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E-Shape Microstrip Antenna for Dual Frequency WLAN Application

Aarti G. Ambekar and Amit A. Deshmukh

Abstract—For exploring the possibility of dual frequency response, a higher order mode frequency
response in the air suspended design of a wideband E-shape microstrip antenna is studied by
appropriately decreasing the air gap. The decrease in the air gap realizes the impedance matching at
higher order TM12 mode which, along with the fundamental TM10 mode, gives dual frequency response.
On an air suspended FR4 substrate with total thickness of 0.043λg optimized single patch configuration
yields dual band response at 2427 and 5730 MHz giving frequency ratio of 1 : 2.36. It yields impedance
bandwidths of 6.6% and 4.8% at two frequencies with respective broadside gains of 6.8 and 2.1 dBi.
The proposed configuration satisfies the requirements of 2.4/5.8 GHz WLAN applications. Parametric
formulations are proposed for various antenna dimensions. The MSAs redesigned using them at given
fundamental mode frequency yield a similar dual band response.

1. INTRODUCTION

A wireless local area network (WLAN) is one of the wireless communication applications used for
providing access between the client devices. According to the IEEE standard WLAN network covers
2.4 GHz (802.11 b/g) and 5–5.8 GHz (802.11a) frequency bands. A microstrip antenna (MSA) can be
the best choice for such applications due to its light weight, low profile, and ease of integration with
other peripheral devices. But MSAs suffer from the problem of narrow bandwidth (BW) and low gain.
In order to satisfy the need of WLAN standards, the design of a dual band MSA with enhanced BW,
gain, and similar radiation characteristics in two bands giving frequency ratio of 1 : 2–2.4 is essential. A
few approaches like using thicker substrate, introducing parasitic elements, or modifying patch geometry
by embedding a slot can be used for BW enhancement [1–4]. Here the slot cut technique is preferably
used, and the best examples are U-slot, E-shape, and V-slot cut MSAs [5–10]. A dual frequency MSA
for WLAN application using arc shape slots has been reported in [11]. But here the realized BW is
less although the design is fabricated on an electrically thicker substrate. The design using a organic
magnetic material substrate makes the configuration complex [12] while the design reported in [13]
lacks explanations for antenna working in terms of patch modes with respect to the slot dimensions.
Owing to the multiple patch parameters and feeding method multiband designs as reported in [14, 15]
are complex in implementation. Designs of dual band rectangular MSA (RMSA) embedded with two
pairs of rectangular slots and a shorting pin [16], an asymmetric M-shape antenna derived from E-shape
patch using shorting vias at one of the arms [17] and a single feed MSA using a rectangular loop and an
E-shape patch with shorting pin [18] lack in-depth explanation about antenna working in terms of patch
modes with respect to shorting vias and the embedded slots. Biasing circuits used for active devices
make the reconfigurable antennas reported in [19, 20] more complex in implementation. Nonuniform
square ring geometry for dual band operation has been reported in [21]. But here BW realized is 2.5%
though it is fabricated using two layers. Multiple patches have been used for the realization of dual
band response in [22], but it increases the total patch size.
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In this paper, initially the wideband design of coaxially fed E-shape MSA is discussed which yields
BW of 442 MHz (18%). Further to explore the dual band nature of wideband E-shape patch, the higher
order mode frequency response of the wideband configuration is studied. Because of the electrically
thicker substrate in the wideband design at higher order mode frequencies, impedance matching at
them is not realized. Further, a parametric study was carried out for the decrease in the air gap in the
suspended wideband design to explore the possibility of impedance matching at higher frequencies. For
a substrate of thickness less than 0.045λg impedance matching at lower and higher order modes together
is obtained. Parametric study was carried out further to study the effects of slots in an E-shape patch
on the resonant modes in achieving this dual band response. It is revealed that the dual frequency
behavior was due to the patch TM10 and modified TM12 resonant modes. An optimum response with
two frequencies at 2427 and 5730 MHz with BWs of 6.6 and 4.8% is obtained. This yields a ratio of
1 : 2.36 amongst the two frequencies. A broadside radiation pattern with peak gains of 6.8 and 2.1 dBi is
observed in lower and higher frequency bands. As a design methodology, parametric formulation for the
redesigning of similar dual band E-shape MSA is presented. The antennas designed using those yield a
similar dual band response with frequency ratio around 1 : 24. Thus, the originality in the present work
lies in providing in depth explanation for the realization of dual band response by investigating the higher
order mode excitation in the traditional coaxially fed E-shape MSA. The dual frequency response with
said frequency ratio is obtained on an electrically thinner substrate. Also no structural modifications
in original E-shape MSA are needed, and thus the proposed design is simpler in implementation than
the reported dual band MSAs. Detailed comparison highlighting the same is presented further in the
paper. The proposed antenna is first analyzed using CST simulation software [23]. In simulation and
measurements, a square ground plane of side length 10 cm is used. An SMA panel type connector is
used to feed the antenna. High frequency instruments, namely ZVH — 8, FSC 6 and SMB — 100 A
were used for the experimental verification. A good agreement is obtained between the simulated and
measured results.

