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Abstract—In this paper, a flexible metamaterial-based electromagnetic harvester is proposed for
wearable applications at microwave regime. The proposed harvesting structure is composed of a modified
configuration from the conventional Split-Ring Resonator (SRR) inclusion and is printed on a grounded
very thin flexible substrate. The proposed wearable harvester structure provides several interesting
features, including its robustness, sustainability, and ease of integration with flexible electronics and
sensors. Numerical full-wave studies are conducted, where results from a periodic arrangement of the
proposed harvesting unit cell along with several two-dimensional arrays of harvesters are presented and
discussed. Based on the numerical studies, the proposed electromagnetic harvesting structure exhibits
good efficiency capability of power conversion from radio frequency received power to alternating-current
harvested power across collecting loads above 90% for the three studied cases.

1. INTRODUCTION

The advancement in the research of electromagnetic energy harvesters has enabled wide range of
applications such as remote sensing [1, 2], microwave energy scavenging [3–6], cell phone battery
charging [7], Wireless Power Transfer (WPT) [8–11], Space Solar Power (SSP) [12, 13], the internet of
things [14–17], and RFID’s [18–20] to name a few. For the aforementioned applications, electromagnetic
harvester can be built on a rigid substrate [21–25] or a flexible material [26–28], depending on the
desired application. Recently, there have been much interest in wearable harvesters because they can
be used in numerous applications that require conformity of the harvester, in addition to the increasing
demand for higher data speeds and the requirements of continuous charging of electronic devices. In
such applications, wearable harvesters fit well since they can supply the required power to a specific
circuit. A great example is in health and fitness applications where wearable rectennas are used to
capture electromagnetic waves which then can energise a sensor that can record vital readings such
as body temperature, heart pulse, and breath [29]. Another life saving application includes powering
a pacemaker to increase the reliability of the device and to ensure constant charging to its finite life
battery [30]. Such wearable rectennas are usually built with allowable SAR (Specific Absorption Rate)
levels to ensure that the radiation of the antenna does not have any health effect on the user [31,32].

In this paper, we propose a flexible metamaterial harvesting structure using a modified unit cell
from the well-known artificial inclusion, Split-Ring Resonator (SRR). Although classical SRR unit
cell is a typical resonant inclusion that has been widely adopted in lots of applications, including
electromagnetic absorbers and harvesters, we emphasize here that the proposed modified SRR allows
for additional degree of freedom in introducing additional freedom in the placement of collective energy
loads (i.e., rectifying diodes) to aid in achieving cost-effective channeling to the harvested energy instead
of the use of the conventional SRR’s cut gap or introducing additional complexity through conductive
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vias. Moreover, the proposed modified SRR provides practical solution to the placement of electronic
components, i.e., diodes and/or varactors, which will result in proper connectivity at direct current
(DC) as compared against conventional SRR when for instance a diode is placed at cut gap, which will
result in short circuiting the diode at DC. Based on the aforementioned advantages from our proposed
unit cell, it is believed that the developed modified SRR harvester structure will be valuable for many
wearable applications, due to its sustainability and cost-effective solution when flexible electronics need
to be integrated.

We present here comprehensive numerical results for the performance of the proposed flexible
harvester by computing its efficiency, considering an infinitely large structure as well as several cases of
finite harvesting structure, namely 3×3, 5×5, and 9×9 unit cells along x- and y-directions, respectively.
In particular, we are mainly focusing on the conversion efficiency from an incident radio frequency (RF)
power (PRF) that is available at the footprint of the harvester structure area to the collected one as
an alternating-current (AC) power (PAC), i.e., namely, RF to AC conversion efficiency. The numerical
full-wave simulations were carried out using the finite-integral solver of CST Microwave Studio. We
highlight here that it is expected from measurements a drop in the efficiency compared to the simulated
results. This is attributed mainly to the losses from the diodes during the rectification process, in which
the resistive loads that are considered in simulation models will be replaced by diodes.

2. ELECTROMAGNETIC HARVESTER DESIGN

The proposed unit cell for the wearable electromagnetic harvester is depicted in Fig. 1. The unit cell
comprises a metallic modified split-ring resonator (M-SRR) that is printed on the top of a grounded
very thin flexible substrate. In order to minimize losses, a very low loss flexible dielectric substrate is
considered (Rogers RT/duroid 5880 laminate, with a dielectric constant εr of 2.2, tan δ = 0.0009, and
a thickness h = 0.787 mm). The optimized dimensions of the proposed square-shaped metamaterial
electromagnetic harvester unit cell (see Fig. 1) are: length of L = 18 mm, g1 = 0.5 mm, g2 = 0.4 mm,
w1 = 2.5 mm, w2 = 1.5 mm, and w3 = 0.6 mm.

