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Stress Monitoring of Prestressed Steel Strand

Based on Magnetoelastic Effect under Weak Magnetic
Field Considering Material Strain
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Abstract—Prestressed steel strands are critical components of prestressed structures, which determine
the bearing capacity of the structures. The prestress loss of steel strands causes the bearing capacity
to decline. To monitor the stress of prestressed steel strands, a stress monitoring method based on the
magnetoelastic effect was proposed. The influence of the material strain was considered to improve
monitoring accuracy. To do the monitoring, a coil-based sensor, using a small excitation current to
generate a necessary magnetic field, was employed. The sensor converted the stress into inductance. An
experimental system was set up, and two batches of specimens were tested. The experimental results
showed that the measured inductance was stable and repeatable. There was a nonlinear relationship
between the inductance and the stress. Strands of different batches need to be calibrated separately to
obtain the inductance-stress equation. Based on the calibration equation and measured inductance, the
stress of strands could be calculated. The difference between the calculated stress and the actual stress
was small. Besides, to improve the accuracy and ease of the construction, the self-induction coil of the
senor should be one layer and with moderate turns.

1. INTRODUCTION

Prestressed concrete structures have the advantages of high safety and reliability, material saving,
low dead weight, high crack resistance, and high rigidity [1]. About 75% of prestressed structures
use prestressed steel strands as prestressed tendons [2, 3]. As the critical component of prestressed
structures, the stress of prestressed steel strands affects the bearing capacity of structures. With
the service time increasing, unpredictable prestress loss occurs under the combined effect of load and
environment [4, 5]. The prestress loss of the strand causes the bearing capacity of prestressed structures
to decline. To know the performance of prestressed structures, the stress monitoring of prestressed steel
strands should be done. The stress monitoring also contributes to health monitoring and maintenance
of the structure which has important social and economic values.

Many researchers have studied the stress testing and monitoring of prestressed steel strands and
proposed destructive and non-destructive testing methods. The representative of destructive testing
methods is the stress release method. The stress release method cuts the strand to release structural
stress [6]. Although the accuracy of this method is high, the cutting affects the performance of the
prestressed steel strand. Nondestructive testing methods include ultrasonic guided wave method [7, 8],
stress wave method [9], fiber grating sensor method [10, 11], acoustic emission method [12, 13] and shape
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memory alloy method [14]. The ultrasonic guided wave method determines the stress by analyzing the
vibration and transmission speed of the elastic wave in the steel strand. For internal prestressed steel
strands, the ultrasonic guided wave can hardly penetrate the concrete, which is suitable for small
structures. The stress wave method determines the stress by the velocity of the longitudinal stress
wave propagating along the prestressed steel strand. The stress wave method is suitable for prestressed
steel strands up to 40 m in length, but the signal-to-noise ratio of the stress wave decays quickly. The
fiber grating sensor detection method calculates the stress of the steel strand through the change of
the wavelength of the light wave. However, the grating sensor is affected by temperature and coupling
agents. Acoustic emission and shape memory alloy methods are still at the laboratory stage. Therefore,
the stress monitoring of prestressed steel strands needs further research.

The stress monitoring based on the magnetoelastic effect method is mainly used for cables and
external prestressing tendons. The magnetoelastic effect method obtains the stress by measuring
electromagnetic parameters [15], such as magnetic permeabilities [16], induced magnetic inductances [1],
and the signal of magneto-electric sensors [17]. The magnetoelastic effect method has the characteristics
of good dynamic response and little environmental impact. Traditional coil-based sensors [16, 18] and
elasto-magneto-electric sensors [17] contain an excitation unit and an induction unit [19]. The sensor is
large and requires a large excitation current, thus embedding the sensor in structure is difficult and it
is unsuitable for stress monitoring of internal prestressing tendons.