2. DUAL BAND E-SHAPE MSA

E-shape MSA is a widely reported design for realizing wideband response. Using the coaxial feed,
MSA is optimized on an electrically thicker substrate (0.06 − 0.08λg). In the reported literature on
suspended wideband E-shape MSAs and their variations, neither the impedance matching considerations
have been discussed for realizing dual or multi-band frequency response with respect to patch higher
order resonant modes nor the current distributions at those modes were studied to get the desired
pattern characteristics. Therefore in the present paper, initially higher order mode frequency response
of wideband E-shape patch is studied for achieving the desired impedance matching for getting the
possible dual band response. Initially, wideband E-shape MSA design is parametrically optimized for
the BW in the lower frequency band (i.e., 2400 MHz) of WLAN application. The E-shape MSA for the
same is shown in Figs. 1(a), (b). Throughout the paper, patch dimensions and frequencies are referred
in ‘cm’ and ‘MHz’, respectively. The E-shape patch is fabricated on an FR4 substrate (εr = 4.3,
tan δ = 0.02, h = 0.16 cm), and it is suspended above the ground plane using an air gap (ha) of
0.64 cm. The equivalent RMSA dimensions are ‘L’ = 4.2 and ‘W ’ = 5 cm, which give fundamental
TM10 mode frequency of 2435 MHz. Thus with reference to this frequency electrical substrate thickness
is 0.066λg . The MSA is coaxially fed using an SMA panel type connector with an inner probe diameter
of 0.12 cm at ‘Xf ’ = 1.0 and ‘Yf ’ = 0 cm. Due to the optimum separation between TM10 and TM02

resonant modes, broadband response with a BW of 442 MHz (18%) is obtained in E-shape MSA, as
shown in Fig. 1(c). Further, wideband E-shape MSA is simulated for frequencies up to 7000 MHz, and
respective input impedance plot is shown in Fig. 1(c). As can be seen, an impedance matching for
VSWR less than 2 is not obtained for higher order resonant modes. With respect to the higher order
mode frequency (5385 MHz), the electrical substrate thickness is in excess of 0.15λg , which makes the
impedance locus highly inductive. Therefore, the impedance mismatch is attributed to the higher value
of ‘(ha + h)/λg’ at higher frequencies. In order to reduce this inductance in the impedance locus and
to exploit the possibility of dual band response with reference to the higher order resonant modes, a
parametric study is carried out for variations in air gap ‘ha’, and the corresponding input impedance
plots are provided in Figs. 1(c), (d). For ‘ha’ = 0.64 cm, a loop lies inside VSWR = 2 circle which is
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Figure 1. (a) Top and (b) side views of E-shape MSA, Lsub = 6, Wsub = 7, Lgnd = Wgnd = 10 cm, and
its (c), (d) impedance plots for air gap ‘ha’ variations in the suspended design.

attributed to the optimized broadband response with reference to the fundamental resonant mode. One
more loop lies outside VSWR = 2 circle which is attributed to the improper impedance matching at the
higher order mode. With decrement in the air gap ‘ha’, the inductive component in the impedance locus
decreases which makes the locus shift towards the lower resistance as well as larger capacitive region in
the Smith chart. For air gap less than 0.32 cm, impedance locus due to fundamental as well as higher
order modes lies inside VSWR = 2 circle. An optimum response in terms of range of frequencies lying
inside VSWR = 2 circle at fundamental and higher order modes is observed for ‘ha’ = 0.32 cm. With
reference to the TM10 mode frequency of the patch, this thickness corresponds to the total substrate
thickness (ha + h) of around 0.043λg . Therefore, this suspended variation with air gap of 0.32 cm is
further studied for achieving the dual band response with reference to the fundamental and higher order
resonant modes. For this a systematic parametric study for variation in the feed point location and pair
of slot length increments is carried out to ascertain the resonant modes involved in the dual frequency
response as well as the radiation pattern present in the two bands.