In order to quantify the robustness of the proposed harvesting energy collectors in utilizing the
incident electromagnetic energy that is available within their footprint areas to useable AC power, the

(b)
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Figure 1. (a) Top view of the proposed wearable metamaterial electromagnetic harvester with details
of its structure parameters; (b) side view of the proposed wearable harvester. Note that yellow shaded
region represents metallization.
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overall efficiency of proposed harvester structure is computed using

η =
PAC

Pavg.
, (1)

where PAC is the time-average AC power that is received by all terminated collectors (resistive loads),
and Pavg. is the total time-average incident power that is available at the footprint area of the terminated
collectors. For more than one unit cell collector, PAC can be calculated using

PAC =
n∑

k=1

V 2
k

Rk
(2)

where Rk is the resistance of collector k, and Vk is the AC voltage across Rk of collector k.

2.1. Effect of Proposed Modified-SRR Harvester Unit Cell Parameters on Efficiency

In this part, we numerically investigate the effect of several physical parameters of the proposed modified
SRR harvesting unit cell on the computed efficiency, namely: cut gap g1 and resistive load gap g2. For
convenience, resistive load of Rload = 450Ω is considered. Within the numerical setup, a unit cell was
placed within an air-filled waveguide, where the four adjacent side walls were enforced with perfect
electric conductor (PEC) and perfect magnetic conductor (PMC) walls. A waveguide port was then
launched from top of the air box. It is instructive to highlight here that these enforced boundary
conditions mimicking an infinite arrangement are copied from the unit cell.

The effect of the modified SRR harvester unit cell cut gap, g1, is studied first. Fig. 2 shows the
efficiency of the harvester as g1 is increased. Without the loss of generality, only four discrete values
are considered for the cut gap. As can be seen from Fig. 2, there is only very minimal shift to the
peak efficiency towards higher frequencies, while as cut gap, g1 is increased, and peak efficiency remains
almost the same at around 90% for the four cases of g1.

Figure 3 depicts the effect of increasing the collector load gap, g2, on the harvested energy. As
can be seen, as the size of g2 gap is increased, we observe a dramatic decay of harvested efficiency with
a noticeable shift to efficiency peak towards higher frequencies. For instance, peak efficiency of nearly
90% was achieved for load gap g2 = 0.4 mm at a frequency of 4.46 GHz, with sudden decay and shift
to peak efficiency for the case of load gap g2 = 1.6 mm and efficiency of around 74.7% at 5.1 GHz.
This is explained as follows. Since the increase of g2 gap will incur additional decrease to the overall
capacitance of the harvester unit cell, a shift to peak efficiency towards higher frequencies is expected.

Figure 2. Parametric study showing the effect
of modified SRR cut gap, g1, on the harvested
efficiency of the proposed harvesting unit cell.

Figure 3. Parametric study showing the effect
of modified SRR collector load gap, g2, on the
harvested efficiency of the proposed harvesting
unit cell.
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(a) (b)

Figure 4. (a) Electric field distribution, and (b) surface current distribution for the proposed modified
SRR flexible harvester unit cell at a frequency of 4.45 GHz.

Moreover, the shift of peak efficiency values for the case of varying g2 gap is more significant than the
values for the case of varying cut gap g1.

Figures 4(a), (b) depict the electric field and surface current distributions within the plane of the
proposed flexible harvester unit cell, respectively. As can be seen, maximum electric field strength can
be seen within the proposed location of the collector load, i.e., gap g2. Moreover, the surface current
distribution as shown in Fig. 4(b) shows maximal strength along the vicinity of the gap, which is
attributed to displacement current. As such, the capacitive effect due to this gap g2 is as expected more
significant and dominant than the cut gap g1.

In order to have more physical insight from the proposed unit cell structure, an equivalent circuit
model was developed as shown in Fig. 5(a). For convenience, the presented circuit model is considered,
although other circuit model topologies can also be adopted. Details of the circuit parameters and their
extracted optimized values are tabulated in Table 1. Fig. 5(b) depicts comparison between the results
that are obtained from the proposed harvester when collector load is replaced with a discrete port
using numerical full-wave CST simulator and compared against the retrieved one from the proposed

(a) (b)

Figure 5. (a) Equivalent circuit model of the proposed modified-SRR harvester unit cell structure, and
(b) the retrieved reflection coefficient of the harvester when in transmission mode showing comparison
between result from CST microwave studio and compared against the obtained one using ADS. Note
that a collector load resistance of 450 Ω was considered.
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Table 1. Equivalent circuit model of the proposed modified-SRR unit cell and its parameters.