To overcome these bottlenecks, a stress monitoring method based on the magnetoelastic effect
under a weak magnetic field considering material strain was proposed. A coil-based sensor, using a
small excitation current to generate a necessary magnetic field, was employed to do the monitoring.
To verify the feasibility of the proposed monitoring method, a stress monitoring experiment was done.
In the experiment, specimens were tested to obtain the stress-inductance relationship. Experimental
results demonstrated that the stress-inductance relationship agreed with the theoretical analysis. After
the stress-inductance equation (including the free parameters) was obtained by calibration, the stress of
strands could be calculated according to the measured inductance. The calculated stress differed little
with the actual stress. Then, the influence of sensor parameters on stress monitoring was analyzed.
According to the analysis, the sensor design method was proposed. After specified the sensors, the
corresponding inductance-stress relationship could be obtained by calibration. Then, the stress of the
prestressed steel strand could be ascertained by the inductance of the sensor that is embedded in the
structure.

2. STRESS MONITORING PRINCIPLE

The magnetoelastic effect points out the magnetization of ferromagnetic materials changes under
stress [20]. Combined with the self-inductance phenomenon, the stress is transformed into an easily
measured inductance of the sensor. The main body of the sensor is a coil that acts as the excitation unit
and the induction unit of traditional magnetoelastic sensors. As shown in Figure 1, unlike traditional
magnetoelastic sensors, the proposed sensor uses a small excitation current to generate the excitation
magnetic field. The weak excitation magnetic field is strong enough to magnetize the prestressed steel
strand. The strength of the excitation magnetic field is expressed by Equation (1), where H is the
strength of the excitation magnetic field, N the turns of the coil, I the small excitation current, and l
the length of the magnetic path.

H =
NI

l
(1)

The magnetization of the prestressed steel strand could be characterized by its permeability.
According to the magnetoelastic effect, the magnetic permeability of the steel strand varied with
its stress. Explained by the famous joule theory [21], the relationship between the stress and the
magnetization can be expressed as Equation (2). In Equation (2), σ is the stress of the steel strand,
E the Young’s modulus of the steel strand, λs the axial strain constant of the steel strand, Ms the
saturation magnetization of the steel strand, Ku the anisotropy constant of the uniaxial magnetization
of the steel strand, θ0 the angle between the easy magnetization axis of the steel strand and the direction
of the magnetic field, and ΔM the change in the magnetization of the steel strand. ΔM is determined
by the magnetic permeability of the steel strand. The magnetic permeability correlates to the stress.
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Figure 1. Schematic diagram of the sensor and steel strand:(1) Steel strand free from stress; (2) Steel
strand under stress;(3) Sensor skeleton; (4) Coil that contains (5), (6), (7), (8), and (9); (5) First layer
of the coil; (6) Second layer of the coil; (7) Third layer of the coil; (8) Wire from (5) to (6); (9) Wire
from (6) to (7); (10) Lead lire of the coil; (11) Axial direction of (1) and (2); (12) Easy magnetization
axis of (1) and (2); (13) Direction of the magnetic field; (14) Direction of winding the coil; (15) Angle
between (12) and (13); (16) Length of (1); (17) Length of (2); (18) Length of the magnetic path; (19)
Sectional Area of (1); (20) Sectional Area of (2); (21) Sectional Area of (3); (22) Sectional Area between
(4) and (1) or (2).

Thus, ΔM can be expressed as in Equation (3). In Equation (3), μs0 is the magnetic permeability of
the steel strand free from stress, and μs is the magnetic permeability of the steel strand at different
stress levels.

σ = E
3λsMs

2Ku
ΔM sin2 θ0cosθ0 (2)

ΔM = H · (μs − μs0) (3)

According to the Faraday law of electromagnetic induction and Lenz law, the inductance of the coil
relates to the magnetic permeability of the steel strand. The inductance of the coil could be calculated
using Equation (4), where As is the sectional area of the steel strand, A0 the area between the coil and
the steel strand, and u0 the magnetic permeability of nonferromagnetic material [22].

L =
(

μsAs + μ0A0

l

)
N2 (4)

When the excitation current remains constant, there is a functional relationship between inductance
and stress as shown in Equation (5), where L0 is the inductance of the steel strand free from stress.

σ = E
3λsMs

2Ku
sin2 θ0 cos θ0

I

N × As
(L − L0) (5)

For the specified steel strand and sensor, E, λs, Ms, Ku, θ0, and N are constants, so Equation (5)
is rewritten as Equation (6), where W is calculated using Equation (7).

