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Abstract—In this paper, we discuss the spectral property of radiation of an electron moving in a bi-
period harmonic undulator field with a phase between the primary undulator field and the harmonic
field component. We derive the expression for the photons per second per mrad2 per 0.1% BW of the
radiation. A small signal gain analysis also is discussed highlighting this feature of the radiation. A
bi-period index parameter, i.e., Λ is introduced in the calculation. According to the value of the index
parameter, the scheme can operate as one period or bi-period undulator. It is shown that when Λ = π,
the device operates at the fundamental and the third harmonic. However, when Λ = π/2, it is possible
to eliminate the third harmonic.

1. INTRODUCTION

Insertion devices are the key components of the synchrotron radiation and free electron laser sources.
There are interests and technology upgrades of undulator technology for synchrotron radiation source
(SRS) and free electron laser (FEL) for producing tunable electromagnetic radiation over the desired
electromagnetic spectrum [1–12]. In the synchrotron radiation source, the relativistic electron beam
propagates in the magnetic undulator field and emits spontaneous radiation. In the free electron laser
scheme, the relativistic electron beam exchanges the kinetic energy to a co-propagating radiation field
at the resonant frequency. Most insertion devices are undulators designed either as pure permanent
magnet or hybrid permanent magnet according to Halbach field configuration. The modern synchrotron
and free electron laser facilities have undertaken key technology upgrades for the undulator to provide
superior spectral and gain qualities enabling experiments in a variety of disciplines and applications.
The resonant frequency of the synchrotron radiation source or the free electron laser is tuned via electron
beam energy or the undulator period or the undulator magnetic field strength. The energy tuning is
associated with the accelerator technology and the complicated difficult task of focusing and trajectory
issue in the undulator magnets. The energy tunability in free electron lasers is supplemented by two-
stream schemes. An alternative way of wavelength is tuning the variation of the field amplitude via gap
variations [13]. The wavelength tuning via variation of the field amplitude is an issue in long undulators
using x ray free electron laser. The field amplitude in the long undulator of the x ray free electron
laser requires precision better than 0.1% in different undulator sections of the beam line. Adjustment
of the gaps of all undulator sections with such high precision is a technological issue. The synchrotron
radiation source and free electron laser performance have been upgraded by the use of a step tapered
undulator. The scheme of the step tapered undulator alters the resonance condition halfway through
the undulator [14–16]. A step tapered undulator provides two independently tunable resonances, and a
two-color operation is feasible similar to two-stream free electron laser or two-stream electron cyclotron
resonance maser [17–21]. A third possibility exists in the changing mechanism of the undulator periods.
The period length of the installed operational undulator provides an easy technological tool to the
tuning of radiation wavelength without interrupting the accelerator and the gap precision [22–30].
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For a planar type undulator with an ideal sinusoidal field profile, the electron oscillates on axis
at the fundamental and its odd harmonics. Higher harmonic operation is often aimed to extend the
wavelength tuning towards short wavelength with lower beam energy. Some methods such as putting
high permeability shims along the undulator length have been adopted and are used. It has been
demonstrated that harmonic undulators can be exploited to regulate the emission of certain selected
harmonics and hence contribute to the development of the efficient devices with high extraction and
narrow spectrum [31–38].

In this paper we investigate the undulator radiation with a bi-period harmonic undulator in
Section 2. A small signal gain is given in Section 3. The results and discussion are discussed in Section 4.
In our scheme, we assume that the third harmonic radiation is built by putting high permeability shims
along the length of the undulator. We consider a phase between the two field components of the
harmonic undulator. It is shown in the calculation that the phase between the two field components
introduces a bi-period index parameter in the undulator radiation and small signal gain expression.
Accordingly when the bi-period harmonic undulator index parameter equals an integral multiple of π,
the device operates as a bi-period device, i.e., at the fundamental and third harmonic. However when
the parameter equals π/2, it is possible to eliminate the third harmonic.

