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Half U-Slot and Rectangular Slot Loaded Nearly Square Microstrip
Antennas for Wideband Response

Venkata A. P. Chavali1, * and Amit A. Deshmukh2

Abstract—Wideband designs of nearly square microstrip antenna using two half U-slots and
rectangular slots are proposed. The slots optimize the spacing in between the patch modified TM11,
TM20, TM02, and TM30 resonant modes to yield wideband response. The design with two half U-slots
yields bandwidth of around 1000 MHz (∼ 50%) whereas that with an additional rectangular slot yields
bandwidth of 1345 MHz (∼ 61%). Due to the presence of higher order modes, the proposed design
offers higher cross polar radiation pattern across the entire bandwidth with the gain greater than 5dBi.
The formulations for the modified patch modes and subsequent redesign procedure are presented, which
serve as a guideline in the designing of similar antennas around specific resonance frequency. With
the given antenna characteristics, the proposed antennas will find applications in personal and mobile
communication systems.

1. INTRODUCTION

An enhancement in the bandwidth (BW) of microstrip antenna (MSA) using a slot is a widely reported
technique ever since the same was introduced in 1995 [1–3]. The slot introduces additional resonant
mode near the fundamental patch mode that widens the impedance BW. Different slot shapes like
U-shape, V-shape, rectangular shape, etc. and their modified variations have been reported to widen
the BW [1–11]. A detailed study to explain the functioning of slot cut wideband antennas in terms of
modified patch modes is reported [12, 13]. It showed that widening of the BW with the same polarization
of the radiated field is a result of the optimization of frequency, impedance, and current variations at
orthogonal higher order resonant modes with respect to the patch’s fundamental mode. This study
revealed that the placement of slot in the patch governs which higher order mode will contribute to
BW enhancement. In personal and mobile communication systems, to minimize the signal loss because
of the multi-path propagation, antennas which receive signal from any direction are preferred. Here
either circularly polarized antennas or antennas which offer higher cross polar component (elliptical
polarization) will be preferred. Realization of circularly polarized response needs the condition of time
and space orthogonality of the patch modes to be satisfied over range of frequencies, and thus it is
relatively complex to design. In the case of elliptical polarization, i.e., antenna offering higher cross
polar level, the difference between the co- and cross-polar levels is around 5 to 10 dB, and thus they
will also lead to minimum signal loss wideband MSAs obtained using slots offering lower cross-polar
radiation over most of the impedance BW due to the unidirectional currents realized by the slot at
fundamental and higher order orthogonal modes. Therefore, to realize a wideband MSA with higher
cross polar component, slot cut antennas resonating around the fundamental patch mode cannot be
used.

This paper presents the designs of nearly square MSA (SMSA) embedded with two half U-slots and
rectangular slots for achieving wideband response offering higher cross-polar radiation pattern across
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the impedance BW. Initially, the proposed configurations are discussed in 2000 MHz frequency band on
a thicker air substrate (greater than 0.08λ0). In every configuration, a detailed study to explain the
effects of slots on patch resonant modes is presented. Initially, two half U-slots optimize the spacing in
between modified TM11 and TM20 modes of the patch to give impedance BW around 1000 MHz (∼ 50%).
The antenna offers a broadside pattern with a gain above 5 dBi across most of the BW. Further with
the addition of a rectangular slot in half U-slots cut SMSA frequency of the next higher order TM02

mode is tuned with respect to TM11 and TM20 modes, to give a BW around 1254 MHz (∼ 57%). This
configuration also shows a broadside pattern with a gain above 5 dBi across the complete BW. Due to
the presence of higher order modes, the proposed slot cut designs show a higher cross-polar radiation
pattern across the entire BW. The resonant length formulations at modified fundamental (TM10, TM01)
as well as higher order (TM11, TM20, TM02) modes are presented. The frequencies calculated using
them agree closely with simulated frequencies. Using the proposed formulations, the procedure to design
similar configurations on air as well as suspended FR4 substrate (εr = 4.3, h = 0.16 cm) is presented,
which gives a similar wideband response. Many configurations using slots have been reported in the
literature. However, all those designs give BW around the fundamental mode frequency of the patch
to yield a pattern with low cross-polar content. Hence, they will not be useful in personal and mobile
communication applications. As against the reported slot cut antennas, the proposed configurations
realize wideband response around the higher order mode frequencies of the patch thereby showing a
pattern with higher cross polar content. , they will find their usage in above mentioned applications. Also
design methodology using proposed formulations is explained in this paper, which is rarely explained
in the reported papers for slot cut wideband designs. The detailed comparison for the proposed designs
against some of the reported variations is provided in Table 2. Thus, the designs of multiple slots cut
SMSAs offering impedance BW above 50% around the higher order resonant modes showing higher
cross polar radiation pattern supported with detailed explanations and design methodology are the new
technical contributions in the proposed work. The antennas studied in this paper are first optimized
using CST software [20] followed by the experimentation using high frequency instruments namely,
ZVH-8, FSC 6, and SMB 100 A.

