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Plane Wave Scattering by a PEC Half-Plane in Uniform
Rectilinear Motion

Ramazan Daşbaşı and Burak Polat*

Abstract—Scattering of homogeneous plane waves by a Perfect Electric Conductor half-plane in
uniform rectilinear motion in a simple lossless medium is investigated using Wiener-Hopf Technique
in the context of Hertzian Electrodynamics. The cases of motion being parallel and perpendicular to
the plane are tackled separately. Restrictions on incidence angle vs. speed for the realization of scattering
phenomena are investigated in each case. Parallel motion mode reveals the possibility of excitation of
surface waves upon reflection, which also contribute to edge diffraction mechanism. Numerical results
are illustrated and discussed for scattered fields. Comparative theoretical results for the solution of the
same problem using Special Relativity Theory are provided and discussed.

1. INTRODUCTION

Electromagnetic phenomena related to moving bodies that fall into the areas of application of Electrical
Engineering are described by Hertzian Field Equations (HFEs), which were first introduced by Hertz
in 1890 [1] and shaped into their final forms in modern vector algebraic notation by Heaviside in
1893 [2]. Descriptions of electromotive and magnetomotive forces (abbreviated as emf and mmf) in
circuits in arbitrary motion and the linear Doppler Effect due to monochromatic sources in uniform
rectilinear motion are two well-known features of HFEs with wide applications related to conversion
and transmission of power in electromagnetic systems.

HFEs rest on Newtonian Continuum Mechanics in Euclidean Space and can be described as a
projection of The Principle of Material Frame Indifference (PMFI) onto macroscopic electromagnetism.
Hence, HFEs are tightly integrated with all disciplines of Continuum Mechanics that are formulated
upon PMFI as well. PMFI has flourished in the works of Truesdell et al. [3, 4] starting by mid-20th
century with ever-expanding theoretical capacity, experimental success, and engineering applications
that also serve to unify disciplines of Continuum Mechanics. For a historic review and debates around
the interpretations of PMFI and analogies between electromagnetic field and elastic continuum, the
readers may refer to [5] and [6–9] (and the references cited therein), respectively.

The projection of PMFI onto macroscopic electromagnetism requires frame indifference of
instantaneous values of emf and mmf induced around any closed contour as well as total electric
and magnetic charges (fluxes) located in (leaving) any arbitrary volumetric domain. This has been
demonstrated by Hertz employing the convective derivative operator D�v = ∂t +�v · grad in the presence
of bodies in general rectilinear motion with velocity field �v(t) and later extended by Heaviside for bodies
with general velocity field �v(�r; t) by replacing the convective derivative operator with comoving time
derivative operator ∂t + L�v, where L�v stands for the Lie derivative. The comoving time derivative
operator is the only member of a family of invariant time derivatives (in the context of PMFI) which
correctly models the well-known conservation laws in electromagnetism of moving bodies. It appears
implicit in Reynolds and Helmholtz Transport Theorems in Vector Calculus for the special cases of
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scalar and vector fields. It is termed as upper convected material derivative in Elasticity and Oldroyd
derivative [10] in Fluid Dynamics in the context of Tensor Calculus.

In 2010, one of the present authors succeeded to demonstrate the commutative property between
the curl operator and the comoving time derivative operator when the velocity field is in its most general
(nonsolenoidal and rotational) form, also covering non-Euclidean motion [11]. This development has
been instrumental in obtaining the wave operator in its most general form and formulating numerous
canonical radiation and scattering problems for bodies in various modes of motion accompanied by
experimental verifications [12–17].

The present investigation is an application of Hertzian Electrodynamics to the canonical problem of
uniform plane wave scattering by a Perfect Electric Conductor (PEC) half-plane in uniform rectilinear
motion. We consider the scenario in Fig. 1, where a monochromatic plane wave impinges on a PEC
half-plane S. The cases of motion of S being parallel and perpendicular to the plane are tackled
separately.

Figure 1. The geometry of the problem.

In virtue of the terminology of Continuum Mechanics, we use the term Eulerian frame (E-frame)
for Cartesian spatial configuration Ox1x2x3t, while material configuration Ox′

1x
′
2x

′
3t, called Lagrangian

or L-frame, signifies the Cartesian configuration of a material observer for which the half-plane is at
rest, and ambient medium is in motion in opposite direction. The corresponding unit vectors along the
coordinate axes lie in parallel: x̂i = x̂′

i, i = 1, 2, 3.
The associated boundary value problem (BVP) is solved employing the following procedure:

(i) Map the incoming wave from E- to L-frame in virtue of kinematic transformations and Conservation
Laws.

(ii) Solve the scattered wave from the associated BVP in L-frame which involves boundary, radiation,
and edge conditions.

(iii) Map the scattered wave back from L- to E-frame.

This is followed by investigating the restrictions on incidence angle vs. speed for the realization of
scattering phenomenon. Parallel motion mode reveals the possibility of excitation of surface waves
upon reflection, which also contributes to edge diffraction mechanism. Numerical results are illustrated
and discussed for scattered fields.

2. MOTION PARALLEL TO THE PLANE

2.1. Incoming Wave in E-Frame

Incident plane wave fields in E-frame satisfy the homogeneous Maxwell’s equations of stationary media,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl �Einc(�r; t) + ∂t
�Binc(�r; t) = �0

curl �Hinc(�r; t) − ∂t
�Dinc(�r; t) = �0

div �Dinc(�r; t) = 0

div �Binc(�r; t) = 0
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in entire R3. In particular, we consider a uniform homogeneous TM plane wave with fields⎧⎪⎪⎨
⎪⎪⎩

�Hinc(�r; t) = Re
{

�Hinc(�r)e−iωinct
}

= x̂3 Re
{
uinc(x1, x2)e−iωinct

}
uinc(x1, x2) = eikn̂inc·�r = e−ik(x1 cos φinc+x2 sin φinc)

�Einc(�r; t) = Z �Hinc(�r; t) × n̂inc

(1)

impinging on a moving PEC half-plane described in L-frame at S = {(x′
1, x

′
2, x

′
3)|x′

1 > 0, x′
2 = 0,

x′
3 ∈ (−∞,∞)}, as illustrated in Fig. 1.

The incoming fields satisfy the wave equations(
lap− 1

c2
∂2

t

)(
�Einc(�r; t)
�Hinc(�r; t)

)
= �0,

(
lap +k2

)( �Einc(�r )
�Hinc(�r )

)
= �0

in time and phasor domains, respectively. Here, Z =
√

μ/ε and c = 1/
√

με are the characteristic
impedance and the speed of light in the ambient simple lossless medium, while ωinc > 0 is the angular
frequency, and k = ωinc/c = 2π/λ represents the wave number.

We confine the incidence angle as φinc ∈ (0, π] due to the symmetric structure of the PEC half-
plane. The scattering mechanism is investigated for the particular case of the velocity vector �v = x̂1G,
G = const. with Galilean Transformations

x1 = x′
1 + Gt, x2 = x′

2, x3 = x′
3, i = 1, 2, 3.

