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Abstract—A problem of electromagnetic wave radiation by narrow slots cut in an end wall of a
semi-infinite waveguide section into space above a perfectly conducting sphere is solved in a strict
self-consistent formulation by the generalized method of induced magnetomotive forces (MMF). Inside
the waveguide section, a reentrant cavity formed by the volume between a slotted diaphragm and
the waveguide end wall is located. The waveguide is operating in the frequency range of a single-mode
regime. The electrodynamic characteristics of this radiating system with the spherical screen of resonant
dimensions are investigated numerically and experimentally. The possibility to develop the spherical
antennas with a narrow-band frequency, energy, and spatial characteristics is substantiated.

1. INTRODUCTION

In all sectors of the economy and other spheres of modern society life, microelectronic robotics,
information technologies, and radio communications are being applied at an increasing rate. Most
of the devices used in these spheres are functioning in close proximity to each other both in the physical
space and in frequency ranges. Therefore, a practically important problem concerning electromagnetic
compatibility (EMC) of electronic systems exposed to interference from other electronic devices and
natural phenomena arises. If the levels of the intrasystem and intersystem EMC do not reach the
required values for all permissible variations of the equipment parameters, additional technical measures,
for example, appropriate frequency filters in the transceiver paths should be used. In particular, such
filters for slot antennas with waveguide excitation that do not impair their mass and size characteristics
can be realized by waveguide resonant diaphragms [1].

As known in [2], non-protruding slotted radiators are widely used on mobile objects, since slot
antennas do not significantly change their aerodynamic properties. The application of such antennas
ranges from spacecrafts [3] to autonomous microprobes [4]. Quite often, a body of a mobile objects or
their structural part can be approximately modelled by spherical surfaces, whose radii are comparable
with the antenna operating wavelength. For example, spherical antennas are used for microwave
hyperthermia allowing deep controlled heating of various tissues and organs of a living organism [5].
Therefore, interest in slotted spherical antennas with resonant spheres dimensions radiating into complex
media has not disappeared for several decades.

The characteristics of spherical antennas with resonant rectangular slot radiator were studied in [6–
12]. The external electrodynamic characteristics of slot antennas were considered in [6–8] under the
assumption that the magnetic currents along the narrow half-wave slot radiator are defined by using
a predefined cosine distribution. In the monograph [13], the authors of this article have proposed
a numerical-analytical method known as the generalized method of induced MMF for solving the

Received 8 May 2020, Accepted 7 July 2020, Scheduled 29 July 2020
* Corresponding author: Mikhail V. Nesterenko (Mikhail.V.Nesterenko@gmail.com).
The authors are with the Department of Radiophysics, Biomedical Electronics and Computer Systems, V. N. Karazin Kharkiv
National University, 4, Svobody Sq., Kharkiv 61022, Ukraine.



2 Berdnik et al.

diffraction problems concerning slotted coupling elements between electrodynamic volumes. This
method was applied for solving the problem of electromagnetic wave radiations by waveguide-slot
structures into the external space above a perfectly conducting sphere [9–12]. The problem of
electromagnetic wave radiation into space outside the perfectly conducting sphere through the slot
cut in the end wall of the semi-infinite rectangular waveguide, known as the waveguide-slot spherical
antenna (WSSA), was presented in a strict electrodynamic formulation in [9]. It was shown that the
spherical screen shape with corresponding design parameters does not significantly limit the operating
frequency band obtained for the waveguide-slot radiator placed over the infinite flat screen.

As known, a combination of internal resonators and slot radiators with pronounced frequency-
selective properties allows us to obtained for such antennas required narrow-band frequency-energy and
spatial characteristics [14–16]. Note that the results in [14, 15] were obtained for the slot excitation
by a voltage generator. This article is aimed at investigation of electrodynamic characteristics of
the WSSA [9] with the reentrant resonator formed by the one or two slot resonant diaphragm and
waveguide end wall. Since simulation of multielement waveguide structures by using existing commercial
programs are low-efficient, the boundary-value problem is proposed to solve in a rigorous, self-consistent
formulation by the generalized method of induced MMF.

