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Abstract—This paper presents an overview and review of the fundamental implicit finite-difference
time-domain (FDTD) schemes for computational electromagnetics (CEM) and educational mobile apps.
The fundamental implicit FDTD schemes are unconditionally stable and feature the most concise
update procedures with matrix-operator-free right-hand sides (RHS). We review the developments
of fundamental implicit schemes, which are simpler and more efficient than all previous implicit
schemes having RHS matrix operators. They constitute the basis of unification for many implicit
schemes including classical ones, providing insights into their inter-relations along with simplifications,
concise updates and efficient implementations. Based on the fundamental implicit schemes, further
developments can be carried out more conveniently. Being the core CEM on mobile apps, the multiple
one-dimensional (M1-D) FDTD methods are also reviewed. To simulate multiple transmission lines,
stubs and coupled transmission lines efficiently, the M1-D explicit FDTD method as well as the
unconditionally stable M1-D fundamental alternating direction implicit (FADI) FDTD and coupled line
(CL) FDTD methods are discussed. With the unconditional stability of FADI methods, the simulations
are fast-forwardable with enhanced efficiency. This is very useful for quick concept illustrations or
phenomena demonstrations during interactive teaching and learning. Besides time domain, many
frequency-domain methods are well-suited for further developments of useful mobile apps as well.

1. INTRODUCTION

Computational electromagnetics (CEM) are a key to the design and analysis of modern antennas,
waveguides, wireless communication systems, etc. One of the most popular CEM methods in time
domain is finite-difference time-domain (FDTD) method [1, 2]. However, the conventional FDTD
method is an explicit scheme and becomes unstable when the time step size is larger than Courant-
Friedrichs-Lewy (CFL) stability constraint. To overcome the CFL constraint, unconditionally stable
alternating direction implicit (ADI) FDTD method has been developed [3, 4]. Such unconditional
stability comes at the expense of being complicated and inefficient in its implementations. This is
because there are not only matrix operators at the left-hand-sides (LHS) making it implicit scheme,
even the right-hand-sides (RHS) of update procedures also comprise matrix operators that call for
considerable floating-point operations (flops). This has motivated alternative implicit FDTD schemes
in an attempt to improve the simplicity and efficiency.

Over the years, we have introduced and developed several unconditionally stable implicit FDTD
schemes, including split-step (SS) FDTD and locally one-dimensional (LOD) FDTD methods, etc.,
[5–7]. In particular, the LOD-FDTD method is for ‘3-D’ Maxwell’s equations, second-order temporal-
accurate and more efficient than ADI-FDTD. Still, these alternative implicit FDTD schemes remain
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complicated with a variety of matrix operators at their RHS. In our continued efforts to further improve
the simplicity and efficiency, we have introduced the fundamental implicit FDTD schemes [8], which
are unconditionally stable and feature the most concise update procedures with matrix-operator-free
RHS. This paper reviews the developments of fundamental implicit schemes, which are simpler and
more efficient than all previous implicit schemes having RHS matrix operators. They constitute the
basis of unification for many implicit schemes including classical ones, providing insights into their
inter-relations along with simplifications, concise updates and efficient implementations. The classical
schemes as well as ADI-, SS- and LOD-FDTD methods with two or three split matrices, etc., can all
be simplified into concise and efficient forms with matrix-operator-free RHS, cf. Section 2. Based on
the fundamental implicit schemes, further developments can be carried out more conveniently, and they
may also be extended readily to other branches of physics.

Meanwhile, most CEM involving full-wave 3-D computations like above often call for large
computing resources and are typically not suitable for mobile devices. To enable real-time
electromagnetic (EM) simulations on mobile devices, there is a need for innovative CEM that are
well-suited for their efficient implementations. We have developed several educational mobile apps, e.g.,
MuStripKit, EMpolarization, EMwaveRT, etc. (some on App/Play Store) [9–14], which are incorporated
with innovative CEM that could run efficiently on mobile devices (smartphones/ipads, supplementable
with 3-D displays). Exploiting the wide affordances of mobile devices, these mobile apps are useful
for quick initial design, analysis and seamless teaching/learning anytime, anywhere. They provide
touch-based interactivity and real-time EM+circuit simulations, as well as 2-D/3-D visualizations of
wave phenomena to enhance teaching and learning of electromagnetics. Being the core CEM on mobile
apps, we also review in this paper the multiple one-dimensional (M1-D) FDTD methods that bypass
the computationally intensive 3-D ones. To simulate multiple transmission lines, stubs and coupled
transmission lines efficiently, the (conditionally stable) M1-D explicit FDTD method as well as the
unconditionally stable M1-D fundamental alternating direction implicit (FADI) FDTD and coupled
line (CL)-FDTD methods are discussed, cf. Section 3. Besides time domain, many frequency-domain
methods are well-suited for further developments of useful mobile apps as well. They can be extended
further for advanced analyses in electromagnetics and beyond.