2.2. Incoming Wave in L-Frame

For L-observer, the PEC plane is at rest, and all material points in the ambient medium R3\S are in
relative motion with velocity field

�v′ = −�v · ¯̄I = −x̂′
1G,

where ¯̄I = x̂1x̂
′
1 + x̂2x̂

′
2 + x̂3x̂

′
3 is the unit dyadic. In L-frame, the incident fields satisfy the time domain

Hertzian field and wave equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl′ �E′
inc(�r

′; t) + (∂t + L�v′) �B′
inc(�r

′; t) = �0

curl′ �H ′
inc(�r

′; t) − (∂t + L�v′)�D′
inc(�r

′; t) = �0

div′ �D′
inc(�r

′; t) = 0
div′ �B′

inc(�r
′; t) = 0

(2a-d)

{
L�v′ �B′

inc = �v′ div′ �B′
inc − curl′(�v′ × �B′

inc) = − curl′(�v′ × �B′
inc)

L�v′ �D′
inc = �v′ div′ �D′

inc − curl′(�v′ × �D′
inc) = − curl′(�v′ × �D′

inc)
(2e-f)

(
lap′− 1

c2
(∂t + L�v′)2

)(
�E′

inc(�r
′; t)

�H ′
inc(�r

′; t)

)
= �0, �r ′ ∈ R3. (3)

Here, L�v′ represents the Lie derivative operator. The projection of Eqs. (2a-d) and (3) into phasor
domain reads ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

curl′ �E′
inc(�r ) − iωinc

�B′
inc(�r

′) = �0

curl′ �H ′
inc(�r

′) + iωinc
�D′

inc(�r
′) = �0

div′ �D′
inc(�r

′) = 0

div′ �B′
inc(�r

′) = 0

and (
lap′ +k2

)( �E′
inc(�r

′)
�H ′

inc(�r
′)

)
= �0, �r ′ ∈ R3



114 Daşbaşı and Polat

in virtue of invariance of wavenumber in E- and L-frames (cf. [11], Sect. 7). PMFI requires the field
transformations {

�E′
inc = �Einc · ¯̄I, �H ′

inc = �Hinc · ¯̄I
�D′

inc = �Dinc · ¯̄I, �B′
inc = �Binc · ¯̄I

The incoming fields in the two frames also satisfy{
curl′ �E′

inc = curl �Einc · ¯̄I

curl′ �H ′
inc = curl �Hinc · ¯̄I

and

{
∂t

�Binc = (∂t + L�v′) �B′
inc · ¯̄I

∂t
�Dinc = (∂t + L�v′)�D′

inc · ¯̄I
.

Accordingly, the map of the incoming wave in Eq. (1) into L-frame is derived as⎧⎪⎪⎨
⎪⎪⎩

�H ′
inc(�r

′; t) = x̂′
3 Re

{
u′

inc(x
′
1, x

′
2)e

−iω′
inct

}
u′

inc(x
′
1, x

′
2) = eikn̂′

inc·�r ′
= e−ik(x′

1 cos φinc+x′
2 sin φinc)

�E′
inc(�r

′; t) = Z �H ′
inc(�r

′; t) × n̂′
inc

with ω′
inc = ωinc(1 + β cos φinc), β = G/c.

In L-frame, the incoming wave is also observed as a homogeneous monochromatic plane wave with
the kinematic limitation (1 + β cos φinc) > 0 on (φinc, β) for the incident wave to catch the moving
half-plane.

2.3. The Representation of Scattered Wave in L-Frame

Based on Superposition Principle, let us express the total field in the ambient medium as⎧⎪⎨
⎪⎩

(
�Etot, �Htot

)
=

(
�Einc, �Hinc

)
+

(
�Esc, �Hsc

)
(

�E′
tot, �H ′

tot

)
=

(
�E′

inc,
�H ′

inc

)
+

(
�E′

sc, �H ′
sc

)
in spatial and material configurations, respectively. The problem under consideration further allows us
to express the total scattered fields as a combination of reflected and diffracted components, namely,⎧⎪⎨

⎪⎩
(

�Esc, �Hsc

)
=

(
�Eref , �Href

)
+

(
�Ed, �Hd

)
(

�E′
sc,

�H ′
sc

)
=

(
�E′

ref , �H ′
ref

)
+

(
�E′

d,
�H ′

d

)
which satisfy the same set of field and wave equations as the total scattered fields in respective frames.

2.4. Scattered Wave for L-Observer Located on S

For an L-observer located on S, all material points in the ambient medium R3\S move with velocity �v′,
and the corresponding scattering mechanism is characterized by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

curl′ �E′
sc(�r ′; t) + (∂t + L�v′) �B′

sc(�r ′; t) = �0

curl′ �H ′
sc(�r

′; t) − (∂t + L�v′)�D′
sc(�r

′; t) = �0

div′ �D′
sc(�r ′; t) = 0

div′ �B′
sc(�r ′; t) = 0

(4a-d)

{
L�v′ �B′

sc = �v′ div′ �B′
sc − curl′(�v′ × �B′

sc) = − curl′(�v′ × �B′
sc)

L�v′ �D′
sc = �v′ div′ �D′

sc − curl′(�v′ × �D′
sc) = − curl′ (�v′ × �D′

sc)
(4e-f)

(
lap′− 1

c2
(∂t + L�v′)2

)(
�E′

sc(�r
′; t)

�H ′
sc(�r

′; t)

)
= �0, �r ′ ∈ R3\S. (5)
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Accordingly, Eqs. (4a) and (4b) can also be expressed in the form⎧⎨
⎩

curl′
(

�E′
sc − �v′ × �B′

sc

)
+ ∂t

�B′
sc = �0

curl′
(

�H ′
sc + �v′ × �D′

sc

)
− ∂t

�D′
sc = �0.

In the present problem, the volume (free) charge and conduction current density distributions are
available only on S and described by

ρ′f (�r ′; t) = ρ′S(x′
1; t) δ(x′

2)U(x′
1), �J ′

C(�r ′; t) = x̂′
1J

′
S(x′

1; t) δ(x′
2)U(x′

1) (6a)

with δ(·) and U(·) representing the Dirac Delta distribution and Unit Step function, respectively. The
Principle of Continuity of Current reads

div′ �J ′
C(�r ′; t) + ∂tρ

′
f (�r ′; t) = 0 (6b)

and applied in the sense of distributions. The boundary relations on S are obtained from the
distributional investigations of Eqs. (4)–(6) as �v′ → �0. Obviously, the boundary relations on S
correspond to the same result as those for Maxwell’s equations of stationary media,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂′
2 ×

[
�E′

sc(�r
′; t)|

S+ − �E′
sc(�r

′; t)|
S−

]
= �0

x̂′
2 ×

[
�H ′

sc(�r ′; t)|
S+ − �H ′

sc(�r ′; t)|
S−

]
= �J ′

S(�r ′
S; t)

x̂′
2 ·

[
�D′

sc(�r ′; t)|
S+ − �D′

sc(�r ′; t)|
S−

]
= ρ′S(�r ′

S ; t)

x̂′
2 ·

[
�B′

sc(�r ′; t)|
S+ − �B′

sc(�r ′; t)|
S−

]
= 0

(7a-d)

The boundary relations are accompanied by the description of a stationary PEC body

x̂′
2 ×

[
�E′

inc(�r
′; t) + �E′

sc(�r
′; t)

]∣∣∣
S

= �0, (7e)

the edge condition as ρ′ =
√

x′
1
2 + x′

2
2 → 0 and the radiation condition as ρ′ → ∞. In Eq. (7), S±

denote half-planes that are parallel and infinitely close to S when one approaches as x2 → 0+ and
x2 → 0−.

