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A New Non-Convex Approach for Compressive Sensing MRI

Huihui Yue and Xiangjun Yin*

Abstract—Compressive sensing (CS) is an effective method for reconstructing magnetic resonance
imaging (MRI) image from under-determined linear system (ULS). However, how to improve the
accuracy of MRI image reconstructed by CS is still a serious problem, especially in noisy conditions.
To solve this problem, in this paper, we propose a novel approach, dubbed as regularized maximum
entropy function (RMEF) minimization algorithm. Specifically, motivated by the entropy function
in information theory, we propose a maximum entropy function (MEF) to approximate Lq-norm
(0 < q < 1) as sparsity promoting objectives, and then the regularization mechanism for improving
the de-noising performance is adopted. Combining the above two ideas, a new objective function of
RMEF method is proposed, and the global minimum is iteratively solved. We further analyze the
convergence to verify the robustness of the RMEF algorithm. Experiments demonstrate the state-of-
the-art performances of the proposed RMEF algorithm and show that the RMEF achieves higher PSNR
and SSIM than other widely-adopted methods in MRI image recovery.

1. INTRODUCTION

MRI is a noninvasive imaging technology which plays an important role in clinical diagnosis. MRI
uses different characteristics of energy attenuation released by different material structures in the
environment, detects the information emitted by gradient magnetic fields, and realizes the mapping of
the internal structure of the object, so as to achieve imaging. However, the limitation of the Shannon-
Nyquist sampling theorem and the physical mechanism of magnetic resonance data encoding leads to
the slow speed of conventional MRI. This is mainly because the MRI scanner captures not the original
image pixel, but the global Fourier transform image in the frequency domain. Each frequency domain
pixel is a linear combination of time domain pixels, which makes MRI data redundancy more obvious
and thus increases the sampling time. In view of this, the accurate reconstruction of MRI with low
sampling rate is of great significance.

As an undersampling MRI technique, compressive sensing magnetic resonance imaging (CS-MRI)
breaks through the limitation of Shannon-Nyquist sampling theorem and offers us an efficient framework
to deal with the above challenge. CS-MRI technology first undersamples data in k-space (i.e., Fourier
space), then obtains image using CS theory [1–3]. Therefore, CS tasks eventually boil down to the MRI
image recovery problem in the following ULS [4]:

y = Ax + w, (1)

where y ∈ R
m is an under-sampled k-space data, x ∈ R

n the MRI image to be reconstructed, and w
the additive Gaussian noise. A = ΦD ∈ R

m×n is a measurement matrix, Φ ∈ R
m×n an undersampling

matrix, and D ∈ R
n×n a Fourier transform, m � n.

In CS, the MRI image x is recovered from given y and A. For this, A has more columns than
rows, which results in multiple solutions to recover x, thus making recovery of x an ill-posed problem.
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In addition, since the image of interest itself is sparse in k-space, the most straight-forward way is to
search for the solution that also shares this sparse property [4]. Combining the above two points, we
apply the L0-norm to choose the sparsest one:

min
x

‖x‖0, s.t. y = Ax. (2)

This fairly simple form of Equation (2) is actually supported by theories [4]. According to these
theories, when x is sparse and A satisfies the restricted isometry property (RIP) [4, 5], x can be well
restored. In fact, solving the Equation (2) is a nonconvex NP-hard problem whose solutions require
an intractable combinatorial search [6]. To solve this problem, scholars have developed two alternative
solutions:

• Greedy search method when ‖x‖0 ≤ k;
• Relaxation method for ‖x‖0.

The sparsity of x is k, which represents the upper bound on the number of nonzero entries in
x. Greedy search method is mainly composed of a series of algorithms focusing on matching pursuit
algorithms [7–10]. These algorithms have good results in noiseless environments, but they do not
perform well in noisy environments. The main purpose of relaxation method for ‖x‖0 is to convert L0-
norm into other forms [11–13] equivalently so as to avoid the NP-hard problem. This kind of method
is relatively scalable. Here this paper focuses on relaxation method that tries to solve the following
unconstrained recovery problem:

min
x

‖y − Ax‖2
2 + λg(x). (3)

where λ is the positive parameter used to balance the trade-off between data error ‖y − Ax‖2
2 and the

sparsity regularizer g(x). The role of g(x) is to promote sparsity, and the function of ‖y − Ax‖2
2 is to

ensure that the recovered image has certain fidelity whether it is noisy or noiseless. The combination
of the two can improve the reconstruction accuracy, especially in the noisy case.

