‖ + αlr · vt (10)
where αnl is the unit vector pointing from the n-th transmitter to the l-th imaging cell at the beginning
of the imaging process; αlr is the unit vector pointing from the l-th imaging cell to the receiver at the
beginning of the imaging process.

By substituting (9) and (10) into (8), we have

τ l
n (t) =

‖rl − rn (0)‖ + ‖r0 (0) − rl‖
c

+
(αlr − αnl) · v − αnl ·Ω · r′n (0)

c
t

1 − αnl · (Ω · r′n (0) + v)
c

(11)

According to Taylor’s expansion of Eq. (11) and the fact that the platform’s speed is much lower
than the light speed, the following expression is obtained

τ l
n (t) =

‖rl − rn (0)‖ + ‖r0 (0) − rl‖
c

+
(αlr − αnl) · v − αnl · Ω · r′n (0)

c
t

= τ l
n (0) + βnlr · vt − γnl · Ω · r′n (0) t (12)

where βnlr = (αlr − αnl)/c and γnl = αnl/c.
Assuming that t = ts + (q − 1)T , (0 ≤ ts ≤ T, 1 ≤ q ≤ Q), the echo of the q-th pulse has the

following formula:

Sr (t) =
L∑

l=1

N∑
n=1

σlu
(
ts − τ l

n (0) − βnlr · vt + γnl · Ω · r′n (0) t
)
·

exp
(
j2πfnq

(
ts − τ l

n (0) − βnlr · vt + γnl · Ω · r′n (0) t
)) (13)

Define the modified radiation field as

S (t, rl,v,ω) =
N∑

n=1

u
[
ts − τ l

n (0) − βnlr · vt + γnl ·Ω · r′n (0) t
]
·

exp
(
j2πfnq

(
ts − τ l

n (0) − βnlr · vt + γnl · Ω · r′n (0) t
)) (14)

Thus the echo can be reformulated as the superposition of the modified radiation field

Sr (t) =
L∑

l=1

σlS (t, rl,v,ω) + w (t) (15)

After sampling the received echo, the imaging equation can be formed as
Sr = S (v,ω) · σ + w (16)

where σ = [σ1, σ2, · · · , σL]T is the scattering coefficient vector. w = [w(t1), w(t2), · · · , w(tK)]T is the
noise vector. Sr = [Sr(t1), Sr(t2), · · · , Sr(tK)]T is the echo vector. S(v,ω) is the sensing matrix which
can be expressed as

S (v,ω) =

⎡
⎢⎢⎣

S (t1, r1,v,ω) S (t1, r2,v,ω) · · · S (t1, rL,v,ω)
S (t2, r1,v,ω) S (t2, r2,v,ω) · · · S (t2, rL,v,ω)

...
...

. . .
...

S (tK , r1,v,ω) S (tK , r2,v,ω) · · · S (tK , rL,v,ω)

⎤
⎥⎥⎦ (17)
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In practice, the true motion parameters are unknown. We denote the measured translation speed
and rotation angular velocity as vm and ωm, respectively. The measurement errors are denoted as
ve = v − vm and ωe = ω − ωm. The imaging equation involving motion measurement errors can be
written as

Sr = Se (ve,ωe) · σ + w (18)

where Se(ve,ωe) = S(vm + ve,ωm + ωe).

3. SELF-CALIBRATION IMAGING METHOD

Although the accuracy of navigation systems can achieve quite high at present, the imaging performance
of MSCI may still suffer from degradation since MSCI is sensitive to the model error. Therefore, in
addition to using the navigation systems’ data to compensate for the motion deviation, a joint target
reconstruction and measurement errors correction method is also proposed to reduce the residual errors.
The measurement errors are estimated from the received echo during the correlated imaging process. The
problem of joint target reconstruction and measurement errors correction is formed as an optimization
problem which minimizes the objective function as follows:

J (σ,ve,ωe) = ‖Sr− Se (ve,ωe) · σ‖2 + λ‖σ‖2 (19)

where ‖σ‖2 is a regularization term easing the ill-posed condition in target reconstruction. λ is the
regularization parameter which keeps a balance between the data fidelity term and the regularization
term.

We can obtain the reconstructed target and the estimated errors by minimizing the objective
function jointly with σ, ve and ωe.