2. THE PROBLEM FORMULATION AND SOLUTION

Geometry of the WSSA and adopted notations are shown in Fig. 1. Let us consider three electrodynamic
volumes separated by perfectly conducting wall: a semi-infinite rectangular waveguide, rectangular
resonator, and space over a sphere marked by the indices Wg, R, and Sp, respectively, coupling with
each other through rectilinear slots S1, S2, S3 cut in common walls. The waveguide cross-section is
{a × b}, the resonator dimensions are {a × b × H} and the sphere radius is R. A fundamental H10-
wave propagates in the waveguide from the region z = ∞. Let us introduce a Cartesian coordinate
system associated with the waveguide and a spherical coordinate system associated with the sphere
(Fig. 1). Cartesian coordinates of geometric centers of the internal slot aperture are (a/2, y03, 0), and
the spherical coordinates of the external slot aperture are (R,π/2, 0). The length of the external slot
aperture along the sphere is 2Le

3. The diaphragm thickness of the with the slots S1 and S2 is equal to h.
The slot center coordinates are (a/2, y0m,H). The slot S3 radiates into space with material parameters
ε1, μ1.

(a) (b) (c)

Figure 1. Geometry of the WSSA and corresponding notations.

The slot dimensions satisfy the following inequalities

dm

2Lm
� 1,

dm

λ
� 1, m = 1, 2, 3, (1)

where 2Lm and dm are the length and width of the slots, and λ is the wavelength in free space. The
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equivalent magnetic currents in the slots can be represented in the form

�Jm(sm) = �esmJ0mfm(sm)χm(ξm), (2)

where �esm are unit vectors; sm and ξm are local coordinates associated with the slots; J0m is the current
amplitude, and the axes {0ξm} are located in the plane x = a/2. The functions fm(sm) must satisfy the
boundary conditions fm(±Lm) = 0. The functions χm(ξm) take into account the electric field behavior
on the edges of the slots [13, 17] and satisfy the normalization conditions

∫
ξm

χm(ξm)dξm = 1. For the

infinitely thin diaphragm h = 0, these functions can be presented as

χm(ξm) =
1/π√

(dm/2)2 − ξ2
m

. (3)

If the diaphragm thickness is finite (h �= 0), and the slot edges are perfectly conducting rectangular
wedges, the function χm(ξm) can be written as

χm(ξm) =
Γ(7/6)/Γ(2/3)√

π(dm/2) 3
√

1 − (2ξm/dm)2
, (4)

where Γ(x) is the gamma function.
The functions f1,2(s1,2) and {f e

3 (ϕ) (f3(s3))} were obtained as approximate solutions of the integral
equation for the magnetic currents in the resonant slots cut in the diaphragm in the waveguide excited
by the H10-wave. The functions defining magnetic currents in the slot cut in the perfectly conducting
sphere excited by a plane electromagnetic wave, whose vector �H is parallel to the vector �es3 [13], can
be written as

f1,2(s1,2) = cos ks1,2 cos
πL1,2

a
− cos kL1,2 cos

πs1,2

a
,

f e
3 (ϕ) = cos(k1Rϕ) cos(πLe

3/a) − cos k1L
e
3 cos(πRϕ/a), f3(s3) = cos ks3 − cos kL3.

(5)

Using continuity conditions for the tangential components of the magnetic field on the slot surfaces
and the generalized method of induced MMF for the multi-slot structure, we obtain a system of algebraic
equations relative to the unknown current amplitudes J0m⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J01

(
Y Wg

11 + Y R
11

)
+ J02

(
Y Wg

12 + Y R
12

)
+ J03Y

R
13 = − iω

2k

L1∫
−L1

f1(s1)H0s1(s1) ds1,

J02

(
Y Wg

22 + Y R
22

)
+ J01

(
Y Wg

21 + Y R
21

)
+ J03Y

R
23 = − iω

2k

L2∫
−L2

f2(s2)H0s2(s2) ds2,

J03

(
Y R

33 + Y Sp
33

)
+ J01Y

R
31 + J02Y

R
32 = 0,

(6)

where

Y Wg,R,(Sp)
mm =

1
2k(k1)