For relaxation methods, some convex relaxation methods are proposed, such as basis pursuit
de-noise (BPDN) [14], SpaRSA [15], FISTA [16], and D-AMP [17, 18], which relax the L0-norm
regularization into the L1-norm regularization. In other words, let g(x) be the L1-norm. This L1-
regularized problem can be efficiently tackled by convex optimization techniques if they meet some
conditions, such as the RIP, null space property (NSP) [19], and incoherence condition (IC) [20].
However, due to the relaxation, the recovery accuracy is often degraded in noiseless case, e.g., it often
introduces extra bias [21] and cannot reconstruct an image with the least observations [22]. Furthermore,
for some applications, the result of the L1-norm minimization is not sparse enough, and the original
images cannot be recovered [23, 24].

To solve this problem, a number of state-of-the-art algorithms is proposed, which replace g(x)
with the Lq-norm (0 < q < 1) [25]. Algorithms in this category include StSALq [26], UALp [27], and
Lq-RLS [28]. All these algorithms use a de-noising model in Equation (3) and solve an unconstrained
Lq-norm regularized least squares (Lq-LS) problem. Compared with the L1-norm, the Lq-norm is a
closer approximation of the L0-norm. It has been shown in [29] that under certain RIP condition of A,
Lq-norm minimization algorithms require fewer sampling data but gain a better recovery performance
than L1-norm minimization algorithms. Moreover, the sufficient conditions in terms of RIP for Lq-
norm minimization are weaker than those for L1-norm minimization [30, 31]. However, in general,
relative to L1-norm minimization, Lq-norm minimization is more difficult to directly tackle due to
its nonsmoothing. To solve this problem, Lq-RLS algorithm, which uses an efficient conjugate gradient
(CG) method to solve a sequence of smooth subproblems, makes it succeed to handle large scale problem.

In fact, most of algorithms solve the Lq-norm minimization problem via smoothing (approximating)
it, and for example, the works [32, 33] use an approximation of ‖x‖q

q as

‖x‖q
q,ε =

n∑
i=1

(
x2

i + ε2
)q/2

, (4)

where ε is a small enough positive constant. Furthermore, the iteratively re-weighted (IR) algorithm [34]
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uses the following two penalties

‖x‖q
q,ε =

n∑
i=1

(|xi| + ε)q−1 |xi|, (5)

‖x‖q
q,ε =

n∑
i=1

(|xi|2 + ε2
)q/2−1 |xi|2, (6)

which explicitly relate to the Lq-norm approximation. Based on this, we obtain a smoothing function,
MEF, to approximate Lq-norm, and the sparsity regularizer g(x) in Equation (3) is then replaced with
MEF to form a new objective function. Moreover, iterative optimization method is used to tackle this
nonsmooth problem. Hence, this paper develops a highly efficient numerical method for the nonconvex
Lq-minimization problem.

The rest of the paper is organized as follows: Section 2 introduces the maximum entropy function
for nonconvex Lq-norm functions and then proposes a new RMEF minimization algorithm to solve the
ULS. Then the convergence of the RMEF minimization algorithm is proved in Section 3. In Section 4,
the effect of the RMEF minimization algorithm in MRI image reconstruction with noise is verified by
comparing it with L2-SL0 [35], UALp, and Lq-RLS approaches. Section 5 concludes this paper.

2. RELATED WORK

2.1. Maximum Entropy Function to Approximate Lq-Norm

Constructing a smooth Lq-norm is of great significance for CS, as shown in Equations (4–6), and Lq-

norm can be represented as ‖t‖q
q =

n∑
i=1

|t|q, where t ∈ R
n, t ∈ R, and

|t| =
{

t, t > 0
−t, t ≤ 0 , (7)

so it can be converted as
τ(t) = |t| = max{t,−t}. (8)

Here, we introduce a maximum entropy function which can be given by

τ(t, α) =
1
α

{
log

(
10αt + 10−αt

)}
, α > 0. (9)

Then, for any α > 0,

τ(t, α) = τ(t) +
1
α

{
log

(
10α(t−τ(t)) + 10α(−t−τ(t))

)}
, (10)

where 0 ≤ {log(10α(t−τ(t)) + 10α(−t−τ(t))) ≤ log2, which implies

τ(t) ≤ τ(t, α) ≤ τ(t) +
log2
α

. (11)

From Equation (11), when α → ∞, τ(t, α) → τ(t). Thus, the function τ(t, α) defined in
Equation (9) is a smoothing approximation of the function τ(t), which is an MEF.

