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Waveguide Radiation of the Combined Vibrator-Slot Structures

Sergey L. Berdnik, Victor A. Katrich, Mikhail V. Nesterenko*, and Yuriy M. Penkin

Abstract—A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide
wide wall is solved by a generalized method of induced electro-magneto-motive forces (EMMF).
The slot radiates in a half-space above a perfectly conducting plane where two vertical impedance
monopoles are arbitrarily located. To control electrodynamic characteristics of the radiator, a passive
impedance monopole is placed in the waveguide. The paper is aimed at the study of the electrodynamic
characteristics of waveguide vibrator-slot structures, analogous to the known Clavin element, with two
identical impedance monopoles on both sides of the narrow half-wave slot. The influence of the geometric
structure parameters on the directional characteristic of Clavin type element: relative level of sidelobes
in the E-plane and the RP width differences in the main polarization plane at −3 dB level was analyzed.
It was shown that the directional and energy characteristics of the radiators: radiation and reflection
coefficients, antenna directivity, and gain can be varied within wide limits by changing the electrical
length and/or distributed surface impedance of the vibrators.

1. INTRODUCTION

In the modern practice, slotted structures are used as stand-alone small-sized antennas, elements of
complex antenna arrays, and devices of antenna-feeder tracts [1–3]. To excite slot radiators and control
their electrodynamic characteristics, vibrator-type elements are often used [4]. In combined vibrator-
slot structures, the vibrator elements can have a different configuration and can be located in any
electrodynamic volume coupling through a slot. For example, structures consisting of wire radiators
located over an infinite perfectly conducting plane with a hole radiating into half space over a plane
were considered in [5–10]. Radiators with vibrators located in various waveguide tracts and resonators
were studied in [11–20]. A special place among combined vibrator-slot structures is occupied by Clavin
elements, consisting of narrow radiating slot and two identical passive vibrators (monopoles) located
on both sides of the slot cut in plane screen [21–28]. The Clavin element is characterized by similar
radiation patterns (RPs) in the E- and H-planes. They are used as stand-alone radiators, primary
feed antennas, and also as part of multi-element phased arrays [28]. However, in publications on this
subject by other authors [11–16, 21–25], only perfectly conducting vibrators were considered. New
possibilities for controlling the characteristics of vibrator-slot radiating structures by using monopoles
with distributed surface impedance were proposed in [3, 4, 17–20, 26, 27].

In this paper, the excitation of electromagnetic fields by the combined radiator consisting of a
longitudinal slot cut in a broad wall of the rectangular waveguide and vertical impedance monopoles
is solved by the generalized method of induced EMMF [1, 3, 4, 29]. The dimensions of the impedance
monopoles and their locations in space above the plane are arbitrary. The electrodynamic characteristics
of the combined radiator can also be controlled by a passive impedance monopole located in the
waveguide. The radiation characteristics of vibrator-slot structures similar to the Clavin element are
thoroughly studied.
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2. PROBLEM FORMULATION AND INITIAL EQUATIONS IN THE GENERAL
CASE

Consider a microwave device consisting of a rectangular waveguide section with a longitudinal slot cut
in its wide wall and two asymmetric impedance vibrators (monopoles) located near the slot outside the
waveguide and a monopole located inside the waveguide in the plane {x0y} parallel to its narrow wall
(Fig. 1). The H10-wave propagates in the waveguide with cross-section {a × b} (the region is marked
as Wg) from the direction z = −∞. Parameters of the waveguide filling material are ε1, μ1. The
slot radiates into half-space marked as Hs located above an infinite perfectly conducting plane. The
material parameters of the half-space are ε2, μ2. The lengths and radii of the outside monopoles are
L1, L2 and r1, r2, and outer vibrator is displaced relative to the longitudinal slot axis at xd1 and xd2.
The length and radius of the internal monopole are L4 and r4.

Figure 1. The geometry of the vibrator-slot structure and accepted notations.