2. BI-PERIOD HARMONIC UNDULATOR RADIATION

We consider the on axis magnetic field of the bi-period harmonic undulator which consists of the primary
field and its third harmonic field component. Accordingly, we represent the magnetic field as,

�B = [0, {B1 sin(kuz) +B3 sin(3kuz + ϕ)} ŷ, 0] (1)

where ku = 2π/λu, λu is the undulator period. B1 and B3 are the two field amplitudes. ϕ is the phase
associated with the third harmonic magnetic field. The velocity and trajectory can be found from the
Lorentz force equation,

βx = −K
γ

[cos (kuz) + δ3 cos (3kuz + ϕ)] + θx (2)

where K = eB1/m0cku is an undulator parameter and δ3 = B3/3B1. In Eq. (3), we assume imperfect
trajectory with angular incidence as θx = βx (0) /βz (0) . From the energy conservation, we get the
longitudinal electron velocity as,

βz = β∗ − K2

4γ2

[
cos 2ωut+ δ23 cos 2 (3ωut+ ϕ)

]
+
Kθx
γ

[cosωut+ δ3 cos(3ωut+ ϕ)]

β∗ = 1 − 1
2γ2

{
1 +

K2

2
(
1 + δ23

)
+ γ2θ2

x

}
(3)

A further integration gives the electron trajectories as

x = − cK

γωu

[
sin (ωut) +

δ3
3
{sin (3ωut+ ϕ) − sinϕ}

]

z = β∗ct− cK2

8γ2ωu
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δ23
3
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]

+
cθxK
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3
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]
(4)

The brightness is the energy per unit solid angle per unit angular frequency is evaluated from the
Lienard-Wiechert potential.
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where n̂ is a unit vector determining the direction of observation and ω is the emission frequency. e is
the electronic charge. �β is the normalized velocity. c is the velocity of light. The integration is carried
out over the interaction length. The triple vector product in Eq. (5) is simplified to

{n̂× (n̂× �β)}x =
K

γ
[cos (kuz) + δ3 cos (3kuz + ϕ)] − θx (6)

The exponential term in Eq. (5) reads

exp
[
iω
(
t− z

c

)]
=
∑
m,n

Jm (ξ1, ξ2)Jn (ξ3a, ξ3b) exp [i (ξ3a sinϕ+ ξ3b sin 2ϕ− nϕ)] exp (iνt) (7)

where the detuning parameter υ is defined as,

ν = ω∗
u

[
ω

2γ2ω∗
u

(
1 +

K2
(
1 + δ23

)
2

+ γ2θ2
x

)
− ω∗

u

]
, ω∗

u = mωu + n(3ωu) (8)

where Jm (ξ1, ξ2) are Jn (ξ3a, ξ3b) the Generalized Bessel Functions (GBF). The arguments of the GBFs
are

ξ1 =
ωθxK

γωu
, ξ2 = − ωK2

8γ2ωu

ξ3a =
ωθxK1

γωu

δ3
3
, ξ3b = − ωK2

8γ2ωu

δ23
3

Substituting n̂ × (n̂ × �β) and phase term in the brightness expression in Eq.? (5) and integrating over
the limit 0–T where T = Nuλu

cβz
, Nu is the number of undulator periods, we get

d2I

dωdΩ
=

e2ω2T 2

64π3ε0cγ2
JJ2

mn cos2 Λ
sin2(ν/2)
(ν/2)2

(9)

where Λ = ξ3a sinϕ + ξ3b sin 2ϕ − nϕ and the coupling constant JJmn in Eq. (9) are given in terms of
generalized Bessel functions (GBF) as

JJmn = K [{Jm+1 (ξ1, ξ2) + Jm−1 (ξ1, ξ2)} Jn (ξ3a, ξ3b)
+δ3 {Jn+1 (ξ3a, ξ3b) + Jn−1 (ξ3a, ξ3b)}Jm (ξ1, ξ2)] − 2γθxJm (ξ1, ξ2)Jn (ξ3a, ξ3b) (10)

The radiation frequency is obtained at the resonance condition i.e., υ = 0 given by

ω =
2γ2 (ω∗

u)

1 +
K2(1 + δ23)

2
+ γ2θ2

x

(11)

where m and n are the harmonic integers of radiations at ωu and 3ωu frequencies, respectively.
Substituting the value of ω from Eq. (11) in Eq. (9) and simplifying, we get the following equation

d2I

dωdΩ
=
e2γ2N2

u (ω∗
u)

2

4πε0cω2
u

Fmn(K) cos2 Λ
sin2(ν/2)
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The angular energy distribution function is defined as,

Fmn(K) =
m2JJ2

mn(
1 +

K2
(
1 + δ23

)
2

+ γ2θ2
x

)2 (13)