The design is initiated with a simple rectangular patch with dimensions ‘L’= 4.2 and ‘W ’ = 5.0 cm
for which fundamental mode frequency (fTM10) is 2435 MHz. Initially the parametric variations are
carried for the feed position ‘Xf ’, and corresponding resonance curve plots are as shown in Fig. 2(a).
The feed variation is studied here since the excitation of various resonant modes is a function of the
same. For ‘Xf ’ = 1 cm, five resonant peaks are observed. In RMSA, TMmn modes are present, where
‘m’ and ‘n’ indicate the number of half wavelength variations along the patch length and width [2].
In the current plots obtained using simulation software, current vector originates from the point where
the field has ‘+’ polarity and terminates at ‘−’ polarity. Based on this modal identification is done,
and the observed resonant modes in RMSA are TM10, TM02, TM12, TM22, and TM30. For the desired
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Figure 2. Resonance curve plots for (a) feed point and (b)–(d) slot length ‘ls’ variations for the dual
band E-shape MSA.

dual frequency response, each band should exhibit a similar radiation pattern. In RMSA, the radiation
pattern at TM10 mode is broadside with lower cross polarization levels. At TM02 mode, it is conical or
end-fire. The radiation pattern of TM12 mode is either conical or partially conical, which also depends
upon the patch aspect ratio. A higher cross polar component is present at TM12 mode. It is reported
in the literature that the introduction of a slot alters the current distribution at higher order modes
which modifies their radiation pattern [24]. Therefore for analyzing the slot effects, parametric study is
carried out for increments in slot lengths ‘ls’, and corresponding resonance curve plots are as shown in
Figs. 2(b)–(d). Also the modal surface current distributions observed at each peak for ‘ls’ = 1.5 cm is
as shown in Figs. 3(a)–(g).

In the current plots, the ‘+’ and ‘−’ signs represents the electric field polarity. The slot length
is parallel to the current path at TM10 mode over a complete patch length; hence its frequency is
unaffected against increment in slot length. Slot is placed parallel to the surface currents at TM20 and
TM30 mode as well. But since they show two and three half wavelength variations along the complete
patch length, variations in their frequencies are observed. When slots are allied orthogonal to surface
current directions, they modify surface currents on the patch which reduces respective frequency. As
slots are allied orthogonal to surface currents of TM02 mode, its frequency decreases drastically with
incrementing slot lengths, and for ‘ls’ = 2 cm onwards it goes below TM10 mode frequency. For slot
length ‘ls’ < 1.0 cm, TM12 and TM22 mode frequencies decrease due to the orthogonal orientation of
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Figure 3. (a)–(g) Surface current distributions at observed resonant modes at ‘ls’ = 1.5 cm for dual
band E-shape MSA.

(a) (b) (c)

(d) (e) (f)

Figure 4. (a)–(c) Surface current distributions and (d)–(f) simulated radiation pattern plots at TM12

mode for different values of ‘ls’ for dual band E-shape MSA.

their current path length with respect to the slot length along the patch width. But for ‘ls’ ≥ 1.0 cm,
effective patch width as seen by the coaxial feed for these two modes decreases, hence their frequencies
increase. The radiation pattern at TM12 mode in RMSA is partially conical. Variation in slot length
reorients the current distributions at TM12 mode. Due to this, the conical radiation pattern at TM12

mode is modified to broadside radiation pattern as shown in Figs. 4(a)–(f).
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Figure 5. (a) Return loss and gain plots and (b), (c) radiation pattern at the first frequency of dual
band response for dual band E-shape MSA.