Circuit Parameters Description Extracted Value
Rm-SRR metallic and dielectric losses 1 Ω
Lm-SRR iductance of the modified-SRR 0.94 nH
Cm-SRR capacitance of the collector load gap, g2 0.1 pF

Cgap capacitance of the cut gap, g1 1.32 pF
Rload resistance of the collector load 450 Ω

equivalent circuit model using Agilent Design System (ADS) circuit simulator. Good agreement can
be seen between results of the full-wave simulation and circuit model when the harvester is used in
transmission mode.

2.2. Effect of Proposed Flexible Harvester Size on Efficiency

In this numerical study, two finite harvesters utilizing the proposed modified SRR unit cell are
considered. The two finite-size harvesters have dimensions of 3 × 3 cells and 5 × 5 cells along x-
and y-directions, respectively. The overall aperture area for the 3 × 3 geometry is 54-mm2, while that
for 5 × 5 cells is 90-mm2.

Figure 6 shows a perspective view of the setup that was used to compute the efficiency numerically
from the developed finite sized flexible harvesters. A plane wave was launched from the top of an air-
filled computational space, while absorbing boundary conditions were applied along the rest of the side
boundaries at a distance of half-wavelength away from the harvester’s edges. Note that the proposed
metamaterial harvester structure is backed with a metallic ground plane. As such, we are only interested
in the reflectivity response from this very thin flexible metamaterial harvester structure upon excitation
of an incident plane wave along with the harvested energy within the collector loads.

Figure 6. Perspective view of the numerical setup for the computation of the efficiency from the
proposed electromagnetic flexible harvester. For convenience, a structure of 3×3 unit cells is displayed.

Figure 7 shows the computed efficiency from the proposed wearable harvester for the two finite-size
harvesters of 3 × 3 and 5 × 5 and compared against a reference case of infinite arrangement from the
unit cell. As can be seen, the case of 3 × 3 finite harvester achieved a conversion efficiency from RF to
AC above 95%, while that for 5 × 5 harvester was around 90%. It is worth noting that the reference
case of infinite arrangement of unit cell achieved an efficiency of around 78%. This is attributed to
the coupling effect which was minimal for the 3× 3 harvester as compared against the other two cases.
Moreover, the aperture size for the 3 × 3 harvester is in fact larger than the physical area, which is
not the case for the other two cases, in which aperture area for the 5 × 5 harvester is smaller than the
aperture area for the 3 × 3 case. As a matter of fact, one should expect that the aperture area would
be comparable to the physical area for the unit cell with infinite periodic arrangement, which mimics
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Figure 7. Numerical results showing the total collected efficiency from the proposed flexible microwave
harvester of two finite sizes and compared against a reference case of infinite unit cell arrangement.

an infinite harvester. From the obtained results from these finite-size harvesters, the collected efficiency
from such flexible harvesters is good enough for many wearable applications.

2.3. Effect of Bending on Performance of the Flexible Harvester

When the harvester is placed on wearables, it will most likely be exposed to bending effects due to
the nature and the flexibility of the host wearer. Therefore, it is very essential to study the effect of
bending the proposed harvester on the total conversion efficiency of the harvester. A numerical study
was conducted, where the 3× 3 and 5× 5 harvesters were modeled in CST microwave studio, as shown
in Fig. 8, with bending effect to all the three layers, namely: the resonator layer (i.e., modified SRR
inclusions), flexible substrate, and ground plane. Without loss of generality, only two different bending
scenarios were studied where the harvesters were wrapped and bent in partial cylindrical shape with
radii of R = 25 mm in one case and R = 50 mm in another case (for comparison purposes) for both
harvesters of 3 × 3 and 5 × 5 sizes as shown in Fig. 8.

(b)(a)

(d)(c)

Figure 8. Perspective view of the proposed microwave metamaterial finite-size harvesters (a) 3 × 3
with cylindrical bending radius of R = 25 mm; (b) 3 × 3 with bending radius of R = 50 mm; (c) 5 × 5
with bending radius of R = 25 mm; and (d) 5 × 5 with bending radius of R = 50 mm.
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(a) (b)

Figure 9. Numerical results showing the total collected efficiency from the proposed wearable
microwave harvester under different bending scenarios for (a) the 3 × 3 harvester, and (b) the 5 × 5
harvester.