Let the slot width and radii of vibrators satisfy the thin radiator approximations: rm
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� 1 (λ1,2 are wavelengths in the corresponding media) and
the electric vibrator currents and equivalent magnetic slot current satisfy the boundary conditions
Jm(±Lm) = 0, J3(±L3) = 0 (−Lm are the end coordinates of the monopole mirror images in the plane
and waveguide bottom). Then the following system of integral equations can be written [29](
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Green functions for the vector potential of corresponding electrodynamic volumes [1, 3, 4]; k = 2π/λ,
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The solution to the equation system (2) can be found by the generalized method of induced EMMF,
using the functions Jm(sm) = J0mfm(sm) and Js,a

3 (s3) = Js,a
03 f s,a

3 (s3) as approximating expressions for
the currents. In the above expressions, J0m and Js,a

03 are current amplitudes; fm(sm) and f s,a
03 (s3) are

predefined current distribution functions, which can be obtained by solving the equations for currents
in a stand-alone vibrator and slot by the averaging method [1, 4]. The following expressions for the
distribution function can be obtained:
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characteristics of this vibrator-slot structure can be easily obtained.

3. GENERAL ANALYSIS OF THE CLAVIN ELEMENT
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kz sin kLsl

(
1 + e−2kzLsl

)
− k cos kLsl

(
1 − e−2kzLsl

)]

−k sin kLsl

k2
z + k2

g

[
kz sin kgLsl

(
1 + e−2kzLsl

)
− kg cos kgLsl

(
1 − e−2kzLsl

)]
,

F a
k = 2 sin kgLsl

cos kLsl sin kgLsl − (kg/k) sin kLsl cos kgLsl

1 − (kg/k)2
− sin kLsl

sin 2kgLsl − 2kgLsl

2(kg/k)
,

ZV =
4π
ab

∞∑
m=1

∞∑
n=0

εn

(
k2 − k2

y

)
k̃2

V

kkz

(
k̃2

V − k2
y

)2 e−kzrV sin2 kxx0V

[
sin k̃V LV cos kyLV −

(
k̃V /ky

)
cos k̃LV sin kyLV

]2
,

ZWg =
4π
ab

∞∑
m=1

∞∑
n=0

εnkxk̃V

kkz

(
k̃2

V − k2
y

)ekzLsl sin kxx0V cos kxx0sl

×F s
e

[
sin k̃V LV cos kyLV −

(
k̃V /ky

)
cos k̃LV sin kyLV

]
,

H
s(a)
sl =

1(−i)
k

H0 cos
πx0sl

a
F

s(a)
k ,

EV = H0
k

kg k̃V

sin
πx0V

a
f
(
k̃V LV

)
, FV = sin k̃V LV − k̃V LV cos k̃V LV .

Then, the final expressions for the currents based on Eq. (3) can be written as:

Jv(sv) = − iω

2k2
H0Jvfv(sv), JV (sV ) = − iω

2k2
H0JV fV (sV ),

Jsl(ssl) = − iω

2k2
H0 [Js

slf
s
sl(ssl) + iJa

slf
a
sl(ssl)] ,

(8)

where

Jv = − ZcFsl,V

Z̃slZ̃v + Z2
c

, JV =
k2 sin(πx0V /a)FV

kgk̃V ZΣ
V

+
Z̃vZWgFsl,V

(Z̃slZ̃v + Z2
c )ZΣ

V

,

Js
sl =

Z̃vFsl,V

Z̃slZ̃v + Z2
c

, Ja
sl = − cos

πx0sl

a

F a
k

ZaΣ
sl

, Fsl,V = cos
πx0sl

a
F s

k − k2

kg k̃V

sin
πx0V

a
FV .
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Figure 2. Coordinate system for determining the electric field of the vibrator-slot structure.