The TM20 mode is observed for ‘ls’ = 1.0 cm. For ‘ls’ > 1.0 cm, one more weakly excited mode is
observed prior to the TM20 mode. It shows similar two half wave length variations along the length just
like TM20 mode. But these current variations are present from the patch center and towards the patch
diagonal points as shown in Fig. 3(c). Hence this mode is referred to as TM20d mode. Here ‘d’ stands for
the diagonal variation. For ‘ls’ in the range of 2.5 to 3.0 cm, proper impedance matching is observed for
TM10 and TM12 modes showing frequency ratio in the range of 1 : 2.4 which is the required condition
for the dual band design for WLAN. For ‘ls’ ≥ 3.0 cm, impedances at all modes increase drastically due
to effective reduction in patch width as seen by the modal currents. Hence ‘ls’ = 2.6 cm is selected for
the optimum dual band design. For the optimized dual band configuration, dimensions of E-shape MSA
are ‘L’ = 4.2, ‘W ’ = 5.0, ‘ls’ = 2.6, ‘ws’ = 2, ‘Ys’ = 1.0, ‘Xf ’ = 1.0 cm. The optimized configuration
is fabricated on an air suspended low cost FR4 substrate and tested on a finite ground plane of size
10 × 10 cm. Measured and simulated return loss (S11) and gain plots are as shown in Fig. 5(a).

The S11 plot indicates return loss for less than −10 dB in the two bands. The simulated frequencies
and their respective BWs are 2452 and 5762 MHz and 164 (67%) and 246 MHz (4.2%). Corresponding
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measured values are 2427 and 5730 MHz with a BW of 162 (6.6%) and 279 MHz (4.8%), respectively.
Simulated broadside gains observed at respective bands are 6.7 and 2.3 dBi while measured values are
6.8 and 2.1 dBi. The ratio between dual frequencies is around 1 : 2.4, which is required in the WLAN
application. The simulated and measured radiation patterns observed at the two frequencies are shown
in Figs. 5(b), (c) and 6(a), (b). At both the frequencies, i.e., ‘f1’ (TM10) and ‘f2’ (TM12), broadside
radiation pattern is observed with E-plane aligned along Φ = 0◦. A higher cross polarization level is
observed in the H-plane at the second frequency. This may not be a disadvantage for indoor wireless
communication applications where due to multiple reflections incident wave polarization is not fixed,
and higher cross polar level antenna able to receive signal from any field orientation will reduce the signal
loss. The deviation in the measurement results from the simulation results is attributed to the variation
in substrate parameters, feed point location, as well as marginal error caused in the radiation pattern
measurement setup. The same was carried out inside the antenna lab, wherein minimum reflections
from the surrounding objects were ensured at the two frequencies. The fabricated antenna is as shown
in Figs. 6(c), (d). Further in the paper, based upon the proposed optimum design, simpler parametric
formulations for various antenna parameters are presented. They will be useful in the redesigning of a
similar dual band configuration at given TM10 mode frequency and frequency ratio around 1 : 2.4.

(a) (b)

(c) (d)

Figure 6. (a), (b) Radiation pattern at second frequency of the dual band response and (c) top and
(d) 3D views of the fabricated antenna for dual band E-shape MSA.
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3. DESIGN METHODOLOGY FOR DUAL BAND E-SHAPE MSA

The redesigning procedure proposed here is based upon the parametric study and subsequent optimum
design discussed above. As the design uses suspended dielectric, value of effective dielectric constant
(εre) needs to be calculated which decides the patch dimensions. Here the value of ‘ha’ is not known.
As the redesigned configuration is presented for a similar thinner substrate (0.043λg), for the initial
calculation, the value of ‘εre’ is assumed to be 1.06. For the desired TM10 mode frequency (specified
in GHz), the value of ‘λg’ is calculated in cm, using Equation (1). The total substrate thickness ‘ht’
for the redesigned antenna is taken as ‘0.043λg ’ which equals ‘ha + h’. Further practically realizable
value of ‘ha’ is selected, by which the values of ‘εre’ and ‘λg’ are recalculated using Equations (2) and
(1), respectively. Again here the total substrate thickness is calculated as 0.043λg . Using this, a new
value of ‘ha’ is found. It is observed in this iterative process that the value of practically realizable ‘ha’
marginally changes with respect to the earlier value calculated. Hence the value of ‘ha’ as calculated
initially is maintained. The RMSA length ‘L’ for the given TM10 mode is calculated using Equation (3).
With reference to the TM10 mode frequency, frequencies of other higher order orthogonal modes are
decided by the patch aspect ratio ‘L/W ’. To maintain the same separation between the fundamental
and various higher mode frequencies, patch width ‘W ’ is taken as 1.19L. Further, various other E-shape
antenna parameters are calculated as, ‘ls’ = 0.232λg , ‘ws’ = 0.0178λg , ‘Ys’ = 0.0445λg , ‘Xf ’ = 0.089λg .
These parameters are selected based upon their optimum antenna parameters as presented in the above
design and expressed in terms of operating TM10 mode wavelength ‘λg’. The dual band E-shape MSA is
designed using these parametric formulations at three different TM10 mode frequencies. The redesigned
antennas were simulated, and the experimentation was done for result verification. Various antenna
parameters for the redesigned configurations are provided in Table 1. Their simulated and measured
S11 and gain plots are shown in Figs. 7(a)–(c). In all the redesigned configurations, similar results
to that observed in the proposed configuration with frequency ratio of around 1 : 2.4 are obtained.
Thus given procedure can be used to redesign a similar dual band E-shape MSA at given TM10 mode
frequency