Here let x = [x1, x2, . . . , xn]T , and moreover we make

Γ(x, α) = lim
α→∞

n∑
i=1

τ(xi, α)q = lim
α→∞

n∑
i=1

(
1
α

{
log

(
10αxi + 10−αxi

)})q

, (12)

and rewrite the Lq-norm as:

Γ(x) =
n∑

i=1

max{xi,−xi}q. (13)

Property 1 ∀x ∈ R
n, α > 0, Γ(x, α) is an axisymmetric function, that is to say, Γ(x, α) = Γ(−x, α).
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Proof sketch. Firstly, the definition field of Γ(x, α) is a real number field, which is a symmetric

domain. Then, Γ(−x, α) = lim
α→∞

n∑
i=1

( 1
α{log(10α(−xi)+10−α(−xi))})q = lim

α→∞
n∑

i=1
( 1

α{log(10αxi +10−αxi)})q.

Γ(x, α)−Γ(−x, α) = lim
α→∞

n∑
i=1

(
1
α

{
log

(
10α(xi)+10−α(xi)

)})q

− lim
α→∞

n∑
i=1

(
1
α

{
log

(
10α(−xi)+10−α(−xi)

)})q

= lim
α→∞

n∑
i=1

(
1
α

{
log

(
10αxi + 10−αxi

)})q

− lim
α→∞

n∑
i=1

(
1
α

{
log

(
10αxi + 10−αxi

)})q

= Γ(x, α) − Γ(x, α)
= 0.

Therefore, Γ(x, α) = Γ(−x, α). To summarize, Property 1 is proved.

Theorem 1 ∀x ∈ R
n, α > 0, function Γ(x, α) is a bounded function whose upper bound converges to

Γ(x) + n( log 2
α )

q
and the lower bound converges to Γ(x).

Proof Please see Appendix A.

From Theorem 1, it can be seen that

0 ≤ Γ(x, α) − Γ(x) ≤ n

(
log 2
α

)q

. (14)

Then we let ε = n( log 2
α )

q
, and ε is a small enough constant, so

0 ≤ Γ(x, α) − Γ(x) ≤ ε. (15)

Therefore, Γ(x, α) is equivalent to Γ(x), that is to say, the MEF can replace Lq-norm. Therefore,
the proposed maximum entropy function model can be used for MRI image recovery.

2.2. Regularized Maximum Entropy Function Minimization Algorithm for MRI

Performing MRI image recovery under noise conditions is an important observational measure of the
application of CS technology in practical fields. Traditional CS algorithms are extremely sensitive to
noise due to the effects of noise folding [36, 37], thus result in poor recovery performance. Regularization
mechanism can offset the impact of noise, so as to achieve the purpose of suppressing noise. This paper
adopts this idea, and then the corresponding compression-aware objective function can be improved to

Lq(x, λ, α) =
1
2
‖Ax − y‖2

2 + λΓ(x, α), (16)

where λ > 0. The above equation is the model of the proposed RMEF minimization algorithm. As
shown in this equation, this minimization problem must have a solution because Lq(x, λ, α) is continuous
with respect to x, and it can achieve the minimum over a bounded set {x | ‖x‖2 ≤ 	}, where 	 is a
positive constant. In addition, Lq(x, λ, α) blows up as ‖x‖2 → ∞. Let β = 1

α > 0, and xβ,λ,q denotes a
critical point and it satisfies the first-order optimality condition

λ
q

αq−1

10
x
β − 10

−x
β

10
x
β + 10

−x
β

1ogq−1
(
10

x
β + 10

−x
β

)
+ AT (Ax − y) = 0. (17)

Due to the underdetermination, there is no straightforward method to solve the above system of
equations unless for specific instances, such as ATA is a diagonal matrix. Combining with [32], we
approximately solve the system with a sequence of β, and the method is summarized as follows.

In the steps of proposed algorithm above, β is a descending order execution sequence formed by
annealing mechanism. If |x(t+1) − x(t)| < ξ, we choose x(t+1) to be an approximation of the MRI image
and stop the iteration. Otherwise, we stop the computation within a reasonable time and return the
last x(t+1). It is easy to know that the ULS in Equation (1) is invertible for any x(t+1) if β > 0. Once
β is small enough, the iteration can be stopped. Thus, the algorithm is well reasonable.
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Algorithm 1 : Regularized Maximum Entropy Function (RMEF) Minimization
Algorithm for MRI Image Reconstruction

Input: under-sampled k-space data y and matrix A.
Output: MRI image x.
Choose appropriate parameters λ > 0, q ∈ (0, 1)
Initialize x(0) such that Ax(0) = y and β0 = ( ε

n)
1
q / log 2, β = β0, βΥ = 10−6.