2.5. Scattered Wave for L-Observer Located in R3\S
For an L-observer (located at a fixed point) in R3\S, the body S and therefore all material points
in the ambient medium move with velocity −�v′. Then, the corresponding scattering mechanism is
characterized by ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

curl′
(

�E′
sc + �v′ × �B′

sc

)
+ ∂t

�B′
sc = �0

curl′
(

�H ′
sc − �v′ × �D′

sc

)
− ∂t

�D′
sc = �J ′

C + �J−�v′

div′ �D′
sc = ρ′f

div′ �B′
sc = 0

div′
(

�J ′
C(�r ′; t) + �J−�v′(�r ′; t)

)
+ ∂tρ

′
f (�r ′; t) = 0(

lap′ − 1
c2

(∂t + L−�v′)2
)(

�E′
sc(�r

′; t)
�H ′

sc(�r ′; t)

)
= �0, �r ′ ∈ R3\S (8)

with �J−�v′ = −�v′ρ′f corresponding to convection currents on S. The special case of monochromatic
incidence requires that all field quantities related to the scattered wave in L-frame are also
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monochromatic with time dependence exp(−iω′
sct). Then, the phasor fields, as observed in R3\S in

L-frame, satisfy the reduced field and wave equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl′ �E′
sc(�r

′) − iωinc
�B′

sc(�r
′) = �0

curl′ �H ′
sc(�r

′) + iωinc
�D′

sc(�r
′) = �J ′

C(�r ′) + �J−�v′(�r ′)

div′ �D′
sc(�r

′) = ρ′f (�r ′)

div′ �B′
sc(�r

′) = 0

(9a-d)

div′
(

�J ′
C(�r ′) + �J−�v′(�r ′)

)
− iωinc ρ′f (�r ′) = 0 (9e)

(
lap′ +k2

)( �E′
sc(�r

′)
�H ′

sc(�r ′)

)
= �0, �r ′ ∈ R3\S. (10)

In what follows we shall continue with the solution of the reflected components in the first place.

2.6. Reflected Wave in L-Frame

In calculating the reflected wave, we consider a PEC plane of infinite extent located on x′
2 = 0. Then,

the reflected fields can be expressed in the form⎧⎪⎪⎨
⎪⎪⎩

�H ′
ref (�r ′; t) = x̂′

3 Re
{

u′
ref (x′

1, x
′
2)e

−iω′
ref t

}
u′

ref (x′
1, x

′
2) = RTMeikn̂′

ref ·�r ′
= RTMeik(x′

1 cos φref +x′
2 sinφref)

�E′
ref (�r ′; t) = Z �H ′

ref(�r ′; t) × n̂′
ref

(11a-c)

Notice that we switch from the general notation ω′
sc to ω′

ref as the present geometry allows for
geometrical optics (GO) (i.e., space wave) fields. The unknown quantities in Eq. (11) are solved from
the BVP ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
lap′− 1

c2
(∂t + L−�v′)2

)
�E′

ref (x′
1, x

′
2; t) , x′

2 > 0

x̂′
2 ×

[
�E′

inc (x′
1, 0; t) + �E′

ref (x′
1, 0; t)

]
= �0

lim
|�r ′|→∞

(
�E′

ref × �r ′ + |�r ′| �H ′
ref

)
= �0, x′

2 > 0

(12a-c)

for x′
1 ∈ (−∞,∞), ∀t. It uniquely reads the Snell’s Law for parallel motion,

cos φref = − cos φinc/(1 + 2β cos φinc) = cos φ0
ref/(1 + 2β cos φinc) (13a)

with φ0
ref = π − φinc denoting the angle of reflection in the stationary case β = 0, and

ω′
ref = ωinc(1 + β cos φref ) = ωinc

(1 + β cos φinc)
(1 + 2β cos φinc)

(13b)

RTM = sin φinc/ sin φref (13c)

We observe the condition
ω′

ref > 0; i.e.,
1 + β cos φinc

1 + 2β cos φinc
> 0

as a second kinematic requirement on (φinc, β) for the realization of wave reflection phenomenon.
In TE mode, the angle and frequency of the reflected wave are the same as those in TM mode,

while full reflection is observed: RTE = −1.
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2.7. Reflected Wave in E-Frame

The maps of (�E′
ref , �H ′

ref) into E-frame read⎧⎪⎨
⎪⎩

�Href (�r; t) = �H ′
ref(�r ′; t) · ¯̄I = x̂3 Re

{
uref (x1, x2)e−iωref t

}
uref (x1, x2) = RTMeikn̂ref ·�r = RTMeik(x1 cos φref +x2 sinφref )

�Eref (�r; t) = Z �Href(�r; t) × n̂ref

with
ωref = ωinc(1 + 2β cos φref ) = ωinc/(1 + 2β cos φinc) (14)

Equation (14) reveals the well-known Doppler Effect due to the component of the incident wave
parallel to the direction of motion. When we express the angular frequency of the reflected wave
as ωref = ωinc + Δω, we get

Δω/ωinc = −2β cos φinc/(1 + 2β cos φinc)

The third kinematic requirement on (φinc, β) for the realization of wave reflection phenomenon appears
as

ω′
ref > 0; i.e.,

1 + β cos φinc

1 + 2β cos φinc
> 0

One observes that Δω ≤ 0 when β cos φinc ≥ 0, i.e., when φinc ∈ (0, π/2], β > 0 or φinc ∈ (π/2, π],
β < 0. Similarly, Δω ≥ 0 when β cos φinc ≤ 0, i.e., when φinc ∈ (0, π/2], β < 0 or φinc ∈ (π/2, π], β > 0.

For both TM and TE modes, the parallel motion of the plane has no influence on the reflected
wave under normal incidence φinc = π/2.

It might also be interesting to acknowledge the asymptotic case β → ∞, which reads

φref → π/2, RTM → sinφinc, ω′
ref → ωinc/2, ωref → 0

while φinc 	= π/2.

2.8. Dependence of Wave Mechanism on (φinc,β)

Let us outline the three conditions on (φinc, β) which we have obtained so far for the realization of
scattering phenomenon: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Condition I : 1 + β cos φinc > 0

Condition II :
1 + β cos φinc

1 + 2β cos φinc
> 0

Condition III : 1 + 2β cos φinc > 0

We observe the following:

• Condition I is satisfied when Condition III is satisfied.
• Condition II is satisfied when Conditions I and III are satisfied.