These expressions allow us to define the electrodynamic characteristics of the Clavin element. The
field reflection and transmission coefficients, S11 and S12, in the waveguide and the power radiation
coefficient |SΣ|2 can be written in the form:

S11 = − 2π
iabkgk

[
k2

c

k2
cos

πx0sl

a
(Js

slF
s
k + Ja

slF
a
k ) − 2kg

k̃V

sin
πx0V

a
JV FV

]
e2ikgz, (9)

S12 = 1 − 2π
iabkgk

[
k2

c

k2
cos

πx0sl

a
(Js

slF
s
k − Ja

slF
a
k ) +

2kg

k̃V

sin
πx0V

a
JV FV

]
, (10)

|SΣ|2 = 1 − |S11|2 − |S12|2. (11)
Formulas (8)–(11) are obtained by assuming that H0 = 1, and the vibrators are losses. In the

spherical coordinate system shown in Fig. 2, the far-zone electric field of the Clavin element is defined
by the expression

�E(R, θ, ϕ) =
ik2

ω

e−ikR

R

[
�θ0 sin θ

(
Ẽ1e

−ikxd1 sin θ sinϕ+Ẽ2e
ikxd2 sin θ sinϕ

)
+
(

�ϕ0 cos θ cos ϕ + �θ0 sin ϕ
)

2Ẽ3

]
,

(12)

where �θ0 and �ϕ0 are unit vectors, Ẽ1 = J01fC1, Ẽ2 = J02fC2, Ẽ3 = Js
03f

s
C3 + Ja

03f
a
C3;

fC1 =
∫ L1

−L1

f1(z)eikz cos θdz, fC2 =
∫ L2

−L2

f2(z)eikz cos θdz, f
s(a)
C3 =

∫ L3

−L3

f
s(a)
3 (x)eikx sin θ cos ϕdx.

Then, in accordance with formulas (3), we obtain:

fCm =
2

k̃2
m − (k cos θ)2

[
k̃m cos (kLm cos θ) sin

(
k̃mLm

)
− k sin (kLm cos θ) cos

(
k̃mLm

)
cos θ

]

−2Lm cos
(
k̃mLm

) sin (kLm cos θ)
kLm cos θ

, m = 1, 2;

f s
C3 =

2cos(kgL3)
k − k(sin θ cos ϕ)2

[cos(kL3 sin θ cos ϕ) sin(kL3) − sin(kL3 sin θ cos ϕ) cos(kL3) sin θ cos ϕ]

− 2 cos(kL3)
k2

g − (k sin θ cos ϕ)2
[kg cos(kL3 sin θ cos ϕ) sin(kgL3)

−k sin(kL3 sin θ cos ϕ) cos(kgL3) sin θ cos ϕ] ,

fa
C3 =

2i sin(kgL3)
k − k(sin θ cos ϕ)2

[− sin(kL3 sin θ cos ϕ) cos(kL3) + cos(kL3 sin θ cos ϕ) sin(kL3) sin θ cos ϕ]

− 2i sin(kL3)
k2

g − (k sin θ cos ϕ)2
[−kg sin(kL3 sin θ cos ϕ) cos(kgL3)

+k cos(kL3 sin θ cos ϕ) sin(kgL3) sin θ cos ϕ] .
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Figure 3. The geometry of the problem and accepted notations.

4. VIBRATOR-SLOT RADIATOR BASED ON A HOLLOW RECTANGULAR
WAVEGUIDE

If the combined radiator does not include the internal vibrator (Fig. 3), the SLAE (4) can be simplified to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J01Z
Σ
11 + J02Z12 + Js

03Z13 = 0,
J02Z

Σ
11 + J01Z21 + Js

03Z23 = 0,

Js
03Z

sΣ
33 + J01Z31 + J02Z32 = − iω

2k
Hs

3 ,

Ja
03Z

aΣ
33 = − iω

2k
Ha

3 ,

(13)

where ZΣ
11 = Z11 + F Z̄

1 , ZΣ
22 = Z22 + F Z̄

2 , Z
s(a)Σ
33 = Z

s(a)Wg
33 + Z

s(a)Hs
33 .