σ = W
L − L0

As
(6)

W = E
3λsMs

2Ku
sin2 θ0 cos θ0

I

Ns
(7)

In prestressed structures, the stress of the prestressed steel strand is large, resulting in a large
change in the sectional area of steel strand. Thus, considering the influence of the material strain
could improve the accuracy of the stress monitoring. To this end, the Ramberge-Osgood constitutive
relationship [23] is introduced to describe the strain of the steel strand. When the stress does not exceed
the elastic limit of the steel strand, the Ramberge-Osgood relationship can be expressed as Equation (8).
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In Equation (8), σ0.2 is a typical set to the 0.2 percent proof (yield) stress of the steel strand. During
the loading and unloading, the volume of the strand remains. Equation (8) could be expressed by
the sectional area of the steel strand as Equation (9), where V is the volume of the steel strands.
Substituting Equation (9) into Equation (6), the nonlinear relationship between the inductance and the
stress can be expressed as Equation (10) and Equation (11), where ΔL is the change in inductance.

0 ≤ σ ≤ σ0.2, ε =
σ

E
(8)

V

As
− V

As0

V

As0

= ε ⇒ As =
EAs0

σ + E
(9)

σ2 + σ = WEAs(L − L0) (10)

σ =
E

2
+

√
WEΔL +

E2

4
(11)

Preliminary studies found that obtaining the value of W through calibration is difficult. Thus,
Equation (11) is expanded using a Taylor Series into Equation (12). During the expansion, the higher-
order quantities after the third order are ignored. In Equation (12), a1, a2, and a3 are constants. After
obtaining the constants of Equation (12) by calibration, the stress of the prestressed steel strand can
be ascertained by the collected inductance of the embedded sensor.

σ = a1ΔL2 + a2ΔL + a3 (12)

3. EXPERIMENT DESIGN

To carry out the stress monitoring test of the prestressed steel strand, an experimental system was set
up. Nine sensors and twenty-four specimens were prepared. The specimens were tested to verify the
proposed stress monitoring method. The influence of the sensor parameters on the stress monitoring
was analyzed.

3.1. Sensors and Specimens

To convert the magnetic permeability into inductance, nine sensors, with the main body of self-induction
coil, were prepared and labeled according to its parameters. The parameters of the sensors were shown
in Table 1. The number of turns of the sensors was 100, 200, and 300, respectively. As shown in
Figure 1, to change the length of the magnetic path without changing the number of turns, the number
of the winding layers of the sensors was set as 1, 2, and 3, respectively. The purpose of changing the
parameters was to investigate its influence on the accuracy of stress monitoring. The coils of the sensors

Table 1. Parameters of the sensors.

Label Number of turns Number of layers Length of the magnetic path /mm
G100-1 100 1 35.0
G100-2 100 2 17.5
G100-3 100 3 11.7
G200-1 200 1 70.0
G200-2 200 2 35.0
G200-3 200 3 23.3
G300-1 300 1 105.0
G300-2 300 2 52.5
G300-3 300 3 35.0
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(a) (b) (c)

Figure 2. Sensors that were mounted on the specimens: (a) Sensor G100-1; (b) Sensor G200-1; (c)
Sensor G300-1.

were composed of 0.35 mm enameled wire, which was wound on a plastic skeleton. The inner diameter
of the skeleton was set small to minimize the area between the coil and the steel strand. As shown
in Figure 2, after wounding the coil, the sensor was fixed on the steel strand and filled with organic
silicone.

The specimens were taken from two batches of steel strands. Six specimens were taken from the
first batch of steel strands, and eighteen specimens were taken from the second batch. These two batches
of steel strands had the same manufacturers, the same materials, the same production standards, the
same production processes, and thus similar properties. The steel strands had a nominal diameter
of 15.2 mm, a tensile strength of 1860 MPa, a limit load of 259 kN, and a yield load of 220 kN. The
steel strand contained seven steel wires and covered by PE sheath. Each specimen had a length of
0.8 m. To ensure the universal test machine can hold the specimens stably, the sheath with a length of
0.25 m at both ends of the specimens were removed. As shown in Table 2, specimens were tested with
different sensors. Two specimens were tested under each working condition to ensure the reliability and
repeatability of the test results.