λg =
30

fTM10

√
εre

(1)

εre =
εr(h + ha)
(εrha + h)

(2)

Table 1. Antenna parameters for the redesigned dual band E-shape MSAs.

Antenna
Parameters

fTM1,0 = 900 MHz fTM1,0 = 1500 MHz fTM1,0 = 1800 MHz

L 12.56 cm 7.36 cm 5.96 cm
W 14.94 cm 8.75 cm 7.09 cm
ls 8.69 cm 4.72 cm 3.82 cm
ws 5.58 cm 0.34 cm 0.28 cm
Y s 1.39 cm 0.81 cm 0.66 cm
Xf 2.98 cm 1.75 cm 1.41 cm

f1
Simulated Measured Simulated Measured Simulated Measured
930 MHz 898 MHz 1520 MHz 1485 MHz 1808 MHz 1763 MHz

Bandwidth for f1 70 MHz 62 MHz 110 MHz 102 MHz 120 MHz 105 MHz
Gain for f1 6.8 dBi 6.5 dBi 6.7 dBi 6.5 dBi 6.8 dBi 6.7 dBi

f2 2235 MHz 2225 MHz 3620 MHz 3575 MHz 4432 MHz 4392 MHz
Bandwidth for f2 45 MHz 35 MHz 105 MHz 98 MHz 124 MHz 111 MHz

Gain for f2 1.8 dBi 1.7 dBi 2 dBi 1.9 dBi 2.6 dBi 2.4 dBi
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(a) (b)

(c)

Figure 7. Return loss and Gain plots for the redesigned dual band E-shape MSA at (a) 900 MHz, (b)
1500 MHz, and (c) 1800 MHz.

Lp =
30

2fTM10

√
εre

− 1.2 (h + ha) (3)

A comparison between the proposed dual band E-shape MSA against the reported designs is given
in Table 2. A dual frequency configuration reported in [11] though it is fabricated on electrically thicker
substrate yields lesser BW against the proposed configuration which is fabricated on an electrically
thinner substrate. Dual band operation is realized using L shape slots in [12, 13]. For the BW
enhancement organic magnetic material is used for the substrate in [12], while the proposed configuration
is fabricated on an air suspended low cost FR4. Owing to the complex feeding methods used in [14, 15],
the proposed configuration uses a simpler coaxial feeding technique. A shorting pin with two pairs of
rectangular slots is used in [16] while a rectangular loop with an E-shape patch with a shorting pin is used
in [18]. Also an M-shape patch with shorting vias is used in [17] for the realization of dual band response
with enhanced BW using an electrically thinner substrate. But these designs lack in depth explanations
about patch modes with respect to shorting vias and embedded slots dimensions and positions, which is
needed for in depth understanding of the antenna working. Against this proposed work provides in depth
analysis explaining the effect of substrate thickness and slot on the multiband response with respect
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Table 2. Comparison for the proposed dual band E-shape MSA against reported dual band MSAs.