Solution of equations system (13) can be written as

J01 =
iω

2k
Hs

3

ZΣ
22Z13 − Z23Z12

ZsΣ
33 Z̃12 + Z31Z̃22 + Z32Z̃11

, J02 =
iω

2k
Hs

3

ZΣ
11Z23 − Z13Z21

ZsΣ
33 Z̃12 + Z31Z̃22 + Z32Z̃11

, (14a)

Js
03 = − iω

2k
Hs

3

Z̃12

ZsΣ
33 Z̃12 + Z31Z̃22 + Z32Z̃11

, Ja
03 = − iω

2k
Hs

3

1
ZaΣ

33

. (14b)

Since H
s(a)
3 = 1(−i)

k H0 cos πx0
a F

s(a)
k , the final expressions for the currents can be presented as:

J1(s1) =
iω

2k2
H0J1f1(s1), J2(s2) =

iω

2k2
H0J2f2(s2), (15a)

J3(s3) = − iω

2k2
H0 [Js

3f s
3 (s3) + iJa

3 fa
3 (s3)] , (15b)

where

J1 = cos
πx0

a
F s

k

ZΣ
22Z13 − Z23Z12

ZsΣ
33 Z̃12 + Z31Z̃22 + Z32Z̃11

, J2 = cos
πx0

a
F s

k

ZΣ
11Z23 − Z13Z21

ZsΣ
33 Z̃12 + Z31Z̃22 + Z32Z̃11

, (16a)

Js
3 = cos

πx0

a
F s

k

Z̃12

ZsΣ
33 Z̃12 + Z31Z̃22 + Z32Z̃11

, Ja
3 = − cos

πx0

a
F a

k

1
ZaΣ

33

, (16b)

Z̃12 = ZΣ
11Z

Σ
22 − Z12Z21, Z̃11 = Z13Z21 − ZΣ

11Z23, Z̃22 = Z23Z12 − ZΣ
22Z13.

After substitution the amplitude H0 = 1 in formulas (15a) and (15b), the radiation field is determined
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by formula (12). The energy characteristics of this structure can be obtained in the form:

S11 = − 2πk2
c

iabkgk3
cos

πx0

a
(Js

3F s
k + Ja

3 F a
k ) e2ikgz, (17)

S12 = 1 − 2πk2
c

iabkgk3
cos

πx0

a
(Js

3F s
k − Ja

3 F a
k ) , (18)

|SΣ|2 = 1 − |S11|2 − |S12|2, (19)
The components of the Green functions for this case can be written in the form:

GHsE
s1(2)

(
s1(2), s

′
1(2)

)
=

e
−ik

√(
s1(2)−s′

1(2)

)2
+r2

1(2)√(
s1(2) − s′1(2)

)2
+ r2

1(2)

,

GHsE
s1(2)

(
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′
2(1)

)
=

e
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)2
+(xd1+xd2)

2

√(
s1(2) − s′2(1)

)2
+ (xd1 + xd2)

2

,

GHsM
s3

(
s3, s

′
3

)
= 2

e−ik
√

(s3−s′3)
2
+(de/4)2√

(s3 − s′3)
2 + (de/4)2

,

G̃HsE
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(
s3, s

′
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∂

∂xHs
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′
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(
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s3
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(
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)
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(
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Then, the corresponding coefficients in formulas (14) and (16) are:
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=
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0
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(
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(20)
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where Z̄S1(2)(s1(2)) = R̄S1(2) + iX̄S1(2)φ1(2)(s1(2)), φ1(2)(s1(2)) are predefined functions,

Z1(2)3 = 2ixd1(2)

∫ L1(2)

−L1(2)

f1(2)

(
s1(2)

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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−L3

f s
3
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⎢⎢⎢⎢⎣

e
−ik

√
s2
1(2)

+s
′2
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√

s2
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)
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⎥⎥⎥⎥⎦ds′3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ds1(2),

Z31(2) = ixd1(2)

∫ L3

−L3

f3(s3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∫ L1(2)
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(
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)
⎡
⎢⎢⎢⎢⎣

e
−ik

√
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×
(
ik
√
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)

⎤
⎥⎥⎥⎥⎦ ds′1(2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ds3,

The expressions Z
s(a)Σ
33 = Z

s(a)Wg
33 + Z

s(a)Hs
33 and F

s(a)
k analogues to that defined in Section 3 can be

used after replacing index sl by 33.
Thus, the equation system for the Clavin element on the waveguide can be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
J0vZ

Σ
v − J0vZvv + Js

0slZc = 0,

Js
0slZ

sΣ
sl − J0vZc = − iω

2k
Hs

sl,

Ja
0slZ

aΣ
sl = − iω

2k
Ha

sl.