Lm∫
−Lm

fm(sm)
[(

d2

ds2
m

+ k2(k2
1)
) Lm∫

−Lm

fm(s′m)GWg,R,Sp
sm

(sm, s′m)ds′m

⎤
⎦ dsm (7)

are intrinsic slot conductivities and

Y Wg,R
mn =

1
2k

Lm,n∫
−Lm,n

fm,n(sm,n)
[(

d2

ds2
m,n

+ k2

) Ln,m∫
−Ln,m

fn,m(s′n,m)GWg,R
sm,n

(sm,n, s′n,m)ds′n,m

⎤
⎥⎦ dsm,n (8)

are mutual slot conductivities; GWg,R,Sp
s are s-components of quasi-one-dimensional (|ξm− ξ′m| ≈ dm/4)

Green’s functions for the vector potentials of the corresponding volumes (see Appendix A); H0s1,2(s1,2)
are projections of fields of external sources on the axis of the slots, k = 2π/λ, and k1 = k

√
ε1μ1.
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The magnetic Green’s functions of a semi-infinite rectangular waveguide, rectangular resonator, and
space outside the perfectly conducting sphere (see Appendix A) allow us to derive, based on Eqs. (5),
(7), (8), the expressions for the intrinsic and mutual slot conductivities

Y Wg
mn (kLm, kLn) =

4π
ab

∞∑
m=1,3...

∞∑
n=0

εn

(
k2 − k2

x

)
kkz

cos kyy0m cos ky

(
y0n +

den

4

)
I1(kLm)I1(kLn),

Y R
mn(kLm, kLn) =

4π
ab

∞∑
m=1,3...

∞∑
n=0

εn

(
k2 − k2

x

)
kkz

coth kzH

× cos kyy0m cos ky

(
y0n +

den

4

)
I1(kLm)I1(kLn),

Y R
m3(kLm, kL3) =Y R

3m(kL3, kLm) =
4π
ab

∞∑
m=1,3...

∞∑
n=0

εn

kzshkzH

× cos kyy0m cos ky

(
y03 +

de3

4

)
I1(kLm)I2(kL3),

Y R
33(kL3) =

4π
ab

∞∑
m=1,3...

∞∑
n=0

εnk

kz (k2 − k2
x)

coth kzH cos kyy03 cos ky

(
y03 +

de3

4

)
I2
2 (kL3),

Y Sp
33 (k1L

e
3, k1R) = − 4

k1Rμ1

∞∑
n=1

1
n(n + 1)

· 1

(n + 1) − k1Rh
(2)
n+1(k1R)/h(2)

n (k1R)

×
{
(k1R)2C2

0A0
nÃ0

n−2
n∑

m=1

C2
m

[
m2
(
n(n+1)−(k1R)2

)
Bm

n B̃m
n −(k1R)2Am

n Ãm
n

]}
,

(9)

where

I1(kLm) = 2
{

k sin kLm cos kxLm − kx cos kLm sin kxLm

k2 − k2
x

cos
πLm

a

−

(π

a

)
sin πLm

a cos kxLm − kx cos
πLm

a
sin kxLm

(π/a)2 − k2
x

cos kLm

⎫⎪⎬
⎪⎭ ,

I2(kL3) = 2
kx sin kL3 cos kxL3 − k cos kL3 sin kxL3

kx
,

Am
n =

√
π

Cnm
Φm

n , Ãm
n = sin θ

dP̄m
n (cos θ)

dθ

∣∣∣∣
θ= π

2
+ de

4R

,

Bm
n =

√
π

Cnm
Fm

n , B̃m
n = P̄m

n

(
cos

(
π

2
+

de

4R

))
,

Cm =
cos(πLe

3/a)
m2 − (k1R)2

[
m sin

mLe
3

R
cos k1L

e
3 − k1R cos

mLe
3

R
sin k1L

e
3

]