For t = 0, 1, 2, . . . , Υ
Solve the following linear system for x(t+1)

q
αq−1

10
x(t)

β −10
−x(t)

β

10
x(t)

β +10
−x(t)

β

1ogq−1(10
x(t)

β + 10
−x(t)

β ) + 1
λAT (Ax(t+1) − y) = 0

or equivalently

x(t+1) = 1
AT A

(AT y − qλ
αq−1

10
x(t)

β −10
−x(t)

β

10
x(t)

β +10
−x(t)

β

1ogq−1(10
x(t)

β + 10
−x(t)

β ))

Update β = β010−μ(t+1), where μ = log(β0/βΥ )
Υ+1 .

if |x(t+1) − x(t)| < ξ or β = βΥ , then ends the cycling. ξ is a small eoungh
positive constant.

3. CONVERGENCE OF THE PROPOSED RMEF MINIMIZATION ALGORITHM

In this section, we discuss the convergence of the proposed RMEF minimization algorithm. Before
analysis, we derive two simple properties of the first derivative of the function τ(x, α), which will be
used in the following analysis.

Proposition 1 Given α ∈ R
+, we have that

(i) |τ ′(x, α)| > 0.5(1 − 10−2) holds for any x ∈ R satisfying |x| > β;
(ii) lim

β→0
τ ′(x, α) = sign(x) holds for any x ∈ R.

where β = 1
α , and x is a scalar.

Proof sketch. (i) For any |x| > β, there will be either x > β or x < −β.
• If x > β, there will be −x < −β, hence, x

β > 1 and −x
β < −1. Furthermore,

10
x
β > 101 and 0 < 10

(
−x
β

)
< 10−1,

which imply that 10
x
β − 10(−x

β
)
> 101 − 10(−1) > 0. Thus,

|τ ′ (x, α)| = 10
x
β −10(

−x
β )

10
x
β +10(

−x
β ) > 10

x
β −10(−1)

2∗10
x
β

= 0.5
(
1 − 10(−1)

10
x
β

)
> 0.5

(
1 − 10−2

)
.

• If x < −β, there will be −x > β. By the fact that τ ′(x, α) is odd function and the above inequality,
we have that ∣∣τ ′ (x, α)

∣∣ =
∣∣−τ ′ (−x, α)

∣∣ > 0.5
(
1 − 10−2

)
.

(ii) • If x > 0, there will be 10
x
β → ∞ and 10(−x

β
) → 0 when β → 0. Hence,

lim
β→0

τ ′(x, α) = lim
β→0

10
x
β − 10(−x

β
)

10
x
β + 10(−x

β
)

= lim
β→0

{
1 − 2 ∗ 10(−x

β
)

10
x
β + 10(−x

β
)

}
= 1.

.
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• If x < 0, there will be −x > 0. By the odd function property of τ ′(x, α) and the above equality,
we can get

lim
β→0

τ ′(x, α) = − lim
β→0

τ ′(−x, α) = −1.

.
• If x = 0, there will be 10

x
β = 10(−x

β
) = 1, hence τ ′(x, α) = 0. Therefore, the Proposition 1 is

proved.

In addition, we need the following notation and results. Denote

Γ′(x, α) := ∇Γ(x, α) =
(

∂Γ(x, α)
∂x1

,
∂Γ(x, α)

∂x2
, . . . ,

∂Γ(x, α)
∂xn

)T

,

∂Γ(x, α)
∂xi

= qτ q−1(xi, α)τ ′(xi, α), i = 1, . . . , n.

The first-order necessary condition of Lq(x, λ, α) is given in Equation (17), which means χ that
satisfied with the above equation is a stationary point of Lq(x, λ, α) if it satisfies Equation (17).

Moreover, for given q ∈ (0, 1) and λ > 0, the definition of Lq regularized problem is shown as
follows:

Lq(x, λ) = λ‖x‖q
q + ‖Ax − y‖2

2, (18)

then x ∈ R
n is called a stationary point of Lq regularized problem if it satisfies [38]

λq|x|q +

⎡⎢⎢⎢⎣
x1 0 . . . · 0
0 x2 . . . ·

· . . . ·
· . . . xn−1 0

0 · . . . 0 xn

⎤⎥⎥⎥⎦AT (Ax − y) = 0. (19)

Theorem 2 Suppose that the sequence {xβt} generated by proposed RMEF minimization algorithm is
contained in the level set {x|Lq(x, λ, α) ≤ Lq(x0, λ, α)} for an arbitrary given initial point x0.

(i) For any accumulation point of {xβt} is a stationary point of Lq(x, λ).
(ii) Let {xβt} be a global minimizer of {x|Lq(x, α, λ)} for any given t, then any accumulation point

of {xβt} is a global minimizer of Lq(x, λ).

Proof Please see Appendix B.