Therefore, Condition III appears sufficient for the other two conditions to hold. Condition III holds for
∀φinc ∈ (0, π] when |β| < 1/2, while it requires φinc ∈

(
cos−1(1/2|β|, π] and φinc ∈

(
0, π − cos−1(1/2β)

)
for β ≤ −1/2 and β ≥ 1/2, respectively, as illustrated in Fig. 2. The wave reflection mechanism takes
place for ∀β when

φinc ∈
(
cos−1 (1/2 |β|) , π − cos−1 (1/2 |β|))

Condition III addresses a certain permissible region in (φinc, β) plane where wave propagation and
reflection phenomena are observed. This region comprises sub-regions separated by the boundary curves

| cos φref | = | cos φinc|/|1 + 2β cos φinc|
determined by Snell’s Law in Eq. (13a). These adjoining domains are specified as | cos φref | ≤ 1 and
| cos φref | > 1 for which the reflected wave appears as space wave and surface wave, respectively, as
plotted in Fig. 3.
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(a) (b)

(c)

Figure 2. Variations of (painted) ranges of φinc with β in which wave phenomena is realized for uniform
motion parallel to the plane.

Figure 3. Computations of permissible regions in (φinc, β) that denote space and surface wave
mechanisms in two different scales.

Space wave reflection mechanism can be described w.r.t. β as{
φref > φ0

ref = π − φinc; ωref > ωinc; RTM > 1 for β < 0

φref < φ0
ref ; ωref < ωinc; RTM < 1 for β > 0

and is illustrated in Fig. 4 for φinc ∈ (0, π/2].
The surface wave excitation mechanism illustrated in Fig. 5 requires to introduce

sin φref =
√

1 − cos2 φref = iN (15a)

with N =
√

cos2 φref − 1 > 0 so that exponential decay of the reflected field

u′
ref (x′

1, x
′
2) = RTMeikx′

1 cos φref e−kNx′
2 (15b)

is provided in the upper half-space x′
1 ∈ (−∞,∞), x′

2 > 0. Substituting φref = Re{φref} + i Im{φref}
into Eq. (15a) and using the identity sin(a + ib) = sin(a) cosh(b) + i cos(a) sinh(b), the reflection angle
can be located on positive imaginary axis at

φref = i sinh−1 N. (15c)
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(a) (b)

Figure 4. Illustration of space wave reflection mechanism for opposite directions of uniform motion
parallel to the plane.

(a) (b)

Figure 5. Illustration of surface wave reflection mechanism for opposite directions of uniform motion
parallel to the plane.

2.9. Surface Wave Reflection for Very Small Values of β

In Table 1, we scrutinize surface wave reflection mechanism for certain vehicles of practical importance.
Since the corresponding β values are quite small, it is seen that surface waves (falling into the red regions
in Fig. 3) occur only for grazing incidence φinc → 0, π. In this case, we may introduce the asymptotic
representation of Snell’s Law in Eq. (13a),

cosφref = − cos φinc (1 − 2β cos φinc) + h.o.t. in β

→ ∓ (1 + 2 |β|) + h.o.t. in |β| , φinc → 0, π

sin φref = i
√

cos2 φref − 1 = i
√

cos2 φinc (1 − 4β cos φinc) − 1 + h.o.t. in β

→ i
√

4 |β| + h.o.t. in |β|, φinc → 0, π

Table 1. Constraints on the angle of incidence w.r.t.? typical speeds for surface wave reflection
mechanism.

Vehicle Typical Speeds G vs. β Ranges of φinc

International Space Station G = 7660 [m/s], β = ±2.55e − 5 φinc ∈ (0◦, 0.41◦) ∪ (179.59◦, 180◦)

Military Jet Plane G = 1200 [m/s], β = ±4e − 6 φinc ∈ (0◦, 0.16◦) ∪ (179.84◦, 180◦)

Ballistic Missile G = 5000 [m/s], β = ±1.67e − 5 φinc ∈ (0◦, 0.33◦) ∪ (179.67◦, 180◦)

Commercial Airplane G = 260 [m/s], β = ±8.67e − 7 φinc ∈ (0◦, 0.07◦) ∪ (179.93◦, 180◦)
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and place into the constituents of surface reflected wave in Eq. (15b) as

RTM =
sin φinc

sin φref

∣∣∣∣
φinc→0,π

→ sin φinc

i
√

4 |β| + h.o.t. in |β|
eikx′

1 cos φref

∣∣∣
φinc→0,π

→ e∓i(1+2|β|+h.o.t. in |β|)kx′
1

e−kx′
2

√
cos2 φref−1

∣∣∣
φinc→0,π

→ e−kx′
2

√
4|β|+h.o.t. in |β|

to observe that the surface reflected wave behaves like

u′
ref (x′

1, x
′
2)
∣∣
φinc→0,π

→ sinφinc

i2
√|β| e−2

√
|β|kx′

2 e∓i(1+2|β|)kx′
1

under a first order approximation in β. It may be realized that the amplitude sin φinc/(2
√|β|) does not

necessarily take small values while the exponential decay along x′
2-axis is quite slow.

2.10. Far Field Scattered Wave in L-Frame

The scattered wave in L-frame is solved from Eq. (8) under the boundary conditions (7a-d), (12b), the
edge condition as ρ′ =

√
x′

1
2 + x′

2
2 → 0, and the radiation condition as ρ′ → ∞. First, we incorporate

Eq. (12b) into Eq. (7c) as

x̂′
2 ×

[
− �E′

ref (�r ′; t) + �E′
sc(�r

′; t)
]∣∣∣

S
= �0.

Then, by setting ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�H ′
sc(�r ′; t) = x̂′

3Re
{
u′(x′

1, x
′
2)e

−iω′
ref t

}
�H ′

d(�r
′; t) = x̂′

3Re
{

u′
d(x

′
1, x

′
2)e

−iω′
ref t

}
�J ′
S(�r ′

S ; t) = x̂′
1Re

{
J ′

S(x′
1)e

−iω′
ref t

}
the associated reduced BVP is constructed on Helmholtz Equation (9) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(lap′ +k2)u′(x′
1, x

′
2) = 0, (x′

1, x
′
2) /∈ S

∂

∂x′
2

u′(x′
1, 0) = ik sin φrefRTMeikx′

1 cos φref , x′
1 > 0

∂

∂x′
2

u′(x′
1,+0) − ∂

∂x′
2
u′(x′

1,−0) = 0, x′ > 0

u′(x′
1,+0) − u′(x′

1,−0) = J ′
S(x′

1), x′
1 > 0

u′(x′
1,+0) − u′(x′

1,−0) = 0, x′
1 < 0

∂

∂x′
2

u′(x′
1,+0) − ∂

∂x′
2
u′(x′

1,−0) = 0, x′
1 < 0

u′(x′
1, 0) = O(1),

∂

∂x′
2

u′(x′
1, 0) = O(|x′

1|−1/2), x′
1 → 0

u′(x′
1, 0) = O(e−ikx′

1), x′
1 → −∞

u′(x′
1, 0) = O(e−ikx′

1 cos φref ), x′
1 → ∞

(16)