− cos k1L
e
3

m2 − (πR/a)2

[
m sin

mLe
3

R
cos

πLe
3

a
− πR

a
cos

mLe
3

R
sin

πLe
3

a

]
= CI

m − CII
m ,

CI
m

∣∣
m→k1R

=
(

Le
3

2R
+

sin(2k1L
e
3)

4k1R

)
cos

πLe
3

a
, CII

m

∣∣
m→πR

a
=
(

Le
3

2R
+

sin(2πLe
3/a)

4πR/a

)
cos k1L

e
3,

P̄m
n (cos θ) =

√
π/CnmPm

n (cos θ) are the normalized associated Legendre functions, kx = mπ
a , ky =

nπ
b , kz =

√
k2

x + k2
y − k2, m and n are integers, εn = { 1, n = 0

2, n �= 0 , and y0m are coordinates of the slot

centers.
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The slot currents can be found by solving the equations system in Eq. (6). If the H10-wave with
the amplitude H0 propagates in the semi-infinite rectangular waveguide, the fields can be presented as
H0s1,2(s1,2) = 2H0 cos πs1,2

a . Then the field reflection coefficient S11 and the power radiation coefficient
|SΣ|2 can be written as

S11 =
{

1 − 8πkg

iabk3

[
J̃01F (kL1) + J̃02F (kL2)

]}
e−i2kgz, (10)

|SΣ|2 = 1 − |S11|2, (11)
where J̃0m = J0m(− iω

k2 H0)−1 arethe normalized currents amplitude in the slots, and kg =
√

k2 − (π/a)2
is the propagation constant, and

F (kLm) = 2 cos
πLm

a

sin kLm cos
πLm

a
− π

ka
cos kLm sin

πLm

a
1 − (π/ka)2

− cos kLm

sin
2πLm

a
+

2πLm

a
(2π/ka)

.

The equivalent width de3 of the slot was calculated by the formula de3 ≈ d3 exp(−πhe
2d3

) under the
condition (h3d3/λ

2) � 1, where he = V v/S3, V v is the volume of the slot cavity, Si the internal slot
aperture area, and h3 the maximum dimension of the slot tunnel cavity in the radial direction [9]. The
thickness of the diaphragm wall was taken into account using a similar formula under condition he = h.

3. RADIATION FIELDS OF THE WSSA

The formula for determining the magnetic current on the slot aperture in space outside the sphere
according to Eqs. (5) and (9) is

J(s) = − iω

k2
1

H0F (kL3)
[cos(k1s) cos(πLe

3/a) − cos k1L
e
3 cos(πs/a)]

Y R
33(kL3) + Y Sp

33 (k1Le
3, k1R)

. (12)

The distribution of the slot magnetic current in Eq. (12) allows us to calculate the electrodynamic
characteristics of the spherical antenna in a space outside the sphere. The total radiation field of
the spherical antenna (Fig. 1(c)) can be determined by two components of the electric Hertz vector,
Πm

eθ(r, θ, ϕ) and Πm
eϕ(r, θ, ϕ) [9], after substituting the current distribution J(s) = J(Rϕ′) in Eq. (12).

Then the components of the total radiation field of the spherical antenna can be presented as:

Eer(r, θ, ϕ) = −1
r

∞∑
n=0

Qn(r)

⎛
⎜⎜⎜⎝

FC0(ϕ)
2Cn0

Pn (cos θ)
dPn(cos θ′)

dθ′

∣∣∣∣
θ′=π/2

+
∞∑

m=1

FCm(ϕ)
Cnm

Pm
n (cos θ)Φm

n

⎞
⎟⎟⎟⎠ ,

Eeθ(r, θ, ϕ) =
1
r

∞∑
n=0

n∑
m=0

εmQ∗
n(r)FCm(ϕ)