2. FUNDAMENTAL IMPLICIT FDTD SCHEMES FOR COMPUTATIONAL
ELECTROMAGNETICS

2.1. Fundamental Implicit Schemes for ADI-FDTD Method and Classical Schemes

The 3-D Maxwell’s curl equations can be written in compact matrix form

∂u
∂t

= Wu, W = A + B (1a)

u = [Ex Ey Ez Hx Hy Hz]
T (1b)

where u is the EM field vector; W is the 6 × 6 Maxwell system matrix; A and B are its two split
matrix operators. Equations (1a)–(1b) can be solved using the explicit FDTD scheme with leapfrog
time-stepping on staggered Yee’s grids, with the time step size subjected to the CFL stability constraint
∆t ≤ ∆tCFL [1, 2]. To overcome such stability constraint, unconditionally stable ADI-FDTD method
has been introduced with two update procedures as [3, 4]

(
I− ∆t

2
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)
un+ 1

2 =
(
I +

∆t

2
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)
un (2a)

(
I− ∆t

2
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un+1 =
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2
A

)
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2 . (2b)

Here and henceforth, I is the identity matrix, and u’s with integers in the superscripts, e.g., un and
un+1, denote the main field vectors with second-order temporal accuracy (unless otherwise specified via
the subscripts). All other intermediate or auxiliary field vectors, e.g., un+ 1

2 and subsequent u∗, v’s,
etc., are typically of lower order and would not be of much interest usually. The split matrix operators
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A and B are given specifically by
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Equations (2a)–(2b) represent the generalized formulae of classical ADI scheme [15–17]. While
gaining improved stability, such an implicit scheme involves matrix operators at the LHS of update
procedures, which necessitate certain matrix inversions making the solution process ‘implicit’. Moreover,
the RHS of update procedures also comprise matrix operators, which call for considerable flops count
leading to reduced efficiency for each update. This is unlike the explicit scheme that is conditionally
stable but does not involve any LHS matrix operator, thus bypassing the inversion of matrix and making
the solution process ‘explicit’. Due to the unconditional stability of ADI-FDTD, one may exploit the
use of time step size larger than the CFL constraint.

To improve the efficiency, we introduce the auxiliary field vectors v’s along with the following
update procedures [8, 18]:

vn = un − vn− 1
2 (4a)(

1
2
I− ∆t

4
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)
un+ 1

2 = vn (4b)

vn+ 1
2 = un+ 1

2 − vn (4c)(
1
2
I− ∆t

4
B

)
un+1 = vn+ 1

2 . (4d)

Unlike the previous ADI scheme in Eqs. (2a)–(2b), the RHS of Eqs. (4a)–(4d) contain only vectors and
are matrix-operator-free (no more A or B), while their LHS involve similar matrix operators (to within
a factor 1

2). Based on the ‘fundamental’ adjective which means basic and not able to be divided or
reduced any further (according to dictionaries, e.g., Oxford), this scheme is aptly called fundamental
ADI-FDTD, or in short, FADI scheme. Such a fundamental scheme is indeed not reducible any further
because there is no more matrix operator to be omitted at the RHS of implicit scheme (recall that the
LHS matrix operator cannot be simply omitted because the scheme should stay ‘implicit’ and stable.)
Note that although there are additional v variables, there is no need for extra memory array because they
are only temporary and reusable. The advantages of FADI scheme include concise update procedures
with matrix-operator-free RHS, which result in simple, convenient coding and efficient implementation.
This would also lead to simple, concise and efficient incorporation of current sources [19]. If there exist
non-zero initial fields u0, one can perform the following input processing that is required only once at
the initial step n = 0:

Input: v−
1
2 =

(
1
2
I− ∆t

4
B

)
u0. (5)

The fundamental implicit scheme above exploits the auxiliary field vectors to omit as many RHS
matrix operators as possible, especially when there are similar ones present at the LHS of update
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procedures. Applying the same principle of fundamental implicit scheme, many other classical implicit
schemes besides ADI can be transformed to the same form involving update procedures with matrix-
operator-free RHS. These classical implicit schemes are discussed below in their generalized formulae
representations.