Table 2. Labels and corresponding sensors of specimens.

Label of specimen The batch of the specimen Corresponding sensor
G300-1-B1-T1/T2 1 G300-1
G300-2-B1-T1/T2 1 G300-2
G300-3-B1-T1/T2 1 G300-3
G100-1-B2-T1/T2 2 G100-1
G100-2-B2-T1/T2 2 G100-2
G100-3-B2-T1/T2 2 G100-3
G200-1-B2-T1/T2 2 G200-1
G200-2-B2-T1/T2 2 G200-2
G200-3-B2-T1/T2 2 G200-3
G300-1-B2-T1/T2 2 G300-1
G300-2-B2-T1/T2 2 G300-2
G300-3-B2-T1/T2 2 G300-3
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3.2. Experiment System

The experiment system was set up to perform stress monitoring. As shown in Figure 3, the system
consisted of a universal test machine, clamping pieces, specimens, sensors, an LCR digital bridge, and a
computer. The universal test machine, with a maximum tension of 100000 kg, was used to tension the
specimen to different stress levels. The aluminum clips wrapped both ends of the specimen. The inner
surface of the aluminum clips had quartz sand which increased the friction between the clips and the
steel strand. Thus, the universal test machine can hold the specimen more stably.

As shown in Figure 4, the LCR digital bridge connected with the sensor through the 4-wire Kelvin

Figure 3. Experimental system and specimens.

Figure 4. The connection between the sensor and the LCR digital bridge.
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clip. The LCR digital bridge provided an excitation current to the sensor and collected the inductance
of the sensor. The LCR digital bridge provided a sinusoidal AC excitation current with a frequency
of 20 Hz and a current intensity of 66.67 mA. Because the inductance of the sensor was small, the
inductance was measured in series mode. The internal resistance of the LCR digital bridge was set as
30 Ω. Through the automatic data acquisition software, the inductance measured by the LCR digital
bridge was stored in the computer waiting for further processing.

3.3. Loading and Unloading Program

In the experiment, specimens were loaded and then unloaded to simulate the characteristics of the
prestressed steel strands. As the prestress of the steel strand using in prestressed structures didn’t
exceed 75% of its tensile strength, the range of the load was set from 0 kN to 200 kN.

As shown in Figure 5, during the loading phase, the load increased from 0 kN to 200 kN with a
step of 10 kN. The loading speed was 0.5 kN/s. At each stress level, the load was maintained for 60 s.
To ensure the steel strand was fully deformed and to reduce the error caused by the response lager of
the LCR digital bridge, no data was collected during the first 30 s. In the last 30 s, the inductance of
the sensor was collected for multiple times. After the loading phase was completed, the specimen was
unloaded to 0 kN with the same method.
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Figure 5. Loading and unloading program.

4. RESULTS AND DISCUSSION

4.1. Relationship between Inductance and Stress

The specimens of two batches were tested, and the results were shown in Figure 6(a). At each load level,
the inductance of the sensor was collected for multiple times. The standard deviation of the obtained
inductance was small. The small deviation indicated that the inductance was repeatable and stable.
The specimens, taken from the same batch and tested with the same sensor, had similar inductance-load
curves. Thus, when the sensor was specified, the prestressed steel strands of the same batch had the
same inductance-stress curve. After calibrating one or a few prestressed steel strands, the stress of the
steel strands can be ascertained using the inductance and the inductance-stress curve. Since the two
batches of steel strands were not the same, the physical properties were different, resulting in different
inductance-load curves. As shown in Figure 6(a), specimens, taken from different batches but tested
with the same sensor, had different inductance-load curves. This meant that different batches of steel
strands should be calibrated separately.
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Figure 6. Inductance changed with load: (a) Inductance collected at different load levels; (b)
Normalized inductance-load curves.