(21)

The complex current amplitudes obtained by solving the equation system (21) are presented as:

J0v1 = − iω

2k
Hs

sl

Zc

ZsΣ
sl (ZΣ

v − Zvv) − Z2
c

, J0v2 = −J0v1,

Js
0sl = − iω

2k
Hs

sl

ZΣ
v − Zvv

ZsΣ
sl (ZΣ

v − Zvv) − Z2
c

, Ja
0sl = − iω

2k
Ha

sl

1
ZaΣ

sl

.

(22)

The current distribution along the vibrators and slot can be determined by the following expressions:

Jv(s) =
iω

2k2
H0 cos

πx0

a
Jvfv(s), Jsl(s) = − iω

2k2
H0 cos

πx0

a
[Js

slf
s
sl(s) + iJa

slf
a
sl(s)] , (23)

where Jv = ZcF s
k

ZsΣ
sl (ZΣ

v +Zvv)+Z2
c
, Js

sl = (ZΣ
v +Zvv)F s

k

ZsΣ
sl (ZΣ

v +Zvv)+Z2
c
, Ja

sl = − F a
k

ZaΣ
sl

.
All coefficients defined in Section 3 and the energy characteristics for this structure are defined by

expressions (17)–(19) after replacing index 33 by index sl.

5. NUMERICAL AND EXPERIMENTAL RESULTS

The combined Clavin radiator consists of two identical perfectly conducting monopoles located on the
plane screen symmetrically to the slot axis [21]. Clavin et al. have shown experimentally that RPs in
the H-plane (ϕ = 0◦) and E-planes (ϕ = 90◦) are approximately identical if the monopoles with length
Lv = 0.375λ are placed symmetrical to the slot axis at distances xd = 0.086λ. It is quite clear that
according to expression (12), the RP in the H-plane has only the Eϕ component, which coincides with
the RP of stand-along slot since the monopole currents with equal amplitudes are in anti-phase relative
to each other. The RP in the plane ϕ = 0◦ for the configuration with radiators placed over the infinite
screen is shown in Fig. 4(a) and marked by a solid curve. According to Eq. (12), the RP in the E-plane
has only the Eθ component, and its shape can be made closer to the H-plane RP shape by varying the
vibrator currents. The RP for this case is shown in Fig. 4(a) by the dashed curve 1. Some improvement
in the coincidence of the RP of the radiator in two planes in comparison with that observed in Fig. 4(a)
in [21] was achieved due to the use of L-shaped vibrators.

The external problem solution by using trigonometric approximations for the slot and vibrator
currents [23] have allowed to obtain the radiator parameters Lv = 0.365λ, xd = 0.065λ which are a little
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Figure 4. Characteristics of the Clavin radiator: (a) RPs obtained for various Lv and xd; (b) the level
of lateral radiation δ and difference between the RP widths in E- and H-plane Δθ as functions of Lv/λ
and xd/λ.

bit different from that obtained by Clavin et al. [21, 22]. This was achieved due to the lower radiation
level along the plane than that in [21]. The simulation results have also shown that other pairs of
parameters Lv/λ and xd/λ can be selected for which RPs differ in shapes, but have the same level of
lateral radiation. This can be seen from curves 2 and 5 in Fig. 4(a). In this regard, these results cannot
claim to be complete, and further studies are required.

The influence of parameters Lv/λ and 2xd/λ on the directivity characteristics of the Clavin type
radiators is studied by computing the difference Δθ between the RP widths in E- and H-planes at
−3 dB level and the level of lateral radiation δ, i.e., the maximum of E-plane RP.