• Douglas scheme [20] or Crank-Nicolson direct-splitting (CNDS) method [21, 22]:
(
I− ∆t
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un (6a)

(
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2
Bun. (6b)

The corresponding fundamental implicit scheme is the same as above, i.e.,

(6a)–(6b) ⇐⇒ (4a)–(4d) via u∗DS = 2un+ 1
2 − un. (7)

• Douglas-Gunn scheme or delta formulation [17, (5.8.37)–(5.8.38)]:
(
I− ∆t
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)
∆u∗ = ∆t (A + B)un (8a)

(
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)
∆u = ∆u∗ (8b)

un+1 = un + ∆u. (8c)

The corresponding fundamental implicit scheme is the same as above, i.e.,

(8a)–(8c) ⇐⇒ (4a)–(4d) via ∆u∗ = 2
(
un+ 1

2 − un
)

. (9)

• D’Yakonov scheme [17, (4.4.14)–(4.4.15)], Beam-Warming scheme [17, (5.8.34)–(5.8.35)], or Crank-
Nicolson Douglas-Gunn (CNDG) method [21]:
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(
I− ∆t

2
B

)
un+1 = u∗DY. (10b)

The corresponding fundamental implicit scheme is the same as above, i.e.,

(10a)–(10b) ⇐⇒ (4a)–(4d) via u∗DY = 2vn+ 1
2 . (11)

The above classical implicit schemes call for update procedures with various RHS involving sum
[cf. Eqs. (6a), (8a)] and/or product [cf. Eq. (10a)] of matrix operators. Equations (4a)–(4d) provide their
simplifications into concise and efficient forms with matrix-operator-free RHS (no more A or B). Table 1
lists the flops count for RHS of update equations in one full time step for implicit FDTD schemes. The
flops count includes addition/subtraction (+ or−), multiplication/division (× or÷) and total operations
at the RHS of update equations, with the same number of operations for the LHS (∼ 30 flops). From

Table 1. Flops count for RHS of update equations in one full time step for implicit FDTD schemes.

Implicit FDTD Scheme Equations + or − × or ÷ Total
ADI (2a)–(2b) 72 36 108

Douglas/CNDS (6a)–(6b) 90 36 126
Douglas-Gunn/delta (8a)–(8c) 66 33 99

D’Yakonov/Beam-Warming/CNDG (10a)–(10b) 102 48 150
Fundamental (4a)–(4d) 30 12 42
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the table, one can see clearly that the total flops count for ADI and each classical implicit scheme has
been reduced significantly, i.e., from ∼ 100–150 flops to merely 42 flops in the fundamental implicit
scheme. Moreover, it is not obvious at first glance how the classical implicit schemes in their original
formulae are related to each other and the ADI scheme. By using the respective auxiliary field relations
in their fundamental implicit schemes with similar forms, one can show the equivalence among them
readily as in Eqs. (7), (9) and (11). Therefore, the fundamental implicit schemes constitute the basis
of unification for many implicit schemes, providing insights into their inter-relations (or equivalence)
along with simplifications, concise updates and efficient implementations.

Based on the fundamental implicit schemes, further developments can be carried out more
conveniently for ADI and classical schemes. The developments may include higher order spatial
accuracy [23], compact [24] and parameter optimized [25] methods, lossy [26–32], dispersive [33–41]
and biological media [42, 43], lumped networks and elements [44–48], implicit update for magnetic
fields [49], absorbing boundary conditions [50, 51], total-field/scattered-field formulations [52–54],
complex-envelope methods for anisotropic photonic crystals [55, 56], etc.

2.2. Fundamental Implicit Schemes for SS- and LOD-FDTD Methods

Alternative to the ADI-FDTD method above, unconditionally stable SS- and LOD-FDTD methods
have also been developed with the same two split matrix operators as [5–7](
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Equations (12a)–(12b) represent the generalized formulae of classical LOD scheme with two update
procedures [57]. Their RHS still involve the matrix operators like (2a)–(2b), which are now the same as
those of LHS for each update, i.e., A in the LHS and RHS of (12a), B in the LHS and RHS of (12b),
respectively. Due to the non-commutativity of matrix operators, this scheme is only accurate to first
order in time and may be denoted by SS1 or LOD1. To signify such first-order temporal accuracy,
the main field vectors with integers in the superscripts are subscripted as u1, to distinguish from the
unsubscripted (second-order temporal-accurate) u above. (The accuracy orders of other intermediate
or auxiliary field vectors are not of much interest and their variables would not be subscripted.)