[σ∗,ve
∗,ωe

∗] = arg min
σ,ve,ωe

J (σ,ve,ωe) (20)

An alternating iterative minimization algorithm, which iterates with steps of target reconstruction
and motion measurement errors correction, is used to minimize the objective function. The algorithm
procedures are outlined as follows:

Algorithm 1 Joint target reconstruction and motion measurement errors correction
Input: Sr, vm, ωm;
Output: σ∗

1: initial i = 0, Imax, η, ω0
e = 0 and v0

e = 0;
2: repeat
3: reconstruct the target image: σi = arg min

σ
J

(
σ,vi−1

e ,ωi−1
e

)
;

4: estimate the error of translation speed: vi
e = arg min

ve

J
(
σi,ve,ω

i−1
e

)
;

5: estimate the error of rotation angular velocity: ωi
e = arg min

ωe

J
(
σi,vi

e,ωe

)
;

6: update the sensing matrix: Se

(
vi

e,ω
i
e

)
;

7: until (
∥∥σi − σi−1

∥∥2
/
∥∥σi−1

∥∥2
< η or i = Imax )

In the first step, we seek to recover the target image by minimizing the following objective function:

σi = arg min
σ

{∥∥Sr − Se

(
vi−1

e ,ωi−1
e

) · σ∥∥2 + λ‖σ‖2
}

(21)

where the superscript represents the index of the iteration. Equation (21) is a Tikhonov regularization
problem. The regularization parameter can be determined by the L-curve method. An explicit solution
for σ is given by

σi =
[
Se

(
vi−1

e ,ωi−1
e

)H
Se

(
vi−1

e ,ωi−1
e

)
+ λI

]−1
Se

(
vi−1

e ,ωi−1
e

)H
Sr (22)
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In the steps of motion measurement errors correction, we first estimate the error of the translation
speed by solving the following sub-problem:

vi
e = arg min

ve

{∥∥Sr− Se

(
ve,ω

i−1
e

) · σi
∥∥2 + λ

∥∥σi
∥∥2

}
(23)

As λ‖σi‖2 is a constant, Equation (23) can be rewritten as

vi
e = arg min

ve

∥∥Sr − Se

(
ve,ω

i−1
e

) · σi
∥∥2 (24)

Equation (24) is a nonlinear least-squares problem. We employ the Newton method to obtain the
solution. The updating of ve can be expressed as

vi
e = vi−1

e − [∇2
ve

J
(
σi,vi−1

e ,ωi−1
e

)]−1 · ∇veJ
(
σi,vi−1

e ,ωi−1
e

)
(25)

where ∇veJ(σi,vi−1
e ,ωi−1

e ) and ∇2
ve

J(σi,vi−1
e ,ωi−1

e ) are the gradient and the Hessian matrix of the
objective function with respect to ve, respectively.

The updating of the angular velocity error, which is similar to the translation speed, can be
described as

ωi
e = ωi−1

e − [∇2
ωe

J
(
σi,vi

e,ω
i−1
e

)]−1 · ∇ωeJ
(
σi,vi

e,ω
i−1
e

)
(26)

where ∇ωeJ(σi,vi
e,ω

i−1
e ) and ∇2

ωe
J(σi,vi

e,ω
i−1
e ) are the gradient and the Hessian matrix of the

objective function with respect to ωe, respectively.
The sensing matrix is updated with the new estimated parameters, and the convergence conditions

are checked before passing to the next iteration. If ‖σi − σi−1‖2
/‖σi−1‖2

< η or the maximum number
of the iteration is reached, the algorithm is terminated.

The derivations of the gradients and the Hessian matrices are given in Appendix A.

4. NUMERICAL SIMULATIONS

In this section, numerical simulations are performed to verify the effectiveness of the proposed method.
The simulation parameters are selected according to the possible scenarios in practical applications.
A MSCI system consisting of 25 transmitters and one receiver is considered. The transmitters are
configured as a 5 × 5 uniform 2-D rectangular array, and the receiver is in the array center. The
working height of the tethered balloon is usually several hundred meters to several kilometers, so in the
simulations the height of the platform is set to 280 m. Frequency-hopping signals are used as transmitted
signals, and the frequency of each pulse is randomly selected within the signal bandwidth. The target
shown in Fig. 2 is a ship and its sizes are set to 50m × 20 m. The resolution of MSCI is set to 1 m,
which demonstrates that MSCI is able to achieve high-resolution microwave imaging. The simulation
parameters are shown in Table 1.
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Figure 2. Target image.

4.1. Illustrative Example

In the subsection, an illustrative example is shown to prove the effectiveness of the proposed method.
As the platform is quasi-stationary, the maximum value of the motion is not very large. The motion
parameters of the platform are randomly selected within the maximum value. The maximum speed is
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Table 1. Simulation parameters.

Simulation parameter Value
Number of transmitters 25

Aperture of antenna array 2m × 2 m
Carrier frequency 9.6 GHz

Bandwidth 500 MHz
Slanting angle 30◦

Number of grids 50 × 20
Grid spacing 1m

Platform height 280 m
SNR 20 dB

set to 10 m/s and the maximum angular velocity is set to 10 rad/s. The maximum relative measurement
errors are set to 10%.