2. TWO HALF U-SLOTS CUT SMSA

The design of a double U-slot cut rectangular MSA (RMSA) is shown in Fig. 1(a) [14]. This antenna
yields the BW of 700 MHz (44%) on a substrate of thickness 1.65 cm (0.09λg) [4]. Here the impedance
BW lies around the fundamental TM10 mode frequency of the RMSA shows a lower cross-polar radiation

(b)

(a)

(d)

(c)

Figure 1. (a) Two U-slot cut RMSA, (b) two half U-slot cut nearly SMSA, (c), (d) proximity fed
nearly SMSA embedded with two half U-slots and a rectangular slot.
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pattern as two U-slots are symmetrically placed with respect to the patch center [14]. To realize a high
cross-polar pattern, along with the excitation of higher order modes, surface current vectors on the patch
are needed to be bidirectional. To achieve this, first the symmetry of two U-slot cut design is considered
along the coaxial feed axis to realize nearly SMSA design embedded with two half U-slots. Here, the
feed is placed on the patch edge as shown in Fig. 1(b). Further to realize a larger BW, proximity
feeding is selected, and the patch is suspended in air using substrate thickness of ‘ha’ = 2.0 cm as given
in Figs. 1(c), (d).

Initially to optimize the wideband response parametric variations are carried out, and resonance
curve plots for the increment in slot dimensions ‘Lv1’ and ‘Lu1’ are shown in Figs. 2(a) and (b). As
the patch length and width are nearly the same, separate peaks due to TM10 and TM01 modes are not
observed. Because of the offset feed, TM11 mode is present. With increase in vertical U-slot length
‘Lv1’, TM10 and TM11 mode frequencies decrease, as their modal currents are orthogonal to ‘Lv1’. The
TM20 mode frequency also decreases as the placement of ‘Lv1’ is near its maximum current location.
Further with increase in ‘Lu1’ frequencies of all the resonant modes decrease. For ‘Lv1’ = 2.2 and
‘Lu1’ = 4.8 cm, the loop due to modified TM11 mode is optimized inside VSWR = 2 circle as shown in
Fig. 2(c). Here the frequency of TM10 mode lies much below TM11 mode frequency, and thus it does not

(b)(a)

(d)(c)

Figure 2. (a), (b) Resonance curve plots for increase in dimensions ‘Lu1’ and ‘Lv1’ of larger U-slot, (c)
smith chart for half U-slot cut SMSA for ‘Lu1’ = 4.8 cm, ‘hs’ = 1.8 cm and (d) resonance curve plot for
increase in ‘Lv2’ and ‘Lu2’ of smaller half U-slot dimension.
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(b)

(a)
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Figure 3. (a) Return loss plots, (b)–(d) surface current distributions at three frequencies across the
BW and (e), (f) radiation pattern nearer to the band start frequency for SMSA with two half U-slots.

lie inside VSWR = 2 circle to contribute to the BW. With single half U-slot, simulated BW is 503 MHz
(27.51%). The next loop observed in the Smith chart is due to modified TM20 mode. To increase the
BW, the position of this loop can be optimized by embedding the second half U-slot of dimension ‘Lv2’
and ‘Lu2’, as shown in Fig. 1(c). The resonance curve plot for the second half U-slot length variation is
shown in Fig. 2(d).
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The increase in ‘Lv2’ and ‘Lu2’ reduces the frequency and impedance at TM20 mode due to which
loop formed due to the same is optimized inside VSWR = 2 circle to give the maximum BW. The same
is realized for ‘Lv2’ = 1.0 ‘Lu2’ = 2.2, ‘ws’ = 0.4, ‘xf ’ = 2.5, and ‘yf ’ = 0 cm, and return loss (S11)
plots for the optimum design are shown in Fig. 3(a). The simulated and measured BWs are 985 MHz
(49.44%) and 1022 MHz 51.6%), respectively. The antenna gain is larger than 5 dBi over most of the
BW with peak gain close to 9 dBi as shown in Fig. 3(a). Simulated surface current distributions at three
frequencies over the BW and radiation pattern near the band stop and start frequencies are shown in
Figs. 3(b)–(f) and 4(a), (b).