To improve the efficiency, we apply the principle of fundamental implicit schemes and introduce
the auxiliary field vectors in the update procedures as [8, 58](
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1 (13a)
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1 (13b)(
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In these procedures, all their RHS have been simplified in concise and efficient matrix-operator-free
forms (no more A or B). This scheme can be aptly called fundamental LOD-FDTD, or in short, FLOD
scheme, while FLOD1 or FSS1 may also be referred occasionally to signify its first-order temporal
accuracy. Despite sharing the same notations, the v’s of FLOD are different from those of FADI. In
fact, by comparing Eq. (13d) (at one time step backward, n+1 → n) and Eqs. (13a)–(13c) of FLOD with
Eqs. (4a)–(4d) of FADI, one can readily find that their u’s and v’s are simply interchanged between both
schemes. This also explains the first-order temporal accuracy of u1 from the output of Eq. (13d), which
is merely like the auxiliary field vector v in Eq. (4a). From here, we see again that the fundamental
implicit schemes constitute the basis of unification for ADI and SS1/LOD1 schemes, providing insights
into their inter-relations along with simplifications, concise updates and efficient implementations [59].

The FLOD1 scheme is useful especially when high accuracy is not needed, such as during initial
design, analysis, teaching and learning, etc. To recover the usual second-order temporal accuracy, we
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resort to the update procedures in Eqs. (13a)–(13d) as they are, along with the following input and
output processings [7]:

Input:
(

1
2
I− ∆t

8
B

)
v0
∗ = u0

LOD2, u0
1 = v0

∗ − u0
LOD2 (14a)
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(
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)
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1 , un+1
LOD2 = vn+1

∗ − un+1
1 . (14b)

The input processing in Eq. (14a) is required only once at the initial step if there exist non-zero initial
fields u0

LOD2, which should be second-order temporal-accurate. The output processing in Eq. (14b) is
to be performed independently of the main iterations, only when the output data un+1

LOD2 is needed.
Furthermore, it may be executed only for the required field components at some specific observation
points or planes. Exploiting the careful treatments via proper input and infrequent output processings
for Eqs. (13a)–(13d), one can achieve second-order temporal accuracy (as signified by ‘2’) in un+1

LOD2 for
FLOD2 scheme, along with overall high efficiency comparable to FADI.

While the above treatments involve mostly implicit solutions, we also consider other input and
output processings as [60–62]
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1 . (15b)

In conjunction with the update procedures in Eqs. (13a)–(13d), Eqs. (15a)–(15b) lead to not only
second-order temporal accuracy, but also complying divergence (as signified by ‘CD’) in the output
un+1

CD2. This scheme can thus be aptly called fundamental LOD2-CD-FDTD, or in short, FLOD2-CD
scheme. Moreover, the output processing in Eq. (15b) is performed in an explicit manner independently
of the main iterations, only when the output data is needed for the required particular field components
at some specific observation locations.

The original classical SS scheme may also achieve second-order temporal accuracy with three update
procedures given by [5, 6]
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As before, applying the principle of fundamental implicit schemes leads to the fundamental SS2-FDTD
or FSS2 scheme [63]:
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To further increase the accuracy order in time, we have developed the SS4-FDTD method with
fourth order temporal accuracy, which requires nine update procedures with a systematic sequence
of time-stepping coefficients [64]. Another method with fourth order temporal accuracy has also
been derived based on ADI-FDTD that requires six update procedures [65]. All these higher order
methods may be simplified into their fundamental implicit schemes, which feature concise and efficient
matrix-operator-free RHS in the multi-stage update procedures. Note that the multi-stage SS and
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ADI methods along with their temporal orders of accuracy can be interpreted based on the matrix
exponential [66], which represents the exact solution to Maxwell’s differential equations. Such matrix
exponential interpretation is more general than the traditional Crank-Nicolson perturbation and is
useful to ascertain the correct temporal order for ADI [67] and other multi-stage implicit schemes [68].
Using the matrix exponential interpretation also allows one to deduce new schemes, e.g., one that is
second-order accurate and divergence-preserving.