The energy emitted per electron per pass can readily be converted into an on axis angular power density
by multiplying the number of electrons per second (Ib/e, where Ib is the beam current). Eq. (12) is
converted to the number of photons per second, and the result can be expressed in terms of relative
bandwidth dω/ω.
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In units of photons per second per mrad2 per 0.1% bandwidth, we get

dṄ

dΩ
= 1.74 × 1014N

2
uE

2Ib (ω∗
u)

2

ω2
u

Fmn(K) cos2 Λ
sin2(ν/2)
(ν/2)2

(15)

3. SMALL SIGNAL FREE ELECTRON LASER GAIN

Now we calculate the small signal gain of a free electron laser with a bi-period harmonic undulator. Let
us consider a radiation field as

�Ex(z, t) = −�
xE0 cos(kz − ωt+ ψ0) (16)

where ψ0 is the phase of the electron with the radiation field. The change in energy of the electron is
given by

dW

dt
= −ec�υ · �E, W = γmec

2 (17)

Eq. (3) and Eq. (16) are used to solve Eq. (18), and we obtain

dW
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=

ecKE0

2γ
[{

cos
(
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)
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+δ3
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)
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)}]− eE0θx cos (kz − ωt+ ψ0) (18)

where ψ± = (k ± ku ± 3ku)z ± ϕ− ωt+ ψ0. With the substitution cos x = Re(eix)
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= ecE0

K
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Eq. (20) is simplified after averaging over an undulator to find

dW

dz
=
ecE0K̃

2γ
cos(Λ) cosψ (20)

where

K̃ = K (a0 + δ3a1) − 2γθxa2

ψ = (k + k∗u)z̄ − ωt+ ψ0, k∗u = mku + n3ku
a0 = {Jm+1 (ξ1a, ξ1b) + Jm−1 (ξ1a, ξ1b)}Jn (ξ3a, ξ3b)
a1 = {Jn+1 (ξ3a, ξ3b) + Jn−1 (ξ3a, ξ3b)} Jm (ξ1a, ξ1b)
a2 = Jm (ξ1a, ξ1b)Jn (ξ3a, ξ3b) (21)

There will be continuous energy transferring from the electron to electromagnetic wave if ψ = const.
i.e., ψ̇ = 0. We consider γ > γR and define η = (γ − γR)/γR as the relative energy deviation. Both
the energy deviation ηγRmec

2 and the ponderomotive phase will change with the interaction with the
electromagnetic wave. The time derivative of the ponderomotive phase i.e., ψ̇ = 0 is no longer zero for
γ > γR. Thus we can have

Ψ̇ = k∗uc− kc

(
1 +

K2
(
1 + δ23

)
2

+ γ2θ2
x

)
/2γ2

When we put γ ∼ γR

Ψ̇ = 0 = k∗uc− kc

(
1 +

K2
(
1 + δ23

)
2

+ γ2θ2
x

)
/2γ2

R (22)

Subtracting these two equations, Eq. (21) and Eq. (22) can be put together to read

Ψ̇ = 2k∗ucη (23)
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Using Eq. (23) and Eq. (21), we develop the pendulum equation for the free electron laser as

d2ψ

dt2
+ Ω2 cos Ψ = 0 (24)

where

Ω2 =
eE0k

∗
uK̃

meγ2
R

cos Λ cosϕ

The energy increase and the relative gain caused by the single electron is given by ΔW = −(Δη)γRmec
2.

The energy per unit volume of the electromagnetic wave is W = ε0E
2
0/2. The gain from the single

electron is written as
G = −2γRmec

2Δη/E2
0ε0 (25)

Using ΔΨ̇ = 2k∗ucΔη from Eq. (23) and by summing over all the electrons in the bunch, we rewrite the
gain as,

G = −γRmecne
k∗uε0E2

0

〈
Δψ̇
〉

(26)

In Eq. (26), 〈Δψ̇〉 denotes the change in time derivative of the ponderomotive phase averaged over all
the electrons. Using Eq. (24), Eq. (26) can be written as,

G = − e2k∗ucne
ε0meγ3

RΩ4
K̃2 cos2 Λ

〈
Δψ̇
〉

(27)

The pendulum equation is solved by standard procedure to give〈
Δψ̇
〉

=
L3Ω4

8c3
d

d(νT/2)

[
sin(νT/2)
(νT/2)

]2

(28)

From Eq. (27), we get the free electron laser gain

G = − e2nek
∗
uL

3

8ε0mec2γ3
R

K̃2 cos2 Λ
d

d(νT/2)

[
sin(νT/2)
(νT/2)

]2

(29)