Due to the presence of modified TM11 and TM20 modes, current variation is bidirectional over the
patch. Although a broadside radiation pattern is observed over the BW, higher cross-polar component
is also present, as shown in Fig. 4(c). This higher cross polarization level will be advantageous in mobile
and personal communication systems.

(b)(a)

(c)

Figure 4. (a), (b) Radiation pattern nearer to band stop frequency for SMSA with two half U-slots
and (c) cross polar level variation over the BW in broadside direction for SMSA with two half U-slots
and a rectangular slot.

As observed from Fig. 2(d), the next resonant mode present in two half U-slot cut design is TM02.
Further increase in the BW is obtained by tuning this frequency with respect to modified TM11 and
TM20 modes. To decide the additional rectangular slot position, the surface current distribution at
modified TM02 mode is studied. Near the maxima of its surface currents, a rectangular slot of dimension
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(b)(a)

(d)(c)

Figure 5. Resonance curve plots for variation in (a) Ls and (b) ys, (c) return loss plots and (d)
fabricated antenna for a rectangular slot cut two half U-slots cut nearly SMSA.

‘Ls × ws1 × ys’ is cut as shown in Fig. 1(c). For ‘ws1’ = 0.4 cm, parametric study is carried out for
variation in slot dimensions, and resonance curve plots for them are shown in Figs. 5(a) and (b). With
the increase in slot length, the frequency of TM02 mode decreases. Because of the circulation of surface
currents around the slot edge, the frequency of TM30 mode also decreases. The slot position ‘ys’
optimizes the impedance at TM02 and TM30 modes to give wide band response as shown in Fig. 5(c).
The simulated and measured BWs using an additional rectangular slot are 1263 MHz (57.5%) and
1345 MHz (61%), respectively. The variations in the simulated and measured results are attributed to
the errors in maintaining desired air gap for patch and proximity feeding strip. The antenna gain is more
than 5 dBi over the complete BW with the peak value of 9 dBi. This antenna also shows a radiation
pattern with higher cross polar levels across the BW as shown in Fig. 4(c). The fabricated antenna
prototype is shown in Fig. 5(d). For the testing purpose antenna was fabricated using copper plate
and supported in air using foam spacers. The radiation pattern and gain measurement setup is shown
in Fig. 6. A distance of more than ‘2D2/λ’ is kept in between the reference antenna and the antenna
under test. A wideband horn antenna is used as the reference antenna. Measurement was carried out
inside an antenna lab, wherein minimum reflections from the surrounding objects were ensured at the
measurement frequency. Also, the surrounding objects were non-metallic in nature, which minimizes
reflections and yields closer agreement between the simulated and measured results.

Thus as against reported slot cut variations, the proposed antennas realizes a higher cross-polar
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Figure 6. Measurement setup for a rectangular slot cut two half U-slots cut nearly SMSA.

pattern, as only higher order modes are present as against the fundamental modes. Hence, they will find
applications in mobile and personal communication systems. Further formulation in resonant length for
various modes present in the slot cut patch and subsequent design methodology is discussed.