Further developments of the above SS-, LOD- and ADI-FDTD methods can be carried out
conveniently based on their fundamental implicit schemes. The developments may include further
acceleration on graphics processor units (GPU) [69, 70], inclusion of absorbing, PMC and PEC boundary
conditions [71, 72], total-field/scattered-field techniques [73], extension to general anisotropic media [74],
complex-envelope method [75], lumped elements [76, 77], memristor [78, 79], etc. Note that the LOD-
FDTD method remains stable even for non-uniform (varying) time-steps during run-time [80]. Other
implicit FDTD methods (e.g., ADI-FDTD) tend to become unstable unless the time step is uniform
throughout [81]. Besides electromagnetics, all the methods based on fundamental implicit schemes may
also be extended readily to other branches of physics such as thermodynamics [82–86] and quantum
mechanics [87], etc.

2.3. Fundamental Implicit Scheme for Leapfrog ADI-FDTD Method

The leapfrog ADI-FDTD method involves time-staggered fields with update procedures as [88]
(
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where Aij and Bij are the 3× 3 submatrices of A and B:
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Notice that the RHS of Eqs. (18a)–(18b) involve considerable matrix operators including second-order
ones.

To improve the efficiency, we could make use of the principle of fundamental implicit schemes to
omit as many RHS matrix operators as possible, especially when there are similar ones present at the
LHS. Introducing the auxiliary variables e and h, the update procedures can be written as

(
I− ∆t2

4
A12A21

)
en+ 1

2 = ∆t (A12 + B12)Hn (20a)

En+ 1
2 = en+ 1

2 + En− 1
2 (20b)(

I− ∆t2

4
B21B12

)
hn+1 = ∆t (A21 + B21)En+ 1

2 (20c)

Hn+1 = hn+1 + Hn. (20d)

Compared to Eqs. (18a)–(18b), the RHS of Eqs. (20a)–(20d) no longer involve the second-order matrix
operators. This makes the update procedures more concise and efficient, which may be regarded as the
fundamental leapfrog ADI-FDTD method.

Further analyses of the leapfrog ADI-FDTD method have been carried out including stability,
dispersion [89] and divergence properties [90, 91]. The method has also been extended to lossy media [92]
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and non-penetrable targets [93]. For the latter, there are nonphysical field leakage problems, which can
be resolved with infinite permittivity approach. Note that the leapfrog ADI-FDTD method does not
have complying divergence and exhibits non-zero divergence in source-free regions. This can be overcome
by using the FLOD2-CD scheme in Eqs. (15a)–(15b) or the divergence-preserving ADI method [94].

2.4. Fundamental Implicit Schemes for LOD-FDTD Methods with Three Split Matrices

Thus far, all the above fundamental implicit schemes have been involving only two split matrices (or
their submatrices). There are implicit FDTD schemes that involve three split matrices of the Maxwell
system matrix in Eq. (1a), i.e., W = A3 + B3 + C3. One such scheme is also called the LOD-FDTD
method and comprises three update procedures [95]:
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A3, B3, and C3 are the split matrices that contain partial differential operators along x, y and z
directions respectively as
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Note that the scheme in Eqs. (21a)–(21c) is only first-order accurate in time, hence the main field
vectors (e.g., un

1 , un+1
1 ) are subscripted ‘1’ to signify the first-order temporal accuracy. To improve the

efficiency, we again apply the principle of fundamental implicit schemes and obtain
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In these update procedures, all their RHS have been simplified in concise and efficient matrix-
operator-free forms (no more A3, B3 or C3), thus resulting in simple, convenient coding and efficient
implementation.

To increase the temporal accuracy from first to second order, some LOD-FDTD methods with three
split matrices have been proposed that comprise five or more update procedures [96]. As an efficient
alternative, we have developed the (fundamental) FLOD-FDTD method with three split matrices as [97]

(
1
2
I− ∆t

4
A3

)
vn,1 = un,0, un,1 = vn,1 − un,0 (24a)

(
1
2
I− ∆t

8
B3

)
vn,2 = un,1, un,2 = vn,2 − un,1 (24b)

(
1
2
I− ∆t

4
C3

)
vn,3 = un,2, un,3 = vn,3 − un,2 (24c)