The randomly generated translation speed and rotation angular velocity are v =
[8.2m/s, 9.7m/s, 5.3m/s]T and ω = [5.8 rad/s,−6.4 rad/s, 8.1 rad/s]T , respectively. The motion mea-
surement errors are ve = [0.5m/s,−0.4m/s, 0.5m/s]T and ωe = [0.3 rad/s,−0.4 rad/s, 0.6 rad/s]T .
Fig. 3(a) shows the imaging result without errors correction. The target image is recovered by Tikhonov
regularization. It can be seen that the image is blurry and defocused, and the profile of the target is
hard to recognize. Fig. 3(b) shows the imaging result recovered by our proposed method. The recon-
structed target is focused and accurate, which demonstrates that the proposed method can correct the
measurement errors and improve the imaging performance effectively.
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Figure 3. The imaging results. (a) The imaging result without motion measurement errors correction.
(b) The imaging result recovered by our proposed method.

In order to provide a quantitative metric of the imaging quality, the relative imaging error (RIE)
‖σ̂ − σ‖2/‖σ‖2, where σ is the original target image and σ̂ is the reconstructed target, is introduced.
The curve of RIE versus iteration number is presented in Fig. 4. It can be seen that RIE decreases
rapidly as the number of iterations increases, which shows that the iterative algorithm is efficient and
fast convergent.

The speed error ve causes a phase error in the received echo signal. The phase error can be
expressed as exp(−j2πfnβnlr · vet). The value of the phase error depends on the projection of the
speed error ve on the vector βnlr = (αlr − αnl)/c. Thus we define the equivalent translation speed
deviation θ(ve) = ‖(αlr − αnl) · ve‖2 to assess the phase error caused by the speed error ve. As
αlr ≈ αr and αnl ≈ −αr, where αr is a unit vector pointing from the center of the imaging area
to the center of the antenna array, the equivalent translation speed deviation can be rewritten as
θ(ve) = 2‖αr · ve‖2. Similar to the equivalent translation speed deviation, equivalent angular velocity
deviation φ(ωe) = ‖αr ·Ω(ωe)‖ is also introduced to assess the phase error caused by the measurement
error of rotation angular velocity.
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Figure 4. RIE versus the number of iterations.
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Figure 5. θ(ve) and φ(ωe) versus the number of iterations. (a) θ(ve) versus the number of iterations.
(b) φ(ωe) versus the number of iterations.

Figure 5 presents that both θ(ve) and φ(ωe) are nearly reduced to zero, which shows that our
proposed method can correct the phase errors caused by the motion measurement errors.

4.2. Imaging Performance under Different SNRs

In this subsection, the imaging performance of our proposed method is evaluated under different SNRs
by Monte Carlo simulation. The SNR varies from −10 dB to 40 dB with step of 5 dB. 100 independent
experiments are performed under all SNRs, and the final result for each SNR is averaged over the 100
experiments. For each experiment, the translation speed and the rotation angular velocity are randomly
generated with a maximum speed of 10 m/s and a maximum angular velocity of 10 rad/s. The relative
measurement error for each motion component is distributed uniformly in [−10%, 10%].

Figure 6 shows the imaging results under different SNRs, and Fig. 7 illustrates the RIE under
different SNRs. It can be seen that the quality of the reconstructed target is reduced when SNR is low;
however, when SNR is larger than 0dB, the imaging performance of the proposed method is less affected
by the noise. It may be explained by the fact that Tikhonov regularization increases the robustness of
the proposed method to noise.
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Figure 6. The imaging results under different SNRs. (a) SNR = −10 dB. (b) SNR = 0 dB. (c)
SNR = 10 dB. (d) SNR = 20 dB. (e) SNR = 30 dB. (f) SNR = 40 dB.
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Figure 7. RIEs under different SNRs.

4.3. Imaging Performance under Different Target Scenes

To explore the influence of target texture on the imaging performance, simulations are conducted under
different target scenes in this subsection. As shown in Figs. 8(a)–(c), three different target scenes are
introduced for comparison. The simulation parameters are given in Table 1. The imaging results for
different target scenes are shown in Fig. 8 and the RIEs of the proposed method for different target
scenes under different SNRs are given in Table 2. Fig. 8 shows that the proposed method can obtain
desirable imaging results for different target scenes. Table 2 shows that the RIEs for different target

Table 2. RIEs for different target scenes.

SNR Target 1 Target 2 Target 3
0 dB 0.82 0.86 0.81
10 dB 0.69 0.70 0.71
20 dB 0.65 0.66 0.66
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Figure 8. The imaging results for different target scenes. (a) Original target 1. (b) Original target 2.
(c) Original target 3. (d) Reconstructed target 1 by the proposed method. (e) Reconstructed target 2
by the proposed method. (f) Reconstructed target 3 by the proposed method.

scenes are very close under the same signal-to-noise ratio. Therefore, we draw a conclusion that the
imaging performance is almost unaffected by the target texture.