3. RESONANT LENGTH FORMULATION AND DESIGN METHODOLOGY FOR
TWO HALF U-SLOTS AND A RECTANGULAR SLOT CUT SMSA

The wideband response in the above multiple slots cut SMSA is realized due to the optimum spacing in
between TM11, TM20, and TM02 mode frequencies with respect to TM10 and TM01 modes. Hence first
the resonant length formulations at all these modes are proposed. For the same, at each modified patch
mode, surface current distributions were studied extensively for different slot dimensions so as to arrive
at the final resonant length equation. The resonant length formulations at various modes are given in
Eqs. (1)–(4). In each equation, effects of individual slot lengths (i.e., ‘Lv1’, ‘Lu1’, ‘Lv2’, ‘Lu2’ and ‘Ls’)
on respective resonant modes are added separately using respective terms. Each term for a particular
slot length variation is selected by observing the variation in simulated frequencies and current vector
directions against the slot length. Resonance length at TM11 mode is calculated by using effective patch
length (Le) and width (we) as calculated for the TM10 and TM01 resonant modes. The frequency at
all the modes is calculated using Equation (5), and the % error between the simulated and calculated
frequency is calculated using Equation (6). The plots of the two frequencies at each mode and % error
in between them against the total slot length variation are shown in Figs. 7 and 8. Since each half U-slot
and rectangular slot affects all the modes, the plots have been shown against the total slot length, i.e.,
Lt = Lv1+Lu1+Lv2+Lu2+Ls. As observed, closer prediction between two frequencies with % error less
than 5% is obtained at each mode. Further using the proposed formulation, the design methodology to
realize a similar multiple slots cut antenna at given frequency is explained. It is observed from the above
study that band start frequency in multiple slots cut SMSA is close to 1500 MHz. The simulated TM10

mode frequency for the above equivalent SMSA is 1468 MHz, which is near the band start frequency.
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(b)(a)

Figure 7. Frequencies and % error plots at (a) TM10 and (b) TM01 for a rectangular slot cut two half
U-slots cut SMSA.

(b)(a)

(c)

Figure 8. Frequencies and % error plots at (a) TM11 (b) TM20 and (b) TM02 modes for a rectangular
slot cut two half U-slots cut SMSA.
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At f02 mode
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Thus in the redesigning procedure for initial calculations, band start frequency of the desired
BW is taken equal to TM10 mode frequency of SMSA. Hence, first SMSA length is calculated for the
given fTM10 mode frequency. To yield larger BW, the design is presented on a substrate with the
total thickness of 0.1λg . Using Equation (7), SMSA length is calculated. For air substrate, dielectric
constant is taken equal to unity whereas for suspended dielectric substrate, effective dielectric constant
is calculated using Equation (8).
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(8)

where εre = 1 for air substrate; εr is the dielectric constant of suspended substrate; ‘ht’ is the total
substrate thickness that equals ‘ha +h’ for suspended dielectric; ‘fTM10’ is in GHz when ‘L’ is calculated
in cm.

To realize closely spaced orthogonal modes, nearly square patch is selected, and thus W is taken
equal to 0.95 L. A square proximity strip of length 0.06λg is placed at a thickness of 0.088λg below
the patch and at a distance of 0.1224λg from the patch center. These parameters are selected based
upon their values in the above optimum design, normalized with respect to the substrate TM10 mode
wavelength (λg). Further inside this SMSA, two half U-slots of dimensions ‘Lv1’, ‘Lu1’, ‘Lv2’, and ‘Lu2’
and a rectangular slot of length ‘Ls’ are cut. Apart from these slot dimensions, parameters like slot
width and slot positions from the patch edge also affect the variations in various modal frequencies.
However, the trend in the variation of modal frequencies is largely governed by the slot lengths. Hence,
slot width (ws, ws1) in all the cases is taken equal to 0.02λg , whereas vertical lengths in two half U-slots
are cut at a distance of 0.108λg (‘x’ and ‘x1’ as mentioned in Fig. 1(c)) from the patch center. The
rectangular slot is cut at a distance of 0.328λg from the patch edge as shown in Fig. 1(c). In each half
U-slot, two slot dimensions namely ‘Lv’ and ‘Lu’ are present. It is observed in the parametric study
that length ‘Lv’ mainly affects the impedance at various modes, whereas ‘Lu’ has more effect on the
frequency. As the optimum response is a result of optimum spacing between frequencies followed by
the impedance optimization, lengths ‘Lv1’ and ‘Lv2’ are selected as 0.108λg and 0.049λg , respectively.
These slot parameter values are again selected based upon their optimum values in the design at
2000 MHz as mentioned above. Further using Equations (1) to (5), against increasing ‘Lu1’, ‘Lu2’,
and ‘Ls’, modified TM01, TM10, TM11, TM20, and TM02 mode frequencies are calculated. In single
half U-slot patch, wideband response is the result of optimum spacing between TM11 and TM10 mode
frequencies, and for this frequency ratio ‘fTM11/fTM10’ of around 1.86 exists. Using the second half U-
slot, which optimizes the frequency and impedance at TM20 mode, the ratio ‘fTM11/fTM10’ is reduced
to around 1.85, whereas using the rectangular slot TM02 mode frequency is optimized which gives a
ratio around 3 with respect to TM10 mode. Using these frequency ratios, the redesign of slot cut
configurations is presented for fTM10 = 900 MHz on an air substrate and 1200 MHz on a suspended FR4
substrate (εr = 4.3, h = 0.16 cm). Various antenna parameters and the frequencies of all the modified
resonant modes against increasing slot lengths are calculated using above equations and formulations
The calculated frequency ratio plots for fTM11 and fTM02 modes against fTM10 mode are shown in
Figs. 9(a) and (b).
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(b)(a)