2n(n + 1)Cnm

[
m2 Pm

n (cos θ)
sin θ

Fm
n +

dPm
n (cos θ)

dθ
Φm

n

]
,

Eeϕ(r, θ, ϕ) = −1
r

∞∑
n=0

n∑
m=1

mQ∗
n(r)FSm(ϕ)

n(n + 1)Cnm

[
dPm

n (cos θ)
dθ

Fm
n +

Pm
n (cos θ)
sin θ

Φm
n

]
,

Her(r, θ, ϕ) = − 1
iωμ1r2

∞∑
n=0

n∑
m=1

mFSm(ϕ)
Cnm

(Q∗
n(r) − 2Qn(r)) Pm

n (cos θ)Fm
n ,

Heθ(r, θ, ϕ) =
k2

1

iωμ1

∞∑
n=0

n∑
m=1

Qn(r)m FSm(ϕ)
n(n + 1)Cnm

⎡
⎢⎢⎣

Pm
n (cos θ)
sin θ

Φm
n

+
(

1 − n(n + 1)
(k1 r)2

)
dPm

n (cos θ)
dθ

Fm
n

⎤
⎥⎥⎦,

Heϕ (r, θ, ϕ) =
k2

1

iωμ1

∞∑
n=0

n∑
m=0

Qn(r)FCm(ϕ)
2n(n + 1)Cnm

⎡
⎢⎢⎣

εm
dPm

n (cos θ)
dθ

Φm
n

+2m2

(
1 − n(n + 1)

r2

)
Pm

n (cos θ)
sin θ

Fm
n

⎤
⎥⎥⎦ ,

(13)
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where

Qn(r) =
h

(2)
n (k1r)

(n + 1)h(2)
n (k1R) − k1R h

(2)
n+1(k1R)

, Fm
n = Pm

n (cos θ′)
∣∣
θ′=π/2

, Φm
n =

dPm
n (cos θ′)

dθ′

∣∣∣∣
θ′=π/2

FCm(ϕ) =

Le/R∫
−Le/R

f(ϕ′) cos
(
m(ϕ − ϕ′)

)
dϕ′, FSm(ϕ) =

Le/R∫
−Le/R

f(ϕ′) sin
(
m(ϕ − ϕ′)

)
dϕ′,

Cnm =
2π (n + m)!

(2n + 1) (n − m)!
, Q∗

n(r) =
∂

∂r
(rQn(r)) =

(n + 1)h(2)
n (k1r) − k1r h

(2)
n+1(k1r)

(n + 1)h(2)
n (k1R) − k1R h

(2)
n+1(k1R)

,

εm =
{

1, m = 0,
2, m �= 0,

m and n are integers, and h
(2)
n (k1r) and h

(2)
n+1(k1r) are the spherical Hankel functions of the second

kind.
Formulas (13) allow us to find electromagnetic fields at any distance from the antenna under

condition r ≥ R. If the external homogeneous medium is lossless, and ε1, μ1 are purely real quantities,
Equations (13) in the antenna far zone (r � λ) are simplified, since the terms proportional to 1/r2 and
1/r3 can be omitted. As an example, we present here only the explicit expressions for components of
the magnetic field of the WSSA.

Her(r, θ, ϕ) = 0,

Heθ(r, θ, ϕ) =
k2

1

iωμ1

∞∑
n=0

n∑
m=1

Qn(r)m FSm(ϕ)
n(n + 1)Cnm

[
Pm

n (cos θ)
sin θ

Φm
n +

dPm
n (cos θ)

dθ
Fm

n

]
,

Heϕ (r, θ, ϕ) =
k2

1

iωμ1

∞∑
n=0

n∑
m=0

Qn(r)FCm(ϕ)
2n(n + 1)Cnm

[
εm

dPm
n (cos θ)

dθ
Φm

n + 2m2 Pm
n (cos θ)
sin θ

Fm
n

]
.

(14)

Since the relations k1r → ∞ and |k1r| � n are satisfied in the antenna far zone, the spherical Hankel
functions of the second kind can be replaced by asymptotic representation h

(2)
n (kr) ≈ (i)n+1 e−ikr

kr , and
the functions Qn(r) in Eq. (14) can be written as

Qn(r) ≈ e−k1r

k1r
· (i)n+1

(n + 1)h(2)
n (k1R) − k1R h

(2)
n+1(k1R)

.