4. RESULT AND ANALYSIS

Here we verify the MRI image recovery performance of the proposed RMEF minimization algorithm
by comparing it with the state-of-the-art L2-SL0, UALp, and Lq-RLS algorithms on Brain (256× 256)
datasets. The numerical simulation platform is MATLAB 2017b, which is installed on the WINDOWS
10, 64-bit operating system. The type of CPU is Inter (R) Core (TM) i5-3230M, and the frequency is
2.6 GHz.

Given a pair of {y,Φ,D,w}, we try to obtain the original MRI image. The recovery process of
the MRI image by the RMEF minimization algorithm is shown in Figure 1, while the image recovery
performance is valuated by Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index
(SSIM). PSNR is defined as

PSNR = 10 log
(
2552/MSE

)
, (20)

where MSE = ‖x − x̂‖2
2, and SSIM is defined as

SSIM(p, q) =
(2μp + μq + c1)(2σpq + c2)

(μ2
p + μ2

q + c1)(σ2
p + σ2

q + c2)
. (21)

where μp is the mean of image p, μq the mean of image q, σp the variance of image p, σq the variance
of image q, and σpq the covariance between image p and image q. Parameters c1 = z1L and c2 = z2L,
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Figure 1. Recovery process of the MRI image by the RMEF minimization algorithm.

in which z1 = 0.01, z2 = 0.03 and L is dynamic range of pixel values. Range of SSIM is [−1, 1], and if
the two compared images are same, the SSIM equals 1.

Figures 2, 3, and 4 show the MRI image recovery effect of the selected algorithms when compression
ratio (CR, which is defined as m/n) is respectively 0.4, 0.5, 0.6, and noise intensity δN equals 0.01. As
shown in these figures, under any same CR, the proposed RMEF minimization algorithm can recover a
clearer MRI image than the other three algorithms. However, the differences of each algorithm in image
recovery performance are not obvious, so the recovery performance cannot be determined. Further,
Table 1 shows the difference in detail through scientific data. From this table, it can be seen that
the proposed RMEF minimization algorithm performs better than the other three methods in Brain
recovery, which is consistent with the results in Figures 2, 3, and 4. Compared with Lq-RLS algorithm,
which is the best one among the other three algorithms, the proposed RMEF minimization algorithm
can improve approximately 0.7038 dB, 0.6027 dB, and 0.0249 dB on PSNR and 0.5%, 0.31%, and 0.01%

RMEF (ours)Original L2-SL0 UALp Lq-RLS

Figure 2. Brain image recovery effect by different algorithms with δN = 0.01, CR = 0.4.

RMEF (ours)Original L2-SL0 UALp Lq-RLS

Figure 3. Brain image recovery effect by different algorithms with δN = 0.01, CR = 0.5.
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RMEF (ours)Original L2-SL0 UALp Lq-RLS

Figure 4. Brain image recovery effect by different algorithms with δN = 0.01, CR = 0.6.

Table 1. PSNR and SSIM analysis of Brain recovered by the L2-SL0, UALp, Lq-RLS, and proposed
RMEF minimization algorithms with CR = 0.4, 0.5, 0.6 and δN = 0.01.

CR PSNR (dB) SSIM (%)
L2-SL0 UALp Lq-RLS RMEF L2-SL0 UALp Lq-RLS RMEF

0.4 25.4844 25.9210 26.1200 26.8258 95.98 96.30 96.53 97.03
0.5 26.6514 26.9360 27.6133 28.2160 96.94 97.14 97.55 97.86
0.6 26.9159 27.0416 28.7090 28.7339 97.15 97.23 98.09 98.10

on SSIM with respect to CR = [0.4, 0.5, 0.6], respectively. Therefore, these experimental results prove
that the proposed RMEF minimization algorithm can reconstruct MRI image more accurately than
other state-of-the-art approaches.

To further evaluate the effect of the proposed RMEF minimization algorithm in MRI image
recovery under different noise intensities, Figure 5 shows the vivid reconstruction results at δN =
[0, 0.05, 0.1, 0.2, 0.3, 0.5], and CR is fixed to 0.5. Table 2 shows the scientific data. From Figure 5 we can
see that when δN is less than 0.2, the difference in image recovery of the RMEF minimization algorithm
is not obvious. But when δN is over 0.2, the effect of image reovery is significantly reduced. The data
in Table 2 also fully illustrate this result. As can be seen from Table 2, when δN is lower than 0.2, the
SSIM of MRI images recovered by the proposed RMEF minimization algorithm is always higher than
90%. These show that the proposed RMEF minimization algorithm has a certain ability to denoise,
but the effect needs to be improved under large noise conditions.