(
1
2
I− ∆t

8
B3

)
vn+1,0 = un,3, un+1,0 = vn+1,0 − un,3. (24d)

The main iterations consist of four implicit procedures with matrix-operator-free RHS for ABCB
scheme in Eqs. (24a)–(24d), i.e., only one more compared to previous three for ABC scheme in
Eqs. (23a)–(23c). Furthermore, the following input and output processings are to be performed:

Input:
(

1
2
I +

∆t

8
A3

)
v0,0 = u0

ABCB2, u0,0 = v0,0 − u0
ABCB2 (25a)

Output:
(

1
2
I− ∆t

8
A3

)
vn+1 = un+1,0, un+1

ABCB2 = vn+1 − un+1,0. (25b)

As before, these treatments will lead to second-order temporal-accurate main field vectors un+1
ABCB2 (as

signified by ‘2’). Note that the input processing in Eq. (25a) is required only once at the initial step
for non-zero initial fields u0

ABCB2. The (infrequent) output processing in Eq. (25b) is to be performed
independently of the main iterations only when the output data is needed. It may be bypassed altogether
if we only need to output the field components along x direction, i.e., Ex and Hx. Besides ABCB
scheme, the fundamental implicit schemes for other variants BCAC and CABA, as well as their
reverse ones BCBA, CACB, and ABAC have also been developed [98]. All these schemes for FLOD-
FDTD methods with three split matrices can be exploited to bypass the output processings for field
components along various directions, thus achieving much simplicity and efficiency along with second-
order temporal accuracy.

3. EM EDUCATIONAL MOBILE APPS

3.1. M1-D FDTD Methods for EM Educational Mobile Apps

Exploiting the wide accessibility of mobile devices, several educational mobile apps have been created
for enhanced teaching and learning of electromagnetics [9–14]. They provide touch-based interactivity
and real-time EM+circuit simulations as well as 2-D/3-D visualizations of wave phenomena. Fig. 1
shows the educational mobile apps on Android phones for (a) EM wave polarization and (b) plane wave
reflection and transmission. To bypass the intensive full-wave 3-D computations, we have proposed
multiple 1-D (M1-D) FDTD methods, which are useful for quick initial design, analysis and seamless
teaching/learning, etc. Like the 3-D counterparts, the M1-D FDTD methods may involve explicit and/or
implicit update procedures. The M1-D explicit FDTD method consists of simple multiple 1-D update
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(a) (b)

Figure 1. Educational mobile apps on Android phones for (a) EM wave polarization and (b) plane
wave reflection and transmission.

equations, which can be readily implemented for transmission line (TL) mobile app [9]. Such mobile
app allows user-friendly touch-based interactivity and user-configurable simulation parameters. It allows
instructors and students to construct practical microstrip circuits including multiple TLs, open-/short-
circuited stubs, as well as lumped elements such as resistors, capacitors and inductors in parallel and/or
series. The TLs and stubs including lumped elements are modeled using effective permittivity and
characteristic impedance, along with electric and (unconventional) magnetic current concepts. Based
on the constructed TL circuits and their effective modeling, simulations of wave propagations can be
performed efficiently on mobile devices. These simulations are useful to provide ubiquitous and real-time
visualizations for mobile interactive teaching and learning of TL concepts anytime, anywhere [99].

3.2. M1-D FADI-FDTD Method for Multiple Transmission Lines and Stubs

The M1-D explicit FDTD method above is conditionally stable with its time step size restricted by
certain stability constraint, which is more stringent than that of the pure 1-D FDTD method. The
stability constraint limits the simulation efficiency and may require students’ long wait for observing
various phenomena demonstrations, e.g., wave reflections on long TLs and stubs. To improve the
efficiency, we have developed the unconditionally stable M1-D FADI-FDTD method. Such method
involves one-step update procedures for main TL and stub as [100, 101]
– Main TL:

Bm =

[
0 −1

εm

∂
∂z

−1
µm

∂
∂z 0

]
, un+1

m =
[
En+1

x,m

Hn+1
y,m

]
(26a)

(
1
2
I− ∆t

4
Bm

)
vn+1

m = un
m, un+1

m = vn+1
m − un

m; (26b)

– Stub:

As =

[
0 1

εs

∂
∂y

1
µs

∂
∂z 0

]
, u

n+ 1
2

s =


E

n+ 1
2

x,s

H
n+ 1

2
z,s


 (27a)
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(
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4
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)
v

n+ 1
2

s = u
n− 1

2
s , u

n+ 1
2

s = v
n+ 1

2
s − u

n− 1
2

s . (27b)

Notice that Bm and As are the sole 2×2 matrix operators for main TL and stub in Eqs. (26a) and (27a)
respectively. The RHS of Eqs. (26b) and (27b) are matrix-operator-free without any spatial derivative,
which simplify the implementations and improve the efficiency of implicit update procedures.