MSA
shown in

Meas. Freq.,
% and BW
(MHz, %)

Frequency
ratio
f2/f1

Frequency
tuning
element

Peak
Gain
(dBi)

Patch area
and substrate

thickness
(A/λc, h/λc)

Figs. 1(a), (b)
2427 (6.6),
5730 (4.8)

2.36 Slot 6.8, 2.1 1.57λc, 0.043λc

Ref. [11]
2440 (4.13),
5250 (3.8)

2.15 slot 2.9, 1.9 1.6λc, 0.06λc

Ref. [12]
2400 (3.3),
5200 (8.8)

2.16 slot 3.8, 5.8 0.87λc, 0.036λc

Ref. [13]
2450 (4.13),
5125 (8.82)

2.09 slot 3.9, 8 0.87λc, 0.036λc

Ref. [14]
2450 (4.6),
5500 (12.9)

2.24 slot 2.5, 4.3 0.8λc, 0.014λc

Ref. [15]
2430 (4.9),
5760 (7.29)

2.37 10.17 1.104λc, 0.061λc

Ref. [16]
2450 (3.7),
5200 (5.3)

2.12 slits 4.1, 1.4 0.4λc, 0.035λc

Ref. [17]
(dual
band

configuration)

2440 (0.5),
5770 (6)

2.36 – 4.96, 7.57 3.4λc, 0.024

Ref. [18]
2400 (3),
5500 (13)

2.29 slot 9.23, 6 2λc, 0.03λc

Ref. [19]

Single band
tuning range
5400–2400

(2.5% and 8%)

Tuning
range

2.25 : 1

Capacitor
and PIN

diode
5.8 1.18λc, 0.013λc

Ref. [20]
2400 (0.62),
5600 (1.6)

2.33 PIN diode 7 2.05λc, 0.009λc

Ref. [21]
(uniform
width

configuration)

2.43 (1.48),
5.43 (2.65)

2.23 – 4.8 1.05λc, 0.031λc

Ref. [22]
2.4 (Not specified)
5.5 (Not specified)

2.29 – 5, 3.7 1.13λc, 0.045λc

to patch modes. For the tuning of dual band operation pin diodes are used in [19, 20]. Against them,
the proposed design yields frequency variation by changing the slots’ dimensions for the individual
patch modes. The uniform square ring configuration used for the realization of dual band response
reported in [21] makes the overall structure complex compared with the simple slot cut technique used
in the proposed configuration. As against single patch used in proposed configuration multiple patches
have been used in [22] for the realization of dual band response. In addition, all the above mentioned
configurations do not provide in depth design guidelines for the redesigning of a similar type of antenna
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in different frequency ranges, which is provided in the present work.
Thus in comparison with the reported work, this paper presents a simple coaxial feed traditional E-

shape patch for dual band response with frequency ratio of around 1 : 2.4. None of the reported papers
on traditional E-shape MSA has exploited the higher order mode frequency response with respect to the
realization of a dual band antenna. Against it, the proposed work highlights the realization of dual band
response with respect to variations in substrate thickness from the broadband configuration of E-shaped
MSA. Further, parametric study is provided with respect to feed position and slot dimension for bringing
out resonant mode based explanation for the realized dual band response offering similar radiation
pattern characteristics. The configuration fabricated on an air suspended low cost FR4 substrate yields
appreciable BWs of 6.6 and 4.8% and co-polar broadside gains of 6.8 to 2.1 dBi at the respective bands
of frequencies. Also the proposed work provides a parametric redesigning procedure for the dual band
response. Antennas designed using them yield similar characteristics with frequency ratio of nearly
1 : 24. These are all the new technical contributions in the proposed work against the reported dual
band MSA papers.

4. CONCLUSIONS

Conventional broadband E-shape MSA is studied with respect to its higher order mode frequency
response for exploring the dual frequency characteristics. The decrease in the air gap in the suspended
design yields impedance matching for fundamental and higher order modes to give possible dual band
response. The detailed parametric study reveals that dual band response is the result of optimum
separation between TM10 and TM12 modes of the rectangular patch giving similar radiation pattern
characteristics. The optimized configuration on thinner substrate (0.043λg) yields dual band response
with resonance frequencies centered at 2427 and 5730 MHz with BWs of 6.6% and 4.8%, respectively.
Broadside gains of 6.8 and 2.1 dBi are observed in the two bands. Thus, the design can entirely cover
2.4/5.8 GHz bands of WLAN applications. Redesigning guidelines are proposed based on the parametric
analysis done. The antenna designed using the proposed guidelines yields a similar dual band response
with the frequency ratio of 1 : 2.4 showing similar radiation pattern characteristics in the two bands.
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