The plots of δ and Δθ as functions of xd/λ and Lv/λ are shown Fig. 4(b) where δ and Δθ are
represented by the color scale level and level curves. The simulation results presented in Fig. 4(b) make
it possible to conclude that there exist two options to obtain RPs with almost equal RP widths in the
E and H planes. These options presented in Fig. 4(a) by curves 2 and 3 allow us to obtain RPs with a
minimum level of side lobes equal to −20 dB (Lv = 0.3125λ, xd = 0.086λ, curve 2) or with a low level
of side radiation δ = −31 dB (Lv = 0.3λ, xd = 0.086λ, curve 3). Parameters Lv and xd for the curves
in Fig. 4(a) are marked in Fig. 4(b) by circles.

The energy characteristics of radiator were obtained with following parameters: λ = 32 mm,
a × b = 23 × 10 mm2, h = 1 mm, 2Ls = 16 mm (2Ls = 0.5λ), d = 1.5 mm, x0 = 2.5 mm, r = 0.17 mm.
Since the ratios 2rv/Lv and [d/(2Ls)] do not exceed 0.1, the thin wire and narrow slot approximations
were used during simulation. The energy characteristics of the combined Clavin radiators, whose RPs
are presented in Fig. 4(a), are summarized in Table 1.

Table 1. The energy characteristics of combine Clavin radiators.

Geometric parameters |S11| |S12| |SΣ|2 D

Lv = 0.375λ, xd = 0.086λ 0.251 0.854 0.157 6.366
Lv = 0.3125λ, xd = 0.086λ 0.207 0.074 7.485

Lv = 0.3λ, xd = 0.086λ 0.184 0.057 7.854

The simulation results are presented in Fig. 5, where the radiation and reflection coefficients,
directivity factor (D), and the gain (G) of the combined radiator are shown as the function of monopole
electric length and the distance between the slot and monopole. These plots allow us to obtain the
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required energy characteristics and directivity factor by selecting the geometric parameters of the
radiator. The characteristic pairs of parameters are marked in Fig. 4(b) by circles.

It turned out that the lowest level of lateral radiation (δ = −31 dB) for the radiator with the
geometric parameters (Lv = 0.3λ, xd = 0.086λ) can be obtained if radiation coefficient is rather low.
This can be explained by the phasing conditions for the radiation fields of the slot and vibrators. Really,
for full compensation of the radiation field of the slot along the plane in the far zone, a pair of vibrators
should induce an equivalent electric field in the geometric center of the slot, equal in amplitude to
the field of the slot and anti-phased one. Consequently, the compensation of intrinsic slot field can
significantly reduce the radiating capacity of the slot. As from Fig. 5(b), the |SΣ|2 level increases
if the distance between the vibrators is increased. This inevitable violates the phase relations and
reduces the level of lateral radiation. As an example, consider the RP of the combined radiator with
geometric parameters Lv = 0.3λ, xd = 0.131λ, presented in Fig. 4(a) (curve 4). Comparing curves 1
and 4 shows that the radiation coefficient increases up to |SΣ|2 = 0.184 while the difference between
the RPs’ widths decreases (Δθ = −5◦). If the distance between the vibrators is further increased
under conditions that δ = −20 dB, the radiation and reflection coefficients become relatively large,
|SΣ|2 = 0.403, |S11| = 0.525. The directivity factor also increases (D = 8.273), and Δθ = −15◦ (curve 5
in Fig. 4(a)).

The analysis of the plots in Fig. 5 shows that the energy characteristics of the combined radiator can
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Figure 5. The energy characteristics of the combined radiator as functions of the electric monopole
length and distance between the slot and vibrator: (a) |S11|, (b) |SΣ|2, (c) D, and (d) G.
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be controlled by varying the electric length of the vibrators. As known [4], the vibrator electric length
can be varied by coating its surface with constant imaginary impedance. In this case, it can be assumed
that the RP shape will not be substantially varied, since the RP of monopoles with electric lengths in
the range 0 < Lv/λ < 0.3 is similar to that of a perfectly conducting radiator. This assumption for the
vibrator with constant impedance distribution can be verified for one a priori chosen impedance value.