5. CONCLUSION

In this paper, we focus on MSCI based on the quasi-stationary platform with motion measurement errors.
First, the MSCI model based on the quasi-stationary platform is established under the assumption that
the translation and the rotation of the quasi-stationary platform are uniform during a coherent imaging
interval. The imaging equation involving motion measurement errors is obtained according to the
established MSCI model. Then a joint target reconstruction and motion measurement errors correction
method is proposed. It uses an iterative algorithm, where each iteration consists of consecutive steps of
target reconstruction and measurement errors correction. Numerical simulations show the effectiveness
of our proposed method.

The establishment of the MSCI model in this paper depends on the assumption that the translation
and the rotation are uniform during a coherent imaging interval. The assumption is reasonable for
some cases; however, it is not suitable for all situations. Further efforts will be made for more general
situations.
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APPENDIX A.

In this appendix, the gradient and the Hessian matrix of the objective function are derived.
Assuming va (1 ≤ a ≤ 3) is the a-th component of ve, the a-th element in ∇veJ(σ,ve,ωe) can be

expressed as

∂J (σ,ve,ωe)
∂va

= −σH ∂SH

∂va
Sr− SrH ∂S

∂va
σ + σH ∂SH

∂va
Sσ + σHSH ∂S

∂va
σ (A1)

The a-th diagonal element in Hessian matrix ∇2
ve

J(σ,ve,ωe) can be expressed as

∂2J (σ,ve,ωe)
∂va

2
= −σH ∂2SH

∂va
2

Sr− SrH ∂2S
∂va

2
σ + 2σH ∂SH

∂va

∂S
∂va

σ + σH ∂2SH

∂va
2

Sσ + σHSH ∂2S
∂va

2
σ (A2)
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The expression of the element in row a and column b of the Hessian matrix ∇2
ve

J(σ,ve,ωe) is

∂2J (σ,ve,ωe)
∂va∂vb

= −σH ∂2SH

∂va∂vb
Sr− SrH ∂2S

∂va∂vb
σ + σH ∂SH

∂va

∂S
∂vb

σ

+σH ∂2SH

∂va∂vb
Sσ + σH ∂SH

∂va

∂S
∂vb

σ + σHSH ∂2S
∂va∂vb

σ (A3)

The expressions of the elements in ∇ωeJ(σ,ve,ωe) and ∇2
ωe

J(σ,ve,ωe) are the same with the
corresponding elements in ∇veJ(σ,ve,ωe) and ∇2

ve
J(σ,ve,ωe).

The gradient and the Hessian matrix of the objective function depend on the derivate and the
second derivate of S with respect to the motion variable.

∂S (k, l)
∂va

=
N∑

n=1

−j2πfnkβnl,atk exp
(
j2πfnk

(
ts − τ l

n (0) − βnl · vtk + γnl · Ω · r′n (0) tk

))
(A4)

∂2S (k, l)
∂2va

=
N∑

n=1

(−j2πfnkβnl,atk)
2

exp
(
j2πfnk

(
ts − τ l

n (0) − βnl · vtk + γnl ·Ω · r′n (0) tk

)) (A5)

∂2S (k, l)
∂va∂vb

=
N∑

n=1

(−j2πfnkβnl,atk) (−j2πfnkβnl,btk)

exp
(
j2πfnk

(
ts − τ l

n (0) − βnl · vtk + γnl ·Ω · r′n (0) tk

)) (A6)

where tk = ts + (k − 1)T , (0 ≤ ts < T ) is the sampling time of the k-th pulse.
Supposing r′n(0) = [rx, ry, rz ]

T , ρx = (−rzγnl,y + ryγnl,z), ρy = (−rxγnl,z + rzγnl,x), and
ρz = (−ryγnl,x + rxγnl,y), the derivate and the second derivate of S with respect to ω can be written as

∂S (k, l)
∂ωa

=
N∑

n=1

j2πfnktkρa exp
(
j2πfnk

(
ts − τ l

n (0) − βnl · vtk + γnl ·Ω · r′n (0) tk

))
(A7)

∂2S (k, l)
∂2ωa

=
N∑

n=1

−(2πfnktk)
2ρa

2 exp
(
j2πfnk

(
ts − τ l

n (0) − βnl · vtk + γnl · Ω · r′n (0) tk

))
(A8)

∂2S (k, l)
∂ωa∂ωb

=
N∑

n=1

−(2πfnktk)
2ρaρb exp

(
j2πfnk

(
ts − τ l

n (0) − βnl · vtk + γnl · Ω · r′n (0) tk

))
(A9)
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