It may be realized that the BVP in Eq. (16) is similar to the one for the stationary case, and they
coincide when one substitutes

RTM → 1, φref → φ0
ref = π − φinc for β = 0.
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Therefore, a solution can be obtained directly by proper substitutions in the result available in
literature [18] through Wiener-Hopf Technique for the stationary case as

u′(ρ′, φ′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2πi

RTM

√
1 − cos φref

∫
Γ

eikρ′ cos(φ′−t)
√

1 + cos t

cos t − cos φref
dt, φ′ ∈ (0, π)

− 1
2πi

RTM

√
1 − cos φref

∫
Γ

eikρ′ cos(φ′+t)
√

1 + cos t

cos t − cos φref
dt, φ′ ∈ (π, 2π)

(17)

The contour of integration Γ in spectral t-plane (described in the Riemann sheet Re{t} ∈ (0, π)) is
depicted in Fig. 6. (ρ′, φ′) are the polar coordinates in L-frame described as x′

1 = ρ′ cos φ′, x′
2 = ρ′ sin φ′.

(a) (b)

Figure 6. The contour of integration Γ in spectral t-plane in presence of (a) space wave pole, (b)
surface wave poles.

It is seen in Eq. (17) that the saddle point always appears in the range ts ∈ (0, π) on the real axis,
while the location of the pole at tp is dependent on (φinc, β).

Case I: |cosφref | ≤ 1: Space Wave Scattering

As long as (φinc, β) remain in the space wave region (in blue) in Fig. 3(a),
(i) in the reflection region φ′ ∈ (0, φref ) the saddle point appears at ts = φ′ ∈ (0, φref ), and therefore,

one inevitably crosses over the (space wave) pole while deforming Γ onto the steepest descent path.
The residue contribution equals the reflected wave;

(ii) in the region φ′ ∈ (φref , π) the saddle point appears at ts = φ′ ∈ (φref , π) so that the pole is not
crossed over during the deformation process;

(iii) in the region φ′ ∈ (π, 2π − φref ) the saddle point appears at ts = 2π − φ′ ∈ (φref , π) so that the
pole is not crossed over during the deformation process;

(iv) in the shadow region φ′ ∈ (2π − φref , 2π) the saddle point appears at ts = 2π − φ′ ∈ (0, φref ), and
therefore, one inevitably crosses over the pole while deforming Γ onto the steepest descent path.
The residue contribution cancels with the incident field in that region.

As a result, the total scattered field can be written as

u′ = u′
d +

⎧⎪⎪⎨
⎪⎪⎩

RTMeikρ′ cos(φ′−φref ), 0 < φ′ < φref

0, φref < φ′ < 2π − φref

−RTMeikρ′ cos(φ′+φref ), 2π − φref < φ′ < 2π

(18)

The term RTMeikρ′ cos(φ′−φref ), 0 < φ′ ≤ φref corresponds to u′
ref . The influence of motion brings about

non-zero GO component u′
inc − RTMeikρ′ cos(φ′+φref ) in the expression of the total magnetic field in the

region 2π − φref ≤ φ′ < 2π in L-frame.
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The diffracted magnetic field may be calculated from the saddle point contribution as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′
d
∼= D(π − φref , φ′)

eikρ′

√
kρ′

, kρ′ 
 1

D(π − φref , φ′) = −eiπ/4

√
2π

RTM

√
1 + cos(π − φref )

√
1 + cos φ′

cos(π − φref ) + cos φ′

(19a,b)

The uniform asymptotic evaluation of Eq. (18) along the Steepest Descent Path (SDP), which takes
finite values at the reflection boundary φ′ = φref , reveals the Sommerfeld diffraction coefficient

D(kρ′;π − φref , φ′)=− eiπ/4

2
√

2π
RTM×

⎡
⎢⎢⎣

sec
(

φ′ + φref − π

2

)
F

(
2kρ′ cos2

(
φ′ + φref − π

2

))

+sec
(

φ′ − φref + π

2

)
F

(
2kρ′ cos2

(
φ′ − φref + π

2

))
⎤
⎥⎥⎦ (19c)

(well known for β = 0), where F (z) = −2i
√

ze−iz
∞∫
√

z

eiη2
dη is a modified Fresnel integral. The scattered

electric field in L-frame can be calculated from the field Equations (9a-d). The diffracted field displays
a jump discontinuity

u′
d

∣∣
φ′=φref +0− −u′

d

∣∣
φ′=φref +0+ = −RTM eikρ′ cos(φ′−φref )

∣∣∣
φ′=φref

= −RTMeikρ′

which ensures the continuity of total scattered field in Eq. (18) on the reflection boundary. This relation
can be seen upon substituting

cos
(

φ′ + φref − π

2

)∣∣∣∣
φ′=φref +0±

= sinφref

cos
(

φ′ − φref + π

2

)∣∣∣∣
φ′=φref +0±

= cos
(π

2
+ 0±

)
= 0∓

F (z) ∼ √
πze−iπ/4e−iz, z → 0

sec
(

φ′ + φref − π

2

)
F

(
2kρ′ cos2

(
φ′ + φref − π

2

))∣∣∣∣
φ′=φref+0±

=
1

sinφref
F

(
2kρ′ sin2 φref

)

sec
(

φ′ + φref + π

2

)
F

(
2kρ′ cos2

(
φ′ + φref + π

2

))∣∣∣∣
φ′=φref+0±

= sign
(

cos
(

φ′ − φref + π

2

))∣∣∣∣
φ′=φref+0±

e−iπ/4
√

2πkρ′ = ∓e−iπ/4
√

2πkρ′

into Eq. (19) to get

u′
d

∣∣
φ′=φref +0+ = − eikρ′

√
kρ′

eiπ/4

2
√

2π
RTM

[
F

(
2kρ′ sin2 φref

)
sinφref

− e−iπ/4
√

2πkρ′
]

u′
d

∣∣
φ′=φref +0− = − eikρ′

√
kρ′

eiπ/4

2
√

2π
RTM

[
F

(
2kρ′ sin2 φref

)
sin φref

+ e−iπ/4
√

2πkρ′
]

The surface current density distribution on S can be calculated from Eq. (7b) for kx′
1 
 1 as

J ′
S(x′

1) = 2RTMeikx′
1 cos φref , which corresponds to GO currents.