Figure 9. Frequency ratio plots among TM02, TM11 and TM10 modes for two U-slots and rectangular
slots cut SMSA for (a) air and (b) suspended FR4 substrate.

A value of total slot length ‘Lt’ is noted for which fTM11/fTM10 is around 1.86. This will give
Lu1 = Lt − Lv1. Using these dimensions, first larger half U-slot is cut inside the SMSA. Further,
a value of ‘Lt’ is noted for frequency ratio around 1.85. As seen from the plot, two values of ‘Lt’
exist. However, the first value is ignored, and the second one is selected. This value of ‘Lt’ will give
Lu2 = Lt − Lv1 − Lu1 − Lv2. Using these dimensions, a two half U-slots cut SMSA was designed and
fabricated. Various design parameters for the two antennas are given in Table 1. The return loss plots
for the antennas at 900 and 1200 MHz are shown in Figs. 10(a) and (b), respectively. The simulated
and measured BWs at 900 MHz are 604 MHz (48.8%) and 632 MHz (51.5%), respectively. At 1200 MHz,
these two values are 635 MHz (45.9%) and 686 MHz (49.53%), respectively. The variation in two BWs
is attributed to experimental errors in maintaining the exact air gap for the patch and proximity strip.
In the two cases, the BW lies near the fTM10 mode frequency of SMSA. Inside this two half U-slot cut

(b)(a)

Figure 10. Return loss plots for two U-slots and rectangular slots cut SMSAs for (a) air and (b)
suspended FR4 substrate.
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Table 1. Various antenna parameters for the re-designed configurations.

fTM10. substrate 900 MHz, air 2000 MHz, air
1200 MHz, FR4

suspended
2200 MHz, FR4

suspended
L, W (cm) 12.4, 11.8 5.6, 5.3 8.9, 8.4 4.6, 4.3

h, hs, xf (cm) 3.3, 2.9, 4.1 1.5, 1.3, 1.8 2.56, 2.2, 3.0 1.36, 1.1, 1.55
ws (cm) 0.6 0.3 0.5 0.2

Lv1, Lu1 (cm) 3.6, 7.8 1.6, 3.0 2.6, 5.6 1.4, 2.9
Lv2, Lu2 (cm) 1.6, 3.2 0.7, 1.2 1.2, 2.8 0.6, 1.6
Ls, ys (cm) 4.0, 10.9 1.8, 4.9 2.3, 7.8 1.0, 4.0
x, x1 (cm) 3.6 1.6 2.6 1.4

Table 2. Comparison for proposed slot cut SMSA variations against reported slot cut designs.

MSA
shown in

Meas. BW
(MHz, %)

Peak Gain
(dBi)