The numerical results have shown that monopoles with inductive surface impedance make it possible
to obtain specified radiator characteristics with shorter monopoles. For example, the electric length of
the monopole with constant impedance Z̄S = 0.1i can be reduced relative to their physical length by
about 30%. The characteristics of the Clavin radiators are presented in Fig. 6 and Fig. 7. As can be
seen, the parameter Δθ minimum and predefined level of lateral radiation δ can be obtained by varying
the monopole length and distance between the slot and vibrators. The energy characteristic |S11|, |SΣ|2,
Da, and RP parameters δ and Δθ for the curves in Fig. 6(a) are presented in Table 2.
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Figure 6. Characteristics of the Clavin radiator with impedance monopoles (Z̄S = 0.1i): (a) RP; (b)
the level of lateral radiation δ and difference between the RP widths in E- and H-planes Δθ as functions
of Lv/λ and xd/la.

Table 2. The RP parameters and energy characteristics of the Clavin radiator with impedance
monopoles.

δ, dB Δθ, |S11| |SΣ|2 D Curve in Fig. 6(a), No.
−20 −7 0.17 0.05 7.74 1
−32.5 −11.3 0.15 0.04 8.1 2

As can be seen from Fig. 7, when the distance between the vibrators is increased, and the length
of the monopoles is decreased; the radiation coefficient D and, hence, the gain G are increased. At the
same time, as can be seen from curve 3 in Fig. 6(a), parameter Δθ increases to Δθ = −23.7◦. Thus,
the reflection and radiation coefficients can be varied over a wide range with the low lateral radiation
level by fitting the length of the vibrators, distance between them, and/or their surface impedance.

It is quite clear that phase relationships for the fields in the combined waveguide radiator depend
not only upon the vibrator geometry, but also upon the slot length, since when it deviates from resonant
dimension, the slot intrinsic field becomes asymmetric due to longitudinal slot excitation. The simulation
results have shown that the radiation coefficient can be increased by slight increasing the slot length
relative to 0.5λ. The energy characteristics and directivity of the combine radiator with parameters:
λ = 32 mm, a × b = 23 × 10 mm2, h = 1mm, d = 1 mm, x0 = a/4, r = 0.17 mm, xd = 0.086λ for
perfectly conducting and impedance (Z̄S = 0.1i) vibrators placed on the waveguide. The RPs and
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Figure 7. Characteristic of the Clavin radiator located on the waveguide with impedance vibrator
(Z̄S = 0.1i): (a) reflection coefficient |S11|, (b) radiation coefficient |SΣ|2, (c) directivity D, (d) gain G
as function of Lv/λ and xd/λ.

energy characteristics as function of the electric length of the slot and vibrators plotted by using the
above parameters are shown in Figs. 8–11. Thus, the RPs of equal width in the E- and H-planes with
the lateral radiation level δ = −20 dB can be obtained if the perfectly conducting monopoles are used
with parameters Lv = 0.3λ, 2Ls = 0.57λ (curve 1 in Fig. 11(a)). The RP closest in width (Δθ = −3.4◦)
can be obtained if the impedance monopoles with parameters Lv = 0.22λ, 2Ls = 0.57λ are used (curve 1
in Fig. 11(b)). The radiation coefficients obtained with these parameters are equal to |SΣ|2 = 0.493,
|SΣ|2 = 0.497. The RPs with the lowest levels of lateral radiation, maximal radiation coefficient |SΣ|2,
and the highest gain are presented in curve 2 and curve 3 of Fig. 11. The parameters Lv/λ and 2Ls/λ
used for simulation are marked in Fig. 8 by circles.

All the curves presented above were plotted by using the parameters normalized at free space
wavelength. This ensures simple evaluation of the radiator characteristics at the operating wavelength.
The reliability of the proposed mathematical model for the combine radiator was confirmed by
comparison with experimental data and the results found in literature. For example, the plots of
the simulated and experimental reflection coefficients as functions of relative wavelength λ/λ0 (λ0 is
wavelength in free space) for the single slot are presented in Fig. 12.
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Figure 10. Energy characteristics of the combined radiator with impedance monopoles (Z̄S = 0.1i) as
function of Lv/λ and xd/λ: (a) reflection coefficient |S11|, (b) radiation coefficient |SΣ|2, (c) directivity
D, (d) gain G.