At the interjunctions between multiple TLs and stubs, there is a need to relate their EM fields
using proper source treatments via current densities (without which may cause instability):

Jm
x = − ∂

∂y
Hs

z , Js
x =

∂

∂z
Hm

y . (28)

Using the M1-D FADI-FDTD method along with these source treatments, the EM fields in all
interconnected main TLs and stubs can be updated cooperatively and efficiently to solve practical
circuits. Fig. 2 shows the simulations of wave propagations on iPad for (a) TL with open-/short-
circuited stubs and (b) branch line coupler using M1-D FADI-FDTD method. The simulations can be
accelerated by adjusting the time step size using the slider on the iPad app. Note that the time step
size is specified in terms of CFLN = ∆t/∆tCFL. With the unconditional stability of FADI methods, the
simulations are ‘fast-forwardable’ with enhanced efficiency by using CFLN > 1, e.g., CFLN = 10, 16, etc.
This is very useful for quick concept illustrations or phenomena demonstrations, skipping uninteresting
details during interactive teaching and learning. Alternative to FADI, one may also resort to the FLOD
FDTD method with non-uniform time-steps for more trade-offs between efficiency and accuracy [102].

(b)(a) (c)

Figure 2. Simulations of wave propagations on iPad for (a) TL with open-/short-circuited stubs,
(b) branch line coupler and (c) directional coupler using M1-D FADI FDTD and CL-FDTD methods.

3.3. M1-D FADI CL-FDTD Method for Coupled Transmission Lines

For coupled transmission lines, the EM fields are governed by alternative differential equations, which
are different from the usual Maxwell’s equations and can be written as [103, 104],

∂ucl

∂t
= Wclucl, ucl = [Ex1, Ex2, Hy1, Hy2]

T (29a)
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Wcl =




0 0 −1
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∂
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1
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∂
∂z 0 0

1
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∂
∂z

−1
µs

∂
∂z 0 0




. (29b)

Wcl is the 4×4 coupled line (CL) system matrix, and Ex1, Hy1 are the EM fields along line 1, while Ex2,
Hy2 are those along line 2. εs, εm and µs, µm are the self and mutual permittivities and permeabilities,
respectively, which can be expressed in terms of CL even- and odd-mode characteristic impedances
(Z0e, Z0o), phase velocities (ve, vo) and effective permittivities (εe

eff , εo
eff ) [105–107]. Equations (29a)–

(29b) can be solved using the M1-D CL-FDTD method [103, 104], which could bypass the fine mesh for
line width and spacing of coupled transmission lines. However, due to the stability constraint of such
explicit method for CL, there is a time step limit that is usually more restrictive than that for the single
uncoupled TL.

The CL system matrix Wcl can be expressed as the sum of some split matrices Acl and Bcl. Using
these split matrices, the M1-D FADI CL-FDTD method can be formulated for coupled transmission
lines as

vn
cl = un

cl − v
n− 1

2
cl ,

(
1
2
I− ∆t

4
Acl

)
u

n+ 1
2

cl = vn
cl (30a)

v
n+ 1

2
cl = u

n+ 1
2

cl − vn
cl,

(
1
2
I− ∆t

4
Bcl

)
un+1

cl = v
n+ 1

2
cl . (30b)

While the RHS of Eqs. (30a)–(30b) are matrix-operator-free, the split matrices should be chosen such
that the LHS would result in tridiagonal matrices that can be solved efficiently. Moreover, they must
maintain the stability of M1-D FADI CL-FDTD method even for time step size larger than the CFL
constraint. Many sets of split matrices have been proposed and investigated further [108–111]. Some
of them have been found to be unstable including the natural set with self-mutual separation, which
follows the direct way of splitting and reduces naturally to the uncoupled case when all mutual terms
are omitted. Two sets of split matrices that have been found to be resulting in stable schemes with
tridiagonal matrices are given below (subscripted ‘cl1’ and ‘cl2’ for set 1 and 2):

Wcl = Acl1 + Bcl1 = Acl2 + Bcl2 (31)

Acl1 =
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, Bcl1 =
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(32)

Acl2 =
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 . (33)

Figure 2(c) shows the simulations of wave propagations on iPad for directional coupler using M1-D
FADI CL-FDTD method. The simulations of the coupled transmission lines (with uncoupled TLs at
both input and output sections) provide much intuitional insight for understanding wave propagations
in time domain [112]. Alternative to ADI, one may also resort to the multiple LOD coupled line FDTD
methods, noting the proper split matrices for stability and efficiency [113, 114].