As shown in Figure 6(a), different batches of steel strands and different sensor parameters caused
different inductance-load curves. However, the inductance-load relationship of each specimen was
consistent. To compare the inductance-load relationship of each specimen, the inductance-load curves of
the specimens were normalized. The normalized curves were shown in Figure 6(b). During the loading
phase, the inductance increased with the increasing load. During the unloading phase, the inductance
increased first and then decreased with the decreasing load. The normalized inductance-load curves of
different specimens were similar. Therefore, a representative specimen was selected for further analysis.

Besides, at the same load level, the inductance measured during the loading phase differed
with the inductance measured during the unloading phase. Two reasons caused this phenomenon.
At first, the prestressed steel strands were hard steel. According to the stress-strain constitutive
relationship of the hard steel, the stress-strain relationship in the loading phase and the unloading
phase was different. When the specimens were unloaded to 0 kN, residual strain existed. Secondly, the
prestressed steel strands were ferromagnetic materials. According to the magneto-mechanical coupling
theory, steel strands underwent reversible magnetization and irreversible magnetization when tensioned.
The irreversible magnetization of the steel strands still existed after unloading. This irreversible
magnetization caused different changes in permeability during the loading phase and the unloading
phase. In conclusion, the loading phase and the unloading phase should be discussed separately.

4.2. Stress Monitoring during the Loading Phase

To analyze the stress monitoring of prestressed steel strands during the loading and unloading phases,
specimen G300-1-B1-T1 was selected as the representative. The inductance changing with load was
shown in Figure 7.

As shown in Figure 7, the inductance-load curve of the loading phase can be divided into three
stages. In stage 1, the load increased from 0kN to 100 kN. As the magnetic permeability of the specimen
increased with the load, the measured inductance increased accordingly. The rate of the change of
inductance was also increasing. This kind of change was consistent with the magneto-mechanical
coupling theory. In stage 2, the load increased from 100 kN to 170 kN. In this stage, the inductance
increased with the load, but the increasing rate started to decrease. The decrease in the rate was caused
by the strain of the specimen. With the load increased, the sectional area of the specimen decreased
and the inductance of the sensor thus decreased. When the reduction of the inductance caused by the
strain was close to the increase caused by the load, the increasing rate of the inductance decreased. In
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Figure 7. Inductance collected during the loading phase of specimen G300-1-B1-T1.

stage 3, the load increased from 170 kN to 200 kN. At this time, the load was large. The influence of the
strain of the specimen on the inductance exceeded the increase caused by the load. Thus, in stage 3,
the inductance decreased.

As expressed in Equation (6), when ignoring the influence of material strain, there was a linear
relationship between the inductance and the stress. When considered the influence of material strain,
there was a nonlinear relationship between the inductance and the stress, as expressed in Equation (12).
To verify the necessity of considering the influence of material strain, a linear fit and a nonlinear fit
were performed through the least-square method. The fitting results were shown in Figure 8. As shown
in Equation (13), the coefficients of determination of the fitting results were calculated to evaluate the
fitting. In Equation (13), yreal,i is the ith real value of the test index, yfit,i the ith fitted value of the

0.90

0.92

0.94

0.96

0.98

1.00

Linear Fitting

Nonlinear Fitting

C
o
ef

fi
ci

en
t 

o
f 

d
et

er
m

in
at

io
n

Number of Specimens

Figure 8. Coefficient of determination of each specimen obtained by linear fit and nonlinear fit during
the loading phase.



166 Liu et al.

test index, ymean the mean value of the test index, and R2 the coefficients of the determination.

R2 =
∑

(yfit,i − ymean)2∑
(yreal,i − ymean)2

(13)

Ignoring the influence of the material strain, the coefficient of determination of the linear fit was
0.92. The coefficient of determination of the nonlinear fit was 0.95. This result indicated that considering
the influence of the material strain could improve the stress monitoring accuracy during the loading
phase.

As shown in Figure 8, the coefficient of determination of each specimen was calculated through the
linear fit, and the nonlinear fit during the loading phase. The aim was to further analyze the necessity of
considering the influence of material strain. Due to the difference between the specimens and the sensors,
the determination coefficients of the specimens were different. However, the coefficients obtained by
the two methods of each specimen were greater than 0.90. Thus, during the loading phase, the stress
can be accurately determined regardless of whether the influence of material strain was considered. In
addition, the coefficients of nonlinear fit were greater than the coefficients of the linear fit, which meant
considering the material strain improved the accuracy of stress monitoring. Because Equation (6) was
simpler and Equation (12) was more accurate, the equations should be chosen according to engineering
needs.