4. NUMERICAL AND EXPERIMENTAL RESULTS

Figure 2 shows the curves of the power radiation coefficient, |SΣ|2, as functions of the wavelength in
the single-mode range of the rectangular waveguide with cross section {23× 10}mm2 for three variants
of the WSSA. The curves corresponding to the various numbers of slots marked as: curve 1 — slot
S3, curve 2 — slots S1 and S3, 3 — slots S1, S2, and S3. The WSSA parameters are as follows:
R = 80/π mm. 2L1 = 2L3 = 16 mm, 2L2 = 14 mm, d1 = d2 = d3 = 0.8 mm, y01 = b/8, y02 = b/2,
y03 = b/2, h = 1.0 mm, H = a/2.

The plots show that the reentrant cavity placed in the waveguide substantially increases the system
Q-factor. The resonance curve has a large steepness, and its shape approaches to a rectangular form
(Fig. 2, Fig. 3). The second slot in the diaphragm gives rise to the total reflection of the incident
H10-wave (|S11| = 1.0, |SΣ|2 = 0) at some wavelength depending upon the slot length 2L2 and position.
In this case, the passband at half power level is substantially reduced in comparison with the cases
of single- and double-slot structures. The radiation coefficient increases at shorter wavelengths, and
its maximum position, λres/λc, depends on the geometric dimensions and position of the slot on the
diaphragm. The maximum position can be found by the formula [13]

λres

λc
=

2L2/a

1 + α(2/π)F (a, b, L2, de2, y02)
, (15)
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Figure 2. The power radiation coefficient |SΣ|2 of the WSSA versus the wavelength.
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Figure 3. The power radiation coefficient versus the wavelength for the WSSA with one and two slot
reentrant cavity.

where λc is a critical wavelength of the H10-wave, and α = 1/{8 ln[d2/(8L2)]} is the small parameter,

F (a, b, L2, de2, y02) ∼= 2π

⎧⎪⎨
⎪⎩

4 cos2 πL2

a
γ2

10aL2

⎡
⎢⎢⎢⎢⎣

2π cos2 πy02

b
k11b

− 2 cos2 πy02

b

+
(

γ10b

9

)2

cos2
2πy02

b
− ln

(
πde2

2b
sin

πy02

b

)
⎤
⎥⎥⎥⎥⎦

−
4 cos2 3πL2

a
k2

30aL2

[
K0

(
k30

de2

4

)
+ K0(2k30y02)

]
+
(

ln
16L2

de2
− 1
)

− ln
1 − L2/a

1 + L2/a
+ ln

1 − 2L2/a

1 + 2L2/a
+ ln

1 − 2L2/(3a)
1 + 2L2/(3a)

− a

2L2

[
ln

(
1−
(

2L2

a

)2
)
−2 ln

(
1−
(

L2

a

)2
)

+3 ln

(
1−
(

2L2

3a

)2
)
−
(

L2

a

)2
]
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− 4a
π2L2

[
K0

(
πde2

4a

)
sin2 πL2

a
+

1
9
K0

(
3πde2

4a

)
sin2 3πL2

a
+

∞∑
m=5,7...

K0

(
mπde2

4a

)
/m2

]}
. (16)

Here γ10 =
√

(π/(2L2))2 − (π/a)2, k11 =
√

(π/a)2 + (π/b)2 − (π/(2L2))2, k30 =
√

(3π/a)2 − (π/(2L2))2,
K0(x) is Macdonald function. Since the function K0(x) decreases rapidly with increasing argument,
only the first few terms should be taken into account in the series of Eq. (16).

By varying the length H of the reentrant cavity, maximum radiation can be achieved at one
or several wavelengths (Fig. 4: 2L2 = 14.0 mm, y02 = 7b/8), while the value λres/λc is practically
independent of the reentrant cavity dimensions.
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Figure 4. The WSSA power radiation coefficient versus the wavelength for various length H of the
reentrant cavity.