Case II: |cosφref| > 1: Surface Wave Scattering

In this case, the total scattering mechanism constitutes
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(i) the edge diffracted field expressed by SDP contribution in Eq. (19), and
(ii) the surface reflected wave calculated by the contributions from the circular indentations C±

η in the
Cauchy sense.
Accordingly, the total scattered magnetic field can be written as

u′ = u′
d + u′

sw. (20)
u′

d has the same representation as in Eq. (19). However, the cosine terms in Eq. (19b) require to be
calculated as √

1 + cos(π − φref ) =
√

1 − cos φref = i
√

cos φref − 1, cos φref > 1

On the other hand, radiation condition requires to pick

sinφref =
{

+iN, x′
2 > 0

−iN, x′
2 < 0

(21a)

and

RTM =
{

+ sin φinc/(iN), x′
2 > 0

− sin φinc/(iN), x′
2 < 0

(21b)

in Eq. (19c).
In calculating u′

sw for cos φref > 1 over the semi-circle C+
η , we set tp = φref = i sinh−1 N ,

sin φref = iN , t = tp + ηeiϕ, dt = iηeiϕdϕ, ϕ : π/2 → −π/2, and for cos φref < −1 over the semi-circle
C−

η , we set tp = −φref = π − i sinh−1 N , sin φref = −iN , t = tp + ηeiϕ, dt = iηeiϕdϕ, ϕ : π/2 → 3π/2.
The results are obtained in the Cauchy sense as η → 0 as

u′
sw =

1
2
RTM ×

{
eikρ′ cos(φ′−φref ), φ′ ∈ (0, π)

−eikρ′ cos(φ′+φref ), φ′ ∈ (π, 2π)
, cos φref > 1 (22a)

u′
sw =

1
2
RTM ×

{
eikρ′ cos(φ′+φref ), φ′ ∈ (0, π)
−eikρ′ cos(φ′−φref ), φ′ ∈ (π, 2π)

, cos φref < −1 (22b)

which is equal to one half of the residue contributions. u′
sw can be shaped into the resultant forms

u′
sw = − 1

2Ni
sinφince

−Nkρ′|sin φ′|eikρ′ cos φ′ cos φref (23a)

for cos φref < −1 & φ′ ∈ (0, π) and cos φref > 1 & φ′ ∈ (π, 2π)

u′
sw = +

1
2Ni

sinφince
−Nkρ′|sin φ′|eikρ′ cos φ′ cos φref (23b)

for cos φref < −1 & φ′ ∈ (π, 2π) and cos φref > 1 & φ′ ∈ (0, π)
and can be interpreted as propagating along both +x′

1 and −x′
1 directions emanating from x′

1 = 0 plane.
One observes the far field relation |u′

sw| � |u′
d| at all points of observation, probably except when

| sin φ′| → 0, i.e., in a neighborhood of φ′ = 0, π where the surface wave behaves as

u′
sw

∣∣
φ′→0+ = ∓ 1

2Ni
sin φince

ikρ′ cos φref , u′
sw

∣∣
φ′→2π− = ± 1

2Ni
sin φince

ikρ′ cos φref

u′
sw

∣∣
φ′→π+ = ± 1

2Ni
sinφince

−ikρ′ cos φref , u′
sw

∣∣
φ′→π− = ∓ 1

2Ni
sinφince

−ikρ′ cos φref

for cos φref < −1 and cos φref > 1, respectively. It is seen that u′
sw takes opposite limit values while

approaching at φ′ = 0, π from opposite sides. One observes a phase shift of 180o upon crossing over
x′

1-axis. Due to structural symmetry, u′
d and u′

sw have symmetric patterns around x′
1-axis.

In this case, the surface current density distribution on S can be calculated from Eq. (7b) for
kx′

1 
 1 as

J ′
S(x′

1) = ∓ 1
iN

sin φince
ikx′

1 cos φref .

For very small values of β, in virtue of the investigation in the previous section, surface wave mechanism
occurs under grazing wave incidence so that one may insert cos φref → ∓(1 + 2|β|) as φinc → 0, π in
Eqs. (19)–(23).
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2.11. Evaluation of Diffraction Coefficient

The modified Fresnel integral function in Eq. (19c) can be expressed in terms of Fresnel cosine and sine
functions

C1(z) + iS1(z) =

√
2
π

∫ z

0
eiη2

dη, C1(∞) + iS1(∞) =
1
2

(1 + i)

C(z) + iS(z) =
∫ z

0
ei π

2
η2

dη = C1

(
z

√
π

2

)
+ iS1

(
z

√
π

2

)
as

F (z) = −2i
√

ze−iz

∫ ∞
√

z
eiη2

dη = −2i
√

ze−iz

[∫ ∞

0
eiη2

dη −
∫ √

z

0
eiη2

dη

]

= −2i
√

ze−iz

√
π

2

[
1 + i

2
− [

C1

(√
z
)

+ iS1

(√
z
)]]

= −2i
√

ze−iz

√
π

2

[
1 + i

2
−

[
C

(√
2z
π

)
+ iS

(√
2z
π

)]]
(24a)

where z ∈ C (cf. [19], Sect. 7.3). One may also use the relation

C

(√
2z
π

)
+ iS

(√
2z
π

)
=

1 + i

2

[
1 − eiz �

(
eiπ/4√z

)]
(24b)

to express Eq. (24a) as

F (z) = −i
√

πz eiπ/4 �
(
eiπ/4√z

)
, z ∈ C (24c)

in terms of the complex Faddeeva function

�(z) = e−z2
erfc (−iz) = e−z2

[
1 +

2i√
π

∫ z

0
et2 dt

]
, z ∈ C (24d)

Then, the diffraction coefficient reads

D(kρ′;π − φref , φ′) = −RTM

2

√
kρ′ ×

⎡
⎢⎢⎣

�

(
eiπ/4

√
2kρ′

∣∣∣∣cos
(

φ′ + φref − π

2

)∣∣∣∣
)

+�

(
eiπ/4

√
2kρ′

∣∣∣∣cos
(

φ′ − φref + π

2

)∣∣∣∣
)

⎤
⎥⎥⎦ (25a)

for space wave scattering (| cos φref | ≤ 1), and

D(kρ′;π − φref , φ′) = −RTM

2

√
kρ′ ×

⎡
⎢⎢⎣

�

(
eiπ/4

√
2kρ′ cos

(
φ′ + φref − π

2

))

+�

(
eiπ/4

√
2kρ′ cos

(
φ′ − φref + π

2

))
⎤
⎥⎥⎦ (25b)

for surface wave scattering (| cos φref | > 1), where we employ Eq. (22) and the related cosine terms are
calculated as

cos
(

φ′ ∓ (π − φref )
2

)
= cos

(
π ∓ φ′

2

)√
1
2

(|cos φref | + 1) + i sin
(

π ∓ φ′

2

)√
1
2

(|cos φref | − 1)

for x′
2 > 0 (φ′ ∈ (0, π)), and as

cos
(

φ′ ∓ (π − φref )
2

)
= cos

(
π ∓ φ′

2

)√
1
2

(|cos φref | + 1) − i sin
(

π ∓ φ′

2

)√
1
2

(|cos φref | − 1)
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for x′
2 < 0 (φ′ ∈ (π, 2π)).
In virtue of the boundary relation in Eq. (7b), it is expected that

D(kρ′;π − φref , φ′)
∣∣
φ′→0+ 	= D(kρ′;π − φref , φ′)

∣∣
φ′→2π−

This can be confirmed based on the general property

�(z) 	= �(−z), z ∈ C

where z = eiπ/4
√

2kρ′ sin (φref/2) in this particular case.
In the presence of space waves, one may obtain the first order asymptotic behavior of Faddeeva

function for (real valued) large arguments as

�
(
eiπ/4√z

)
�

√
2
π

e−iz

eiπ/4
√

z

[
cos

(
z +

π

4

)
+ i cos

(
z − π

4

)]
, z → ∞

upon inserting the corresponding well-known asymptotic behaviors of Fresnel sine and cosine functions,

C (z) � 1
2
−

√
2

πz
cos

(π

2
z2 +

π

4

)
, z → ∞, S (z) � 1

2
−

√
2

πz
cos

(π

2
z2 − π

4

)
, z → ∞

into Eq. (23b). This reveals that the pattern of |D| in Eq. (25a) is loosely dependent on electrical
distance kρ′ in the far field.