4.3. Stress Monitoring during the Unloading Phase

During the unloading phase, the change of the inductance, of specimen G300-1-B1-T1, with the load was
shown in Figure 9(a). With the load decreasing, the inductance increased first and then decreased. At
the inflection point, the load was 120 kN. The inductance-load curve was thus divided into two stages.
The load decreased from 200 kN to 120 kN in stage 1 and decreased from 120 kN to 0 kN in stage 2.
In stage 1, with the load decreasing, the sectional area of the specimen increased and the reversible
magnetization of the specimen recovered. When the change in the inductance caused by the strain
exceeded that caused by the magnetization, the inductance increased as the load decreased. In stage 2,
the change in the inductance caused by the strain exceeded that caused by the magnetization, resulting
in a decrease in the inductance.

As shown in Figure 9(a), during the unloading phase, the inductance-load curve had strong
nonlinearity. The coefficient of determination obtained by linear fit was 0.45, which was much smaller
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Figure 9. Analysis of the unloading stage: (a) Inductance collected during the unloading phase of
specimen G300-1-B1-T1; (b) Coefficient of determination of each specimen obtained by linear fit and
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than that obtained by nonlinear fit, which was 0.99. As shown in Figure 9(b), the coefficient of
determination of each specimen was calculated through linear fit and nonlinear fit during the unloading
phase. The linear fit and the nonlinear fit were done by using Equation (6) and Equation (12),
respectively. The coefficients obtained by the linear fit were less than 0.50, but the coefficients obtained
by the nonlinear fit were greater than 0.96. Ignoring the influence of the material strain would cause
a great error in stress monitoring. Therefore, to monitor the stress of the prestressed steel strand, the
influence of material strain should be considered.

In practical engineering, the prestressed concrete structure has a high density and good integrity.
The sensor can be made by winding the coil on the skeleton first, and then pre-buried during the
construction of the structure. The same type of prestressed steel strands used in the same structure
has similar parameters. Thus, the inductance-stress curve of the steel strands can be obtained by
calibration. During the operation of the structure, the inductance measurement device monitors the
inductance of the embedded sensor, and then the stress of the prestressed steel strand is calculated. In
this way, the prestress monitoring of the prestressed concrete structure is realized.

4.4. Error of Stress Monitoring

When the loading and unloading were finished, the load of the specimens was calculated and compared
to the actual load. Before calculated the stress according to Equation (12), a certain specimen of the
same batch should be calibrated to obtain the constants in the equation. Since each test condition had
two specimens, the specimen labeled T1 was taken as the calibration specimen. The change laws of
the inductance with the load during the loading phase and unloading phase were fitted respectively.
After obtaining the equation corresponding to different working conditions, the measured inductance
was used to calculate the load of the specimens. The calculated load and actual load were shown in
Figure 10.
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Figure 10. Calculated load and actual load: (a) Load calculated by the inductance of specimen T1
and the equation obtained from specimen T1; (b) Load calculated by the inductance of specimen T2
and the equation obtained from specimen T1.

As shown in Figure 10, comparing the calculated and actual loads, the calculated load was close
to the actual load. At most load levels, the relative error did not exceed 10%. Due to the acquisition
equipment and environmental factors, the calculated error of specimen labeled T2 was larger than
the error of specimen labeled T1. However, the error of stress monitoring was small, which met the
engineering requirements. Besides, the error of each specimen of the unloading phase was smaller than
the error of the loading phase, which is conducive to monitoring the prestress loss of the steel strand.
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4.5. Influence of Sensor Parameters

To optimize the stress monitoring, the influence of the sensor parameters on the stress monitoring was
analyzed. In the experiment, the inductance collected by the LCR digital bridge was composed of
the true value and measurement error, as shown in Equation (14). In Equation (14), La is the actual
inductance, Le the measurement error, and k a constant. Thus, the inductance increment is expressed
as Equation (15), where ΔLa is the increment of La, and ΔLe is the increment of Le.