The typical normalized RPs of the WSSA shown in Fig. 1, c are shown in Fig. 5. The plots were
obtained with the following parameters: λ = 32 mm, R = λmm, 2Le

3 = 0.5λ, and d3 = 0.05λ. Note
that in E-plane RP of the slot radiator placed over the infinite flat screen is presented by the constant
function, while the E-plane RP of WSSA is significantly non-constant. The degree of the difference
between the two cases increases when the sphere radius is decreased.

The validity of the numerical simulation was confirmed by comparing the calculated and
experimental data. A photograph of a prototype WSSA model used for experimental studies is shown
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Figure 5. The RPs of the WSSA.
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Figure 6. The prototype WSSA model.
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Figure 7. The power radiation coefficient of the WSSA versus the wavelength: R = 50 mm, a = 23 mm,
b = 10 mm, 2Le

3 = 18 mm, dm = 1.5 mm, hm = 2.0 mm, 2L1 = 16.0 mm, 2L2 = 14.0 mm, H = a/2,
y01 = y03 = b/4, y02 = 3b/4.

in Fig. 6. The WSSA geometrical parameters and waveguide wall thickness for the standard rectangular
waveguide are given in the caption of Fig. 7. The plots show that the theoretical curves and experimental
data are in good agreement with each other.

5. CONCLUSION

The problem concerning radiation of electromagnetic waves into space outside the perfectly conducting
sphere through a narrow slot cut in the end wall of the semi-infinite rectangular waveguide with the
reentrant cavity in it is solved by the generalized method of induced MMF. The problem was solved
by using the basis functions obtained as the analytical solutions of the integral equations for the slot
currents by the asymptotic averaging method. The concept of equivalent slot width was introduce
allowing us to eliminate the need to determine the fields in the internal slot cavities. The proposed
mathematical model was verified by comparing the numerical results and experimental data. The results
can be used in the design and development of WSSAs.
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APPENDIX A. MAGNETIC GREEN’S FUNCTIONS OF THE CONSIDERED
ELECTRODYNAMIC VOLUMES

1. The hollow half-infinite rectangular waveguide of the cross-section {a × b} with the perfectly
conducting walls:

Ĝm(�r,�r′) =
2π
ab

∑
m,n

εmεn

kz

{
(�ex ⊗ �e′x)Φm

x (x, y;x′, y′)
[
e−kz |z−z′| + e−kz(z+z′)

]
+ (�ey ⊗ �e′y)Φm

y (x, y;x′, y′)
[
e−kz |z−z′| + e−kz(z+z′)

]
+ (�ez ⊗ �e′z)Φm

z (x, y;x′, y′)
[
e−kz |z−z′| − e−kz(z+z′)

]}
.

(A1)

The following symbols are accepted in Eq. (A1):

Φx(x, y;x′, y′) = cos kxx cos kxx′ sin kyy sin kyy
′,

Φy(x, y;x′, y′) = sin kxx sin kxx′ cos kyy cos kyy
′,

Φz(x, y;x′, y′) = sin kxx sin kxx′ sin kyy sin kyy
′,

εm,n =
{ 1, m, n = 0

2, m, n �= 0 , Rkx = mπ
a , ky = nπ

b , kz =
√

k2
x + k2

y − k2, m and n are the integral numbers; �ex,

�ey and �ez are the unit vectors of the rectangular coordinate system; Î = (�ex ⊗�e′x)+ (�ey ⊗�e′y)+ (�ez ⊗�e′z)
is the unit dyadic, and “⊗” stands for dyadic product.