4. RESULTS & DISCUSSION

The resonance frequency is given in Eq. (11). The electron longitudinal motion (see Eq. (4)) gets
modulated at twice of the fundamental undulator frequency and its third harmonic component, resulting
in radiation at harmonics at these frequencies given by,

ω = 2γ2ω∗
u/(1 + 0.5 ×K2(1 + δ23) + γ2θ2

x)

The expression ω∗
u = mωu + n(3ωu) reads that the undulator radiates at frequency ω∗

u = mωu, where
m = 1, 3, 5, . . .. Higher harmonic radiation corresponding to m = 3, 5, . . . occurs in a conventional
undulator with relatively larger undulator parameter. There is a need to operate the undulator device
at a higher harmonic which is very much possible with lower electron beam energy. However, the higher
harmonic radiations are very weak. This necessitates the introduction of additional high permeability
shims inside the undulator. Arranging the shims at the periodicity of 3ωu introduces additionally
harmonics through ω∗

u = n(3ωu), implying that the radiation at mωu(m = 3) and n(3ωu)(n = 1)
are superposed. This is an attractive feature of the harmonic undulator. Eq. (15) is the useful
derivation to compute the photons per second per mrad2 per 0.1% BW. It contains two modifying
terms, the harmonic angular energy distribution function and the bi-period undulator index parameter.
The harmonic undulator angular energy distribution function is the planar undulator angular energy
distribution function with δ3 = 0. The planar undulator angular energy distribution function for the
fundamental is shown in Fig. 1. The fundamental is highest at a value of the undulator parameter
with ∼ K = 1. The planar undulator angular energy distribution function for the third harmonic is
shown in Fig. 2. The fundamental is highest at a value of the undulator parameter with ∼ K = 2. The
effects of the imperfect trajectory is to decrease the both. The angular distribution function for the
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Figure 1. Angular energy density distribution function for the fundamental of the standard planar
undulator.
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Figure 2. Angular energy density distribution function for the third harmonic of planar undulator.

harmonic undulator is plotted in Fig. 3 for the fundamental harmonic at a typical value of δ3 = 0.3.
The value decreases. The third harmonic of the harmonic undulator value increases at an earlier value
of the undulator parameter than the planar undulator case. Additionally, the harmonic n = 1 enhances
the intensity at m = 3. Fig. 4 and Fig. 5 give the angular energy distribution function for the higher
harmonics, i.e., m = 3, n = 0 and m = 0, n = 1, respectively.

The photons per second per mrad2 per 0.1% BW is modified by cos2 Λ, Λ = ξ3a sinϕ+ξ3b sin 2ϕ−nϕ
in Eq. (15). We call this as bi-period index parameter. This term contains the integer number n,
therefore associated with the additional harmonics introduced by the harmonic field components. For
a perfect electron beam properly aligned with the undulator ξ3a = 0, Λ = ξ3b sin 2ϕ − nϕ. For ϕ = 2π,
Λ = ξ3b sin 4π − n2π, cos2 Λ = 1. The device will operate as bi-period, and both the fundamental and
third harmonic will contribute to the radiation. For ϕ = π/2, Λ = nπ/2, cos2 Λ = 0. The device
will operate as one period, and the third harmonic gets eliminated. In Fig. 6, we plot the harmonic
undulator radiation defined by m = 1 and m = 3. The radiation at these frequencies is not affected by
the phase. In Fig. 7, we plot the higher harmonic explicitly. The higher harmonic defined by m = 3
exists for both ϕ = π, π/2. The higher harmonic defined by n = 1 survives for the case ϕ = π but gets
eliminated at ϕ = π/2. This is most desirable finding of this manuscript. By a proper phase selection,
the additional third harmonic intensity can be added more than 50 percent (see Fig. 7).

The small signal gain of the harmonic undulator is defined in Eq. (29). The gain is modified by
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Figure 3. Angular energy distribution function for the harmonic undulator-fundamental harmonic.
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Figure 4. Angular energy distribution function for the harmonic undulator third harmonic.
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Figure 5. Angular energy distribution function for the harmonic undulator at the additional harmonic.
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Figure 6. Harmonic undulator radiation at the fundamental and third harmonic.
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Figure 9. Small signal gain at the higher harmonic.

cos2 Λ. This property on the small signal gain is illustrated in Fig. 8 and Fig. 9, respectively. The gain
at higher harmonic defined by n = 1 survives for the case ϕ = π and contributes to higher gain but gets
eliminated at ϕ = π/2.
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