L = La + Le =
(

μsAs + μ0A0

l

)
N2 + k

(
μsAs + μ0A0

l

)
N2 (14)

ΔL = ΔLa + ΔLe = ΔLa + kΔLa (15)

Because k related to the collection instrument (LCR digital bridge), for the same instrument, k was
a constant. For a certain collection instrument, the inductance of the sensor controlled the value of the
measurement error. Combining Equation (12) and Equation (15), the error of the calculated stress was
expressed as Equation (16), where σerror is the error of the stress, σcal the calculated stress, and σa the
actual value of the stress. When the test instrument was specified, the error of the stress monitoring
increased with the increase of the turns of the sensor and decreased with the length of the magnetic
path of the sensor.

σerror = σcal − σa =
(
a1(ΔLa + kΔLa)2 + a2(ΔLa + kΔLa) + a3

) − (
a1ΔL2

a + a2ΔLa + a3

)
= a1k

2ΔL2
a + 2kΔLa (16)

Since the sensor parameters related to the error of stress monitoring, analyzing the influence
quantitatively was necessary. For each specimen, the coefficients of determination during the loading
phase and unloading phase were calculated through the nonlinear fit. The average of these two
coefficients represented the accuracy of the stress monitoring of each sensor. As shown in Table 3,
for sensors with the same number of turns, the monitoring accuracy increased with the length of the
magnetic path. For sensors with 200 turns, the length of the magnetic path increased from 23.33 mm to
70.00 mm. The coefficient changed 0.01, which meant the length of the magnetic path had little influence
on the monitoring accuracy. Thus, to improve the monitoring accuracy, the magnetic length of the coil
should be appropriately increased. Because the change of the length of the magnetic length was realized
by changing the number of winding layers, reducing the number of winding layers can increase the length
of the magnetic path. Besides, reducing the winding layers also reduced the difficulty of producing and
installing the sensor.

Table 3. Sensor parameters and coefficients of determination.

Number of turns Length of the magnetic path /mm Coefficient of determination

100 11.67 0.9700
17.5 0.9741
23.33 0.9829

200 23.33 0.9741
35 0.9782
70 0.9798

300 35 0.9602
52.5 0.9657
105 0.9683

For sensors with the same length of magnetic path, the monitoring accuracy decreased with the
increase of the number of turns, which agreed with Equation (14) and Equation (16). To improve
monitoring accuracy, the number of turns should be reduced. Since the sensor inductance was
proportional to the square of the number of turns, a decrease in the number of turns would cause
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the inductance to decrease rapidly. When the inductance was too low, the influence of the environment
was more significant, which affected the monitoring accuracy. Thus, the length of the magnetic path
should be selected reasonably. In the experiment, the best sensor was G200-1. The number of winding
layers was one and the number of turns was 200. In engineering applications, to improve the monitoring
accuracy and reduce the difficulty of installation, the number of turns should be moderate, and the
number of winding layers should be one.

5. CONCLUSION

To monitor the stress of prestressed steel strands, a stress monitoring method based on the
magnetoelastic effect was proposed. The main body of the sensor was a self-induction coil which
provided a weak magnetic field and converted the stress into inductance. The influence of the material
strain is considered to improve monitoring accuracy. Two batches of specimens were tested to verify
the feasibility and accuracy of the monitoring method. The main conclusions were drawn as follows.

(1) Different batches of prestressed steel strands had different magnetic characteristics and thus
different inductance-stress relationships. To perform stress monitoring, different batches of steel
strands should be calibrated separately.

(2) The change law of the inductance with stress was different during the loading and unloading
phases. During the loading stage, whether or not the material strain was considered, the stress can
be accurately monitored. During the unloading stage, the influence of the material strain should
be considered.

(3) Based on the experimental results, the load of each specimen was calculated. The error between
the calculated load and actual load was small, which met the engineering needs.

(4) The influence of sensor parameters on the accuracy of steel strand stress monitoring was evaluated.
To improve the monitoring accuracy and reduce the difficulty of installation, the number of the coil
turns should be moderate, and the number of winding layers should be one.
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