3.4. Further Developments and Extensions of Mobile Apps

Thus far, only time-domain methods have been discussed for CEM and mobile apps. Besides time
domain, we have also developed many (unconditionally) stable and efficient frequency-domain methods
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(b)(a)

Figure 3. a) Snapshot on iPad for plane wave incident upon a double negative medium demonstrating
negative refraction. (b) Illustration of mobile ITS with intelligent step-by-step guide to calculate the
angle of transmission θt in a lossy medium.

Figure 4. Sample online question involving integration and vector components for determining the
magnetic field due to a particular line current at certain observation point.

including scattering [115–117], impedance [118] and hybrid [119, 120] matrix methods. These frequency-
domain methods are well-suited for further developments of useful mobile apps as well, e.g., calculations
of S parameters, illustrations of wave polarization, reflection and transmission, etc. More advanced
analyses can be carried out on mobile apps for EM waves in various complex media including
biisotropic [121–123], anisotropic [124–126], gyrotropic [127, 128] and bianisotropic [129–133] media, etc.
For illustration, Fig. 3(a) shows the snapshot on iPad for plane wave incident upon a double negative
medium demonstrating negative refraction. The frequency-domain methods on mobile apps can also
be extended for further research and applications beyond electromagnetics, such as optics (diffraction
gratings, photonic crystals) [134–136], acoustics (phononic crystals, elastic, anisotropic and piezoelectric
media) [137–144], circuits (geometrical [145–148], Rollett-based [149, 150] and quasi-invariant stability
[151–153], pole-zero [154–156], energy consideration [157–159]), etc. Apart from providing seamless
interactive simulations and insightful visualizations, our educational mobile apps may be enhanced
with artificial intelligence (AI) via innovative mobile intelligent tutoring systems (ITS). Fig. 3(b) shows
the illustration of mobile ITS with intelligent step-by-step guide to calculate the angle of transmission
θt in a lossy medium. Such guide should be very helpful for some weak students who might need to
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learn the square root or arcsin of a complex number. In addition to tutoring, more thorough and
rigorous assessments may also be incorporated onto online/mobile platforms. Fig. 4 shows a sample
online question involving integration and vector components for determining the magnetic field due to a
particular line current at certain observation point, which may be randomly set for individual students
to deter cheating or copying. Such assessments enable the capturing and auto-marking of students’ key
intermediate workings in addition to their final answers, thus paving the way for comprehensive online
or paperless examinations for electromagnetics and other math-intensive courses.

4. CONCLUSION

This paper has presented an overview and review of the fundamental implicit FDTD schemes for CEM
and educational mobile apps. The fundamental implicit FDTD schemes are unconditionally stable and
feature the most concise update procedures with matrix-operator-free RHS, which are simpler and more
efficient than all previous implicit schemes having RHS matrix operators. They constitute the basis of
unification for many implicit schemes including classical ones, providing insights into their inter-relations
along with simplifications, concise updates and efficient implementations. The classical schemes as well
as ADI-, SS-, and LOD-FDTD methods with two or three split matrices, etc., can all be simplified into
concise and efficient forms with matrix-operator-free RHS. Based on the fundamental implicit schemes,
further developments can be carried out more conveniently including extensions to other branches of
physics. To simulate multiple transmission lines, stubs and coupled transmission lines efficiently, the M1-
D explicit FDTD method and the unconditionally stable M1-D FADI FDTD and CL-FDTD methods
have been discussed. With the unconditional stability of FADI methods, the simulations are fast-
forwardable with enhanced efficiency. This is very useful for quick concept illustrations or phenomena
demonstrations during interactive teaching and learning. Besides time domain, many frequency-domain
methods are well-suited for further developments of useful mobile apps as well. They can also be
extended for further research and applications in electromagnetics and beyond.
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