The far field pattern of |D| in Eq. (25b) can be estimated employing the asymptotic behavior of
Faddeeva function with complex arguments [20]

�(z) ∼ i√
πz

(
1 +

∞∑
n=1

(2n − 1)!!
(2z2)n

)
, Re {z} ≤ −10.

Symmetric parameters (φinc, β) and (π − φinc,−β) generate same amplitude patterns for u′
d and u′

sw.

2.12. Far Field Scattered Wave in E-Frame

The resultant expression of the scattered magnetic field in E-frame can be obtained as⎧⎪⎨
⎪⎩

�Hd(�r; t) = x̂3 Re
{
ud(x1, x2; t)e

−iω′
ref t

}
�Hsc(�r; t) = x̂3 Re

{
u(x1, x2; t)e

−iω′
ref t

} (26a)

upon substituting

ud(x1, x2; t) = u′
d

∣∣
ρ′ → ρ̄
φ′ → φ̄

, u(x1, x2; t) = u′∣∣
ρ′ → ρ̄
φ′ → φ̄

(26b)

where
ρ̄ =

√
(x1 − Gt)2 + x2

2, φ̄ = tan−1 [x2/ (x1 − Gt)] (27)

3. MOTION PERPENDICULAR TO THE PLANE

In this mode, the velocity vector and Galilean Transformations are expressed by �v = x̂2G, G = const.
and

x1 = x′
1, x2 = x′

2 + Gt, x3 = x′
3, i = 1, 2, 3.

For an L-observer located on the PEC half-plane, the velocity field of the ambient medium R3\S and
the angular frequency of the incoming wave are observed as

�v ′ = −x̂′
2G and ω′

inc = ωinc(1 + β sin φinc).

The condition
ω′

inc > 0 i.e., 1 + β sin φinc > 0 (28)
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appears as the first kinematic requirement on (φinc, β) for the realization of wave reflection phenomenon.
Then, the BVP in Eq. (12) uniquely reads

φref = φ0
ref = π − φinc (29a)

ω′
ref = ωinc(1 + β sin φref ) = ωinc(1 + β sin φinc) (29b)

RTM = sin φinc/ sin φref = 1, (29c)

and Eq. (29a) reveals that no surface wave excitation is observed in this mode. Again, in TE mode the
angle and frequency of the reflected wave are the same as in TM mode with RTE = −1.

The angular frequency of the reflected wave as observed in E-frame is obtained as

ωref = ωinc(1 + 2β sinφinc). (29d)

Equation (29d) reveals the well-known Doppler Effect due to the component of the incident wave
parallel to the direction of motion. When we express the angular frequency of the reflected wave as
ωref = ωinc + Δω, we get

Δω/ωinc = 2β sinφinc.

One observes that Δω ≥ 0 when β ≥ 0, and Δω ≤ 0 when β ≤ 0.
The condition in Eq. (28) is satisfied provided that ωref > 0 i.e., 1 + 2β sin φinc > 0, which

addresses the permissible region illustrated in Fig. 7 for β < 0.

Figure 7. Variation of (painted) range of φinc with β < 0 in which wave phenomena is realized for
uniform motion perpendicular to the plane.

The diffracted magnetic fields in L- and E-frames have the same expressions as in Eqs. (19) and
(26) for the kinematic transformations in Eq. (27) are now replaced by

ρ′ → ρ̄ =
√

x2
1 + (x2 − Gt)2, φ′ → φ̄ = tan−1 [(x2 − Gt) /x1]

4. NUMERICAL RESULTS

We shall provide the numerical results in L-frame and only for parallel motion as the numerical values
of the phasor fields in the other mode are identical with the stationary case. In computations we use
Faddeeva.m file written by Abrarov and Quine in [21] for calculating Eq. (24d), which works with
accuracy over 1e-13 in entire complex plane.

The mechanism of diffraction of space waves is investigated for 4 combinations of (φinc, β):

• Case I1 : φinc ∈ (0, π/2) β < 0 • Case I3 : φinc ∈ (0, π/2) β > 0
• Case I2 : φinc ∈ (π/2, π) β < 0 • Case I4 : φinc ∈ (π/2, π) β > 0

The following evidences are common in all cases:

(i) The shadow region 2π − φ0
ref < φ′ < 2π in stationary case disappears in the presence of motion.

This is due to the presence of non-zero GO field u′
inc − RTMeikρ′ cos(φ′+φref ) in that region.
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Figure 8. Bending mechanism of diffraction patterns in the directions of curved arrows upon motion.

(ii) The diffraction pattern narrows in Case I1 and Case I4 (and widens in Case I2 and Case I3) while
intensifying in each case with |β| as sketched in Fig. 8. The amplification is relatively higher
around the shadow boundary as the incidence is from upper half-space. Due to reciprocity, Case I1
vs. Case I4 and Case I2 vs. Case I3 have mirror symmetric diffraction coefficients.

These evidences are illustrated in Figs. 9–10 for mechanisms I1 and I2 over the polar patterns of
|D(kρ′;φref , φ′)| and the total magnetic field |u′

tot| = |u′
inc +u′| in dB at kρ′ = 20π for φ′ ∈ (0, 2π). One

may observe the jump discontinuity for φ′ = 0, which is proportional to the amount of surface current
density on the half-plane.

(a) (b)

Figure 9. Case I1: (a) |D(kρ′ = 20π;φref = 161.47◦, φ′)| for β = 0 and β = −1/20 with φinc = 30◦,
(b) total field |u′

tot| in dB for (φinc, β) = (30◦,−1/20) at kρ′ = 20π.

The increase of |D| with |β| is related with the contribution of the momentum of the PEC plane to
scattering mechanism. However, this effect is not much visible until β reaches values comparable to 1.

Similar considerations hold for the case of TE polarization.
With regard to diffraction of surface waves, in Fig. 11 the relative contributions of the constituents

of the total diffracted field, |u′
d| and |u′

sw| in [dB], are illustrated when (φinc, β) = (30◦,−0.1) with
cos φref < −1 (corresponding to Case II1) at different values of electrical distance (in the far field).
As expected, the exponentially decaying nature of the surface reflected wave along x′

2-axis in Eq. (23)
exhibits itself as |u′

sw| � |u′
d| at all points of observation except in a neighborhood of φ′ = 0, π, which

narrows with increasing values of kρ′. The same individual patterns for |u′
d| and |u′

sw| are to be observed
for the symmetric parameters (φinc, β) = (150◦, 0.1) with cos φref > 1.