The efficiencies of the 3×3 and 5×5 harvesters for both bending scenarios are shown in Figs. 9(a),
(b), respectively. As can be seen from Fig. 9(a), the efficiency from the 3 × 3 harvester was above
95% for the bending case of R = 50 mm, which is almost the same as the flat case for the same
harvester. However, when bending of R = 25 mm was applied to the 3× 3 harvester, efficiency dropped
to around 79%. The efficiency from the 5× 5 harvester showed slight degradation as compared against
the 3 × 3 harvester, as shown in Fig. 9(b). In fact, this is expected, due to the number of resonators
that are in bending condition and that resulted in minimal collected energy by the resistive loads. Most
importantly, the efficiency peaks exposed to very minimal shift as compared against the flat cases.

3. PROPOSED 9 × 9 FLEXIBLE METAMATERIAL HARVESTER

In this section, we investigate the case of a 9 × 9 flexible metamaterial harvester. The overall surface
area of this proposed harvester is of size 162×162 mm2. Fig. 10 depicts the surface current distribution
within the metallic modified SRR inclusions. As can be seen from the zoomed-in inset in Fig. 10, an
in-phase surface current circulates within the two sides of the ring (i.e., top and bottom sides) and ends
up at the collector load. Note that this current distribution within the inset corresponds to the center
metallic ring of this 9 × 9 harvester. Moreover, we can observe as well from Fig. 10 strong current
distribution within the vicinity of the center metallic modified SRR ring.

Figure 11 shows the calculated conversion efficiency from RF to AC power for the proposed 9 × 9
harvester when being flat and bent with a radius of R = 50 mm. As can be seen from the figure, peak
efficiency around 98% is observed, while the efficiency for the same harvester when being bent with
R = 50 mm was around 48%. This is because of the effect of bending, which resulted in lower collected
energy from the loads under normal incidence from plane wave.

One interesting study that was carried out is to ensure health safety when such a flexible harvester
is attached within lossy human tissues for wearable applications. In other words, the Specific Absorption
Rate (SAR) level from the proposed 9 × 9 electromagentic harvester when being attached to human
tissues needs to be maintained below the allowable safety margins. In this study, we considered three
lossy layers of human tissues, namely: skin (2 mm thick), fat (3 mm thick), and muscle (with 5mm
thickness), where properties of those tissues are embedded within CST Microwave Studio. The harvester
is attached on top of those tissues without any air-gap spacing. A plane wave excitation was launched
from far-field regime to the harvester. At end, the peak SAR was calculated that is averaged over 10-g
of lossy tissue. Low SAR value was recorded, which was 0.44 W/Kg and is below 2.0 W/Kg according
to International Electrotechnical Commission (IEC) standards for a 10-g average mass. Fig. 12 depicts
the three dimensional pattern of the recorded maximum SAR level from this proposed harvester when
being attached on lossy human tissues.
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Figure 10. Surface current distribution for the proposed modified SRR flexible harvester of size 9 × 9
and a zoomed-in inset capture of surface current distribution within the central unit cell of the 9 × 9
flexible harvester.

Figure 11. Numerical results showing the
total collected efficiency from the proposed
flexible microwave harvester for the 9 × 9
harvester when flat and when bent with
radius of 50 mm.

Figure 12. 3D snapshot showing the peak SAR
pattern that is averaged over 10-g of tissue from the
proposed flexible 9 × 9 harvester when attached to
human tissues. Note that a 1-W power was assumed
for the incident plane wave.

4. CONCLUSIONS

In this paper, a flexible metamaterial-based electromagnetic harvester was proposed. The developed
metamaterial harvesting structure is based on a modified version of the conventional subwavelength split-
ring resonator. Numerical full-wave studies were carried out in order to investigate the performance
of this wearable harvester. Furthermore, the effect of the proposed harvester unit cell parameters on
the RF-to-AC power conversion efficiency strength was analyzed. Several finite sizes from the proposed
harvester unit cell were considered, and their performances were presented and discussed both in flat
and bending scenarios.
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Based on the numerical full-wave results, efficiency above 85% was maintained for the investigated
finite-sized structures when being maintained flat. Sufficient conversion efficiency was obtained for the
studied finite-sized harvesting structures in bent conditions. It was observed that efficiency starts to
decay below 80% as more bending (i.e., R < 50 mm) is applied to the harvesting structures, which can
be considered as an extreme worst scenario. However, it is instructive to highlight here that despite
slight degradation to efficiency of finite size harvesters when being exposed to bending, such conversion
efficiency is still useful for many wearable applications.

It is worth noting here that efficiency of the finite harvesters needs to be tested in real-world. We
highlight here that a minor drop to efficiency of proposed flexible metamaterial harvesters is expected,
due to the losses from the diodes during the rectification process. Moreover, the inherent harmonics
that are generated due to the nonlinear behavior of diodes will contribute to the minor drop to efficiency
of the harvester. Other losses can result from the fabrication tolerances.
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