Cross polar
level

Patch area
Substrate
thickness

SMSA with two
half U-slots

1022, 51.6 8.6 −7 dB 3.6λc 0.13λc

SMSA with two
half U-slots +

rectangular slot
1345 61 8.1 −7 dB 4.02λc 0.134λc

Ref [1] 470, 44.9 10 < −20 dB 9.54λc 0.08λc

Ref [2] 408, 24.82 7.2 < −25 dB 3.74λc 0.076λc

Ref [4] 1450, 21.49 8.5 −15 dB 1.5λc 0.1λc

Ref [5] 3000, 53.6 10.2 < −12 dB 2.1λc 0.124λc

Ref [6] 580, 27.62 9.41 — 2.93λc 0.101λc

Ref [7] 80, 9.3 7 −22 dB 5.28λc 0.043λc

Ref [9] 590, 53.9 8 −10 dB 7.11λc 0.104λc

Ref [10] 700, 31 8.5 −7 dB 1.672λc 0.07λc

Ref [11] 2020, 68 10 −34 dB 2.244λc 0.02λc

Ref [14] 700, 44 9.9 < −20 dB 5.975λc 0.09λc

Ref [15] 351, 6.6 6.5 −25 dB 0.28λc 0.083λc

Ref [17] 45% 8.5 −16 dB 35λc 0.076λc

Ref [18] 74, 3.93 1.0 −7 dB 2.12λc 0.021λc

Ref [19] 1150, 21 10 −24 dB 1.378λc 0.036λc

SMSA, a rectangular slot ‘Ls’ is cut. For this value of ‘Lt’ is noted for which ‘fTM02/fTM10’ ratio is
around 3. Using this value of ‘Lt’ slot length is calculated as Ls = Lt −Lv1 −Lu1 −Lv2 −Lu2. For this
length, antenna is simulated, and fabrication was done for the measurement purpose. The results with
an additional slot at 900 and 1200 MHz are shown in Figs. 10(a) and (b).

The simulated and measured BWs at 900 MHz are 654 MHz (51.3%) and 682 MHz (54.52%),
respectively. At 1200 MHz, these two values are 1073 MHz (67%) and 1058 MHz (67.34%), respectively.
Smaller increment in BW for the design at 900 MHz than two half U-slot configuration is attributed to
the reduced coupling to the modified TM02 mode on the air substrate. Antennas were also designed at
other frequencies as mentioned in Table 1. They show a similar wideband response. Thus, the proposed
methodology is useful in the design of wideband multiple slots cut nearly square patch antennas near
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given band start frequency, on the thicker substrate. The comparison for the proposed multiple slots
cut antenna with some of the reported designs is provided in Table 2. The patch area and substrate
thickness as mentioned in Table 2 are normalized with respect to the guided wavelength (λc) at the
center frequency of BW. Also the cross-polar level as mentioned in Table 2 is noted at the center
frequency of the BW.

The initial designs of slot cut MSAs [1, 2], or modified slot cut patch variations [4, 19], or slot
cut designs on a thinner substrate than 0.04λ0 [7], or the offset slot cut and multiple slots cut
antennas [5, 6, 9, 10, 14, 18] were optimized with reference to the fundamental mode. Hence, they offer
either lower cross-polar radiation throughout the BW or larger cross-polar radiation only across certain
range of frequencies over the BW. As against that proposed configurations offer larger cross-polar
radiation over the entire BW and give higher VSWR BW with comparable values of other antenna
parameters. A large impedance BW on lower substrate thickness was obtained in the two U-slot cut
antenna design reported in [11]. But it requires differential feeding, and the reported work does not
clearly explain which modes contribute towards the pattern reconfiguration as well as the effects of
substrate thickness on impedance matching at respective modes. Further in frequency reconfigurable
designs using slots [15, 16], detailed theory about antenna functioning by highlighting the effects of U-
slot along with diodes is not put forward. A similar study lacks in modified E-shape design as reported
in [17]. In comparison, the present paper puts forward detailed theory about antenna functioning in
terms of patch modes as well as proposes design methodology using resonant length formulations. Thus,
designs of multiple slots cut antennas offering higher impedance BW around modified higher modes and
showing higher cross polar radiation throughout the BW supported with design methodology are the
new technical contributions in the proposed work against reported multiple slot cut designs offering
wideband response.

4. CONCLUSIONS

Designs of multiple slots cut nearly SMSA using the combinations of half U-slots and a rectangular
slot are proposed for the wideband response. As against the reported slot cut variations, the proposed
designs offer wide band response around the higher order TM11, TM20, and TM02 mode frequencies, to
give higher impedance BW along with a high cross-polar radiation pattern. The maximum BW of nearly
61% is obtained in the design using two half U-slots and a rectangular slot. The proposed antennas
offer a broadside radiation pattern with higher cross-polar level and a broadside gain above 5 dBi across
the entire BW. The resonant length formulations at modified patch modes and subsequent design
methodology using the same are presented. This is useful in the redesigning of similar configurations at
different resonance frequencies on thicker substrates. The proposed configurations will find applications
in personal and mobile communication applications where signal loss due to polarization mismatch is
to be minimized.
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