Table 2. PSNR and SSIM analysis of Brain recovered by the proposed RMEF minimization algorithm
under different δN .

δN MRI image PSNR (dB) SSIM (%)
0 Brain 30.9261 98.85

0.05 Brain 27.8016 97.64
0.1 Brain 24.5298 95.12
0.2 Brain 18.4506 82.59
0.3 Brain 13.6842 60.92
0.5 Brain 8.1555 29.49

In conclusion, experiments verify the most advanced MRI image recovery performance of the RMEF
minimization algorithm. Therefore, it is feasible for the RMEF minimization algorithm to be applied
to MRI image recovery.



Progress In Electromagnetics Research C, Vol. 105, 2020 211

δ   = 0N δ   = 0.05N δ   = 0.1N

δ   = 0.2N δ   = 0.3N δ   = 0.5N

Figure 5. Brain image recovery effect by the proposed RMEF minimization algorithm with δN =
[0, 0.05, 0.1, 0.2, 0.3, 0.5].

5. CONCLUSIONS

In this paper, a non-convex RMEF minimization algorithm is proposed to reconstruct MRI images with
noise. We firstly propose a MEF and use the property that MEF approximates to Lq-norm to promote
the sparsity of the recovered images. On this basis, we replace sparsity regularizer g(x) with proposed
MEF and form a new approach called RMEF minimization algorithm. We also prove that the proposed
RMEF minimization algorithm can converge to optimal solution of MRI images. Finally, experiments
show that the proposed RMEF performs better than the popular ‖x‖q

q regularization algorithms in
MRI image recovery. Additionally, in the future, we would also like to apply the RMEF minimization
algorithm to other CS applications such as the Blind Source Separation (BSS) [39], Robust Principal
Component Analysis (RPCA) [40], and Dictionary Learning [41, 42].
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APPENDIX A. PROOF OF THEOREM 1

Proof Known by Equation (11), ∀x > 0, α > 0, there will be

max{x,−x} ≤ 1
α

{
log

(
10αx + 10−αx

)} ≤ max{x,−x} +
log2
α

. (A1)



212 Yue and Yin

According to the definitions of Γ(x, α) and Γ(x), we can get

Γ(x, α) − Γ(x) = lim
α→∞

n∑
i=1

(
1
α

{
log

(
10αxi + 10−αxi

)})q

−
n∑

i=1

max{xi,−xi}q

≤
n∑

i=1

(
1
α

{
log

(
10αxi + 10−αxi

)} − max{xi,−xi}
)q

≤
n∑

i=1

(
log 2
α

)q

= n

(
log 2
α

)q

,

and according to Equation (11), we can obtain

Γ(x) ≤ Γ(x, α) ≤ Γ(x) + n

(
log 2
α

)q

. (A2)

Moreover, according to Property 1, Γ(x, α) is an axisymmetric function. For any xi ≤ 0, the result
of Equation (A2) is still obtained. Therefore, the Theorem 1 is proved.

APPENDIX B. PROOF OF THEOREM 2

Proof Since {xβt} ⊆ {x|Lq(x, λ, α) ≤ Lq(x0, λ, α)}, we always have Lq(xβt, λ, α) ≤ Lq(x0, λ, α) for
any t. It can be obtained that the sequence {xβt} is bounded. In fact, suppose that {xβt} is unbounded,
then for any given q ∈ (0, 1), {‖xβt‖q

q} is unbounded. Thus, by combining Lq(x, λ, α), we have that for
any given q ∈ (0, 1) and λ > 0, Lq(xβt, λ, α) → +∞ when t → ∞, which contradicts the result that
Lq(xβt, λ, α) ≤ Lq(x0, λ, α) for all t.

Thus, there exists at least a convergent subsequence of {xβt}. Let x̃ be an accumulation point
of {xβt}, and denote lim

t→∞{xβt} = x̃ without loss of generality. Here we denote x̂βt = diag(xβt) and
ˆ̃x = diag(x̃).

(i) We can see that xβt satisfies the first-order necessary condition of Lq(x, α, λ). Thus, by
Equation (17), we have

∇Lq(xβt, α, λ) = λΓ′(xβt, α) + AT (Axβt − y) = 0.

where

Γ′(xβt, α) =
(

∂Γ(xβt, α)
∂(xβt)1

, . . . ,
∂Γ(xβt, α)
∂(xβt)n

)T

,

and for any i = 1, . . . , n,
∂Γ(xβt, α)

∂(xβt)i
= qτ q−1((xβt)i, α)τ ′((xβt)i, α).