6. NUMERICAL RESULTS FOR THE COMBINED RADIATOR WITH THE
TUNING MONOPOLE IN THE WAVEGUIDE

The energy coefficients of the Clavin radiator placed near the longitudinal slot cut in the broad wall of
rectangular waveguide with the vibrator inside the waveguide are plotted as a function of the monopole
parameters x0v, LV , presented in Fig. 13. The tuning vibrator is located in the plane {x0y} inside the
waveguide parallel to its narrow walls as shown in Fig. 1. The parameters of the radiator are as follows:
a × b = 23 × 10 mm2, h = 1 mm, λ = 32 mm, 2Ls = 16 mm, d = 1.5 mm, x0 = 2.5 mm, r = 0.17 mm,
Lv = 0.3125λ mm, xd = 0.086λ mm. The radius and surface impedance of the monopole located in the
waveguide are rV = 0.25 mm and Z̄SV = 0.

As shown in the previous section, the optimal RP with equal width in the E- and H-planes can be
formed by the radiating structure without tuning vibrator at λ = 32 mm. This structure is characterized
by the low radiation coefficient, |SΣ|2 = 0.074, and sufficiently high reflection coefficient. If the monopole
is placed inside the waveguide, this relationship between the energy characteristic can be changed by
fitting the monopole length LV and its displacement x0v relative to the waveguide wall.
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The simulation results have shown that the passive monopole weakly influences the slot, since the
monopole is placed directly in the region under the slot aperture. This effect can be explained by the
general electrodynamic property of thin vibrators, i.e., by the absence of radiation (scattering) in the
direction of their longitudinal axes. Furthermore, the longer the monopole is, the smaller its influence is
on the slot. As can be seen from Fig. 13, if the monopole length is LV = 8.5 mm, and the displacement
x0v varies in the range 1.75mm ≤ x0v ≤ 3.25mm, the transmission coefficient |S12| decreases at about
5%. However, the internal monopole improves the radiator matching with the waveguide by almost 10
times. This effect is important for using combined radiators in multi-element linear antenna arrays with
dimensions of the order of hundreds λ. Such an array, for example, can be used on spacecrafts.

The spatial separation of the slot and the monopole inside the waveguide can significantly increase
the radiation coefficient, while the directional characteristics of the combined radiator are not varied.
For example, if the monopole with parameters LV = 7.2 mm, x0v = 17.5 mm is used, the radiation
coefficient increases up to |SΣ|2 = 0.4 (Fig. 13). Thus, the additional inhomogeneity in the waveguide
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in the form of the monopole increases the reflection coefficient relative to the stand-along resonant slot
to |S11| = 0.55.

7. CONCLUSION

In this article, the mathematical model of a combined waveguide structure with the Clavin type radiator
is constructed based on the solution of the diffraction problem in a strict formulation by the generalized
method of induced EMMF. In contrast to the publications of other authors known in the literature,
vibrator elements in the form of impedance monopoles are considered for the first time. The influence
of the vibrator lengths and the distance between the vibrators on the directional characteristics of the
combined radiator were analyzed to obtain the optimal level of lateral radiation in the E-plane and the
difference in the RP widths in E- and H-planes at the level of −3 dB. It was shown that the directivity
and energy characteristics of the combined radiator: the RP form, radiation and reflection coefficients,
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directivity factor and gain can be controlled in a wide range by varying the electric vibrator length,
distance between the vibrators, and their surface reactive impedances. It was shown that the combined
radiators with optimal characteristics can be realized by using shorter vibrators with inductive surface
impedance than perfectly conducting vibrator. It was found that the slot radiation coefficient can be
increased by increasing the slot length by 15–20% relative to its resonance length, while the RPs in the
E and H planes do not vary. The simulation results have confirmed the possibility to effectively control
the energy characteristics of the combined radiator by using the tuning monopole in the waveguide.
Since the multi-parameter resonant tuning of the radiator is difficult to achieve experimentally, this is
a separate problem requiring further studies. The results obtained can be useful in the design of stand-
alone waveguide radiator and multi-element waveguide arrays, with combined radiators based on the
Clavin elements, including devices with non-mechanical controlling the electrodynamic characteristics.
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