In Fig. 12, the total magnetic field u′
tot = u′

inc + u′
sw + u′

d is illustrated in dB at different values
of electrical distance (in the far field) for (φinc, β) = (30◦,−0.1). The jump discontinuity at φ′ = π is
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(a) (b)

Figure 10. Case I2: (a) |D(kρ′ = 20π;φref = 37.15◦, φ′)| for β = 0 and β = −1/20 with φinc = 150◦,
(b) total field |u′

tot| in dB for (φinc, β) = (30◦,−1/20) at kρ′ = 20π.

(a) (b)

Figure 11. |u′
d| vs. |u′

sw| in dB for (φinc, β) = (30◦,−1/10) at (a) kρ′ = 3π, (b) kρ′ = 30π.

observed for the total magnetic field. The contribution of the surface wave is visible as φ′ → π±, while
the total field decreases gradually with kρ′ in all directions.

5. A COMPARISON WITH RELATIVISTIC APPROACH

In [22], the same problem is investigated using Special Relativity Theory (SRT). HE and SRT belong to
two separate world views with contradicting predictions. In Table 2, we outline a conceptual comparison
of Classical vs. Relativistic Continuum Mechanics to display the contrast in the terminologies of these
two world views.

The essential discrepancy rests on the fact that the Lorentz Transformations (in R1)

x′ = γ (x − Gt) , t′ = γ (t − βx/c) with γ = 1/
√

1 − β2 (30a)
reduce into

x′ = x − Gt, t′ = t − βx/c (30b)
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(a) (b)

Figure 12. |u′
tot| in dB for (φinc, β) = (30◦,−1/10) at (a) kρ′ = 3π, (b) kρ′ = 30π.

Table 2. A terminological comparison of the concepts of classical and relativistic continuum mechanics.

Classical Continuum Mechanics vs. Relativistic Continuum Mechanics
General invariance vs. General covariance
Frame indifference vs. Form invariance
Newtonian space-time vs. Minkowski space-time
Euclidean transformations vs. Lorentz transformations
Principle of Material Frame Indifference vs. Principle of General Space-Time Covariance
Hertz-Heaviside Electrodynamics (1893) vs. Maxwell-Minkowski Electrodynamics (1908)

& General Relativity Theory (1916)

under a first order approximation in β, which does not coincide with Galilean transformations
x′ = x − Gt, t′ = t. (31)

The contrast between Eqs. (30b) and (31) indicates that at least a first (sometimes higher) order
departure in β should be expected between the predictions of HE and SRT in any scenario. In the
context of our current investigation, these contradicting predictions can be seen clearly by comparing
the physical and geometrical quantities of the space reflected waves for these two theories as outlined in
Tables 3 and 4. The results related to SRT can be checked from ([23], Ch. 5) and the references cited
therein.

In parallel motion mode, SRT predicts no Doppler shift, unlike HE. One observes a first order
departure in β between the results calculated by these two methods.

In perpendicular motion mode, HE predicts that the angle of reflection is unaffected by motion,
unlike SRT which indicates an aberration with a first order departure in β between the two results. On
the other hand, both methods predict a Doppler shift, while the departure in between the corresponding
results is of order β2.

Nevertheless, the evidences of these two theories for the present problem share common motives as
(i) nonharmonic nature of diffracted fields in E-frame,
(ii) dependence of reflection and shadow boundaries on motion,
(iii) disappearance of shadow region upon motion,
(iv) intensifying of scattered field upon motion due to energy/momentum transfer.
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Table 3. A comparison of the results derived with HE and SRT for reflection from a PEC plane for
motion parallel to the plane.

Solution by HE Solution by SRT

RTE = −1, RTM = sinφinc/ sin φref RTE/TM = ∓1

cos φref

cos(π − φinc)
=

ωref

ωinc
=

1
1 + 2β cos φinc

φref = π − φinc, ωref = ωinc No Doppler shift(
cos φref

cos(π − φinc)

)
HE

−
(

cos φref

cos(π − φinc)

)
SRT

=
(

ωref

ωinc

)
HE

−
(

ωref

ωinc

)
SRT

= −2β cos φinc + h.o.t. in β

Table 4. A comparison of the results derived with HE and SRT for reflection from a PEC plane for
motion perpendicular to the plane.

Solution by HE Solution by SRT
RTE/TM = ∓1, φinc = π/2 RTE/TM = ∓(1 − β)/(1 + β), φinc = π/2

φref = π − φinc, sin φref = sin φinc sin φref =
(1 + β2) sin φinc − 2β
1 − 2β sin φinc + β2

ωref

ωinc
= 1 + 2β sin φinc

ωref

ωinc
=

1 − 2β sin φinc + β2

1 − β2
=

1 − β sin φinc

1 + β sinφref

(sinφref − sinφinc)HE − (sinφref − sinφinc)SRT = 2β cos2 φinc + h.o.t. in β

(ωref/ωinc)HE − (ωref/ωinc)SRT = 2β2 + h.o.t in β(
RTE/TM

)
HE

− (
RTE/TM

)
SRT

= ∓2β + h.o.t. in β, φinc = π/2

6. CONCLUSION

Scattering of homogeneous plane waves by a Perfect Electric Conductor half-plane in uniform rectilinear
motion in a simple lossless medium is investigated using Wiener-Hopf Technique in the context of
Hertzian Electrodynamics. Numerical results are illustrated and discussed for scattered fields. The
methodology is planned to be extended to PEC and impedance half-planes with different modes of
motion, such as uniform rectilinear acceleration, rotation, and oscillation in virtue of the available results
[15, 16] for a PEC plane and later to rotating strips in conjunction with novel analytical micro-Doppler
analyses of electromagnetic modulation due to rotor blades and wind turbines. Availability of the
explicit expression of the diffraction coefficient in the presence of motion and similarity of its analytical
structure to stationary case are also encouraging for extending existing asymptotic ray techniques for
RCS and maneuver predictions of moving targets.

HFE can be interpreted as an enhancement of Maxwell equations of stationary with the Lie
derivative operator, whose analytical properties are summoned up in [11]. In this manner, it is possible to
fully characterize the influence of all modes of motion in any macroscobic electromagnetic phenomenon.
This is equivalent to saying that moving media problems cannot be correctly formulated upon Maxwell
equations by incorporating time only as a parameter that specifies the instantaneous location of a moving
medium. This can be seen directly upon formulating the reflection of an oblique incident plane wave
from a moving PEC surface as the Maxwell formulation shall only reveal the Snell’s law of stationary
media. A similar comparison of true Hertzian formulation [15] versus Maxwell formulation [24] can be
done for the problem of reflection by a PEC plane in harmonic motion.

Finally, we should emphasize that relativistic formulations are not relevant to moving media
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problems in the context of Electrical Engineering. In that regard, we should draw attention to the
literature which invalidates the relativistic Doppler shift [25–28] and relativistic GPS corrections [29] in
comparison to the classical (Hertzian) theory.
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