Moreover,
x̂βt∇Lq(xβt, α, λ) = λx̂βtΓ′(xβt, α) + x̂βtAT (Axβt − y) = 0,

and [
x̂βtΓ′(xβt, α)

]
i
= q(xβt)iτ q−1((xβt)i, α)τ ′((xβt)i, α)

→ qx̃iτ
q−1(x̃i)sign(x̃i)

= q|x̃i|q,
where the second step follows from Equation (8) and Proposition 1. Therefore,

0 = lim
t→∞λx̂βtΓ′(xβt, α) + lim

t→∞ x̂βtAT (Axβt − y) = λq|x̃|q + ˆ̃xAT (Ax̃ − y).
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i.e., x̃ satisfies Equation (18), which implies that x̃ is a stationary point of Lq(x, λ).
(ii) Let x∗ be a global minimizer of Lq(x0, λ), then, we have

Lq(x∗, λ) ≤ Lq (xβt, λ) ≤ Lq (xβt, α, λ) ≤ Lq (x∗, α, λ) ≤ Lq(x∗, λ) + λn(β log 2)q.

Take t → ∞, we obtain that Lq(x̃, λ) = Lq(x∗, α). Hence, any accumulation point of {xβt} is a
global minimizer of Lq(x, λ). So the proof is complete. According to the Theorem, we can see that the
convergence of Lq(x, α, λ) and Lq(x, λ) is equivalent. Hence, our proposed algorithm can converge to
global minimizer of Lq(xβt, λ). So, the convergence is simply analyzed.
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Comptes rendus-Mathématique, Vol. 346, 589–592, 2008.

6. Natarajan, B. K., “Sparse approximate solutions to linear systems,” SIAM Journal on Computing,
Vol. 2, 227–234, 1995.

7. Wang, J., S. Kwon, P. Li, and B. Shim, “Recovery of sparse signals via generalized orthogonal
matching pursuit: A new analysis,” IEEE Transactions on Signal Processing, Vol. 64, 1076–1089,
2016.

8. Lee, J., G. T. Gil, and H. L. Yong, “Channel estimation via orthogonal matching pursuit for
hybrid mimo systems in millimeter wave communications,” IEEE Transactions on Communications,
Vol. 64, 2370–2386, 2016.

9. Wen, J., Z. Zhou, J. Wang, X. Tang, and Q. Mo, “A sharp condition for exact support recovery
with orthogonal matching pursuit,” IEEE Transactions on Signal Processing, Vol. 6, 1370–1382,
2017.

10. Liu, J., C. Zhang, and C. Pan, “Priori-information hold subspace pursuit: A compressive sensing-
based channel estimation for layer modulated TDS-OFDM,” IEEE Trans. Broadcast., Vol. 99, 1–9,
2018.

11. Foucart, S. and M. J. Lai, “Sparsest solutions of underdetermined linear systems via Lp-
minimization for 0 < p ≤ 1, Applied and Computational Harmonic Analysis, Vol. 3, 395–407,
2009.

12. Hurley, N. and S. Rickard, “Comparing measures of sparsity,” IEEE Transactions on Information
Theory, Vol. 10, 4723–4741, 2009.

13. Kose, K., O. Gunay, and A. E. Ceti, “Compressive sensing using the modified entropy functional,”
Digital Signal Processing, Vol. 24, 63–70, 2014.

14. Figueiredo, M. A. T., R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics
in Signal Processing, Vol. 1, 586–597, 2008.

15. Qiao, B., X. Zhang, C. Wang, H. Zhang, and X. Chen, “Sparse regularization for force identification
using dictionaries,” J. Sound Vib., Vol. 368, 71–86, 2016.

16. Wang, Y., S. Xie, and Z. Xie, “Fista-based papr reduction method for tone reservation’s OFDM
system,” IEEE Wireless Communications Letters, Vol. 7, No. 3, 300–303, 2017.

17. Metzler, C. A., A. Maleki, and R. G. Baraniuk, “From denoising to compressed sensing,” IEEE
Transactions on Information Theory, Vol. 62, 5117–5144, 2016.



214 Yue and Yin

18. Metzler, C. A., A. Mousavi, and R. G. Baraniuk, “Learned D-AMP: Principled neural network
based compressive image recovery,” Advances in Neural Information Processing Systems, 2017.

19. Chen, L. and Y. Gu, “On the null space constant for Lp minimization,” IEEE Signal Processing
Letters, Vol. 10, 1600–1603, 2015.

20. Wang, J. and B. Shim, “A simple proof of the mutual incoherence condition for orthogonal matching
pursuit,” Mathematics, 2011.

21. Barnett, A. G., J. Beyersmann, and A. Allignol, “The time-dependent bias and its effect on extra
length of stay due to nosocomial infection,” Value in Health, Vol. 2, 381–386, 2011.

22. Bolyog, B. and G. Pap, “On conditional least squares estimation for affine diffusions based on
continuous time observations,” Statistical Inference for Stochastic Processes, Vol. 4, 1–35, 2017.

23. Abgrall, R., D. Amsallem, and R. Crisonovan, “Robust model reduction of hyperbolic problems
by L1-norm minimization and dictionary approximation,” Advanced Modeling and Simulation in
Engineering Sciences, Vol. 1, 1, 2016.

24. Zhao, Y., Z. Liu, and Y. Wang, “Sparse coding algorithm with negentropy and weighted L1-norm
for signal reconstruction,” Entropy, Vol. 1, 599, 2017.

25. Zheng, L., A. Maleki, H. Weng, X. Wang, and T. Long, “Does 
p-minimization outperform 
1-
minimization,” IEEE Transactions on Information Theory, Vol. 63, 6896–6935, 2017.

26. Saab, R., R. Chartrand, and O. Yilmaz, “Stable sparse approximations via nonconvex
optimization,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 3885–3888, 2008.

27. Pant, J. K., W. Lu, and A. Antoniou, “Unconstrained regularized Lp norm based algorithm for
the reconstruction of sparse signals,” IEEE International Symposium on Circuits & Systems, 1740–
1743, 2011.

28. Pant, J. K., W. Lu, and A. Antoniou,“ New improved algorithms for compressive sensing based on
Lp-norm,” IEEE Trans. Circuits and Systems II: Express Briefs, Vol. 3, 198–202, 2014.

29. Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical
learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., Vol. 1,
1–122, 2011.

30. Xie, Q., C. Ma, and C. Guo, “Image fusion based on the 	1-TV energy function,” Entropy, Vol. 16,
6099–6115, 2014.

31. Du, S. and M. Chen, “A new smoothing modified three-term conjugate gradient method for L1-
norm minimization problem,” Journal of Inequalities and Applications, Vol. 1, 105, 2018.

32. Lai, M. J., Y. Xu, and W. Yin, “Improved iteratively reweighted least squares for unconstrained
smoothed Lq minimization,” SIAM Journal on Numerical Analysis, Vol. 51, 927–957, 2013.

33. Li, Q., S. Y. Liang, and Q. Li, “Incipient fault diagnosis of rolling bearings based on impulse-step
impact dictionary and re-weighted minimizing nonconvex penalty Lq regular technique,” Entropy,
Vol. 19, 2017.

34. Wipf, D. and S. Nagarajan, “Iterative reweighted L1 and L2 methods for finding sparse solutions,”
IEEE Journal of Selected Topics in Signal Processing, Vol. 4, 317–329, 2013.

35. Ye, X., W. Zhu, and A. Zhang, “Sparse channel estimation of MIMO-OFDM systems with
unconstrained smoothed L0-norm-regularized least squares compressed sensing,” EURASIP
Journal on Wireless Communications and Networking, Vol. 1, 282, 2013.

36. Arias-Castro, E. and Y. C. Eldar, “Noise folding in compressed sensing,” IEEE Signal Processing
Letters, Vol. 18, 478–481, 2011.

37. Yang, X., Q. Cui, E. Dutkiewicz, and X. Huang, “Anti-noise-folding regularized subspace pursuit
recovery algorithm for noisy sparse signals,” Proceeding of the IEEE Wireless Communications and
Networking Conference, 275–280, Istanbul, Turkey, April 6–9, 2014.

38. Lu, Z., “Iterative reweighted minimization methods for lp regularized unconstrained nonlinear
programming,” Mathematical Programming, Vol. 147, 277–307, 2014.

39. Mourad, N., J. P. Reilly, and T. Kirubarajan, “Majorization-minimization for blind source
separation of sparse sources,” Signal Processing, Vol. 131, 120–133, 2017.



Progress In Electromagnetics Research C, Vol. 105, 2020 215

40. Oh, J. and N. Kwak, “Generalized mean for robust principal component analysis,” Pattern
Recognition, Vol. 54, 116–127, 2016.

41. Zhou, W., Y. B. Sun, Q. S. Liu, and W. U. Min, “L0 group sparse RPCA model and algorithm for
moving object detection,” Acta Electronica Sinica, Vol. 44, No. 3, 627–632, 2016.

42. Xu, D., X. Gao, X. Fan, D. Zhao, and W. Gao, “ODD: An algorithm of online directional dictionary
learning for sparse representation,” Proceedings of the Pacific Rim Conference on Multimedia,
Vol. 10736, 939–947, Harbin, China, September 28–29, 2017.