2. The hollow rectangular resonator {aR × bR × H} with perfectly conducting walls:

Ĝm(�r,�r′) =
2π

aRbR

∞∑
m=0

∞∑
n=0

εmεn

kz

×
{

(�ex ⊗ �e′x)Φm
x (x, y;x′, y′)

[
chkz(H − |z − z′|) + chkz(H − |z + z′|)

shkzH

]

+(�ey ⊗ �e′y)Φ
m
y (x, y;x′, y′)

[
chkz(H − |z − z′|) + chkz(H − |z + z′|)

shkzH

]

+ (�ez ⊗ �e′z)Φ
m
z (x, y;x′, y′)

[
chkz(H − |z − z′|) − chkz(H − |z + z′|)

shkzH

]}
. (A2)

The following notations are adopted in Eq. (A2):

Φm
x (x, y;x′, y′) = sin kxx sin kxx′ cos kyy cos kyy

′,
Φm

y (x, y;x′, y′) = cos kxx cos kxx′ sin kyy sin kyy
′,

Φm
z (x, y;x′, y′) = cos kxx cos kxx′ cos kyy cos kyy

′.

The remaining notations coinside with that in Eq. (A1).
3. Space outside the perfectly conducting sphere of the radius R̃ = R with the permittivity ε1 and

the permeability μ1 of the medium (Fig. A.1):

Ĝm
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) =

∣∣∣∣∣∣∣
Gm

ρρ′ 0 0
0 Gm

θθ′ Gm
θϕ′

0 Gm
ϕθ′ Gm

ϕϕ′

∣∣∣∣∣∣∣ , (A3)

Gm
ρρ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) = −

∞∑
n=0

n∑
m=0

εm hm
n (ρ, ρ′)

2Cnm
Pm

n (cos θ)Pm
n

(
cos θ′

)
cos m(ϕ − ϕ′),

Gm
θθ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) = −

∞∑
n=0

n∑
m=0

εmum
n (ρ, ρ′) cos m(ϕ − ϕ′)

2n (n + 1)Cnm sin θ sin θ′
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Figure A1.

×
[
m2Pm

n (cos θ) Pm
n

(
cos θ′

)
+ sin θ sin θ′

dPm
n (cos θ)

dθ

dPm
n (cos θ′)

dθ′

]
,

Gm
θϕ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) =

∞∑
n=0

n∑
m=0

mum
n (ρ, ρ′) sin m(ϕ − ϕ′)

n (n + 1) Cnm

×
[
dPm

n (cos θ)
dθ

Pm
n (cos θ′)
sin θ′

+
Pm

n (cos θ)
sin θ

dPm
n (cos θ′)

dθ′

]
,

Gm
ϕθ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) = −Gm

θϕ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) ,

Gm
ϕϕ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) = Gm

θθ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′) .

Here Pm
n (cos θ) is the associated Legendre functions of the first sort,

Cnm =
2π (n + m)!

(2n + 1) (n − m)!
,

hm
n (ρ, ρ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4πk1h
(2)
n (k1ρ

′)

⎡
⎣ jn (k1ρ)Qn

(
yn

(
k1R̃

))
−yn (k1ρ)Qn

(
jn

(
k1R̃

))
⎤
⎦ , R̃ ≤ ρ < ρ′,

4πk1h
(2)
n (k1ρ)

⎡
⎣ jn (k1ρ

′)Qn

(
yn

(
k1R̃

))
−yn (k1ρ

′)Qn

(
jn

(
k1R̃

))
⎤
⎦ , ρ > ρ′,

,

Qn (fn (k1R)) =
n fn

(
k1R̃

)
− k1R̃ fn+1

(
k1R̃

)
n h

(2)
n

(
k1R̃

)
− k1R̃h

(2)
n+1

(
k1R̃

) ,

um
n (ρ, ρ′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4πk1
h

(2)
n (k1ρ

′)

h
(2)
n

(
k1R̃

) [jn (k1ρ) yn

(
k1R̃

)
− yn (k1ρ) jn

(
k1R̃

)]
, R̃ ≤ ρ < ρ′,

4πk1
h

(2)
n (k1ρ)

h
(2)
n

(
k1R̃

) [jn (k1ρ
′) yn

(
k1R̃

)
− yn (k1ρ

′) jn

(
k1R̃

)]
, ρ > ρ′,

h
(2)
n (k1ρ) = jn(k1ρ)− iyn(k1ρ) =

√
π

2k1ρH
(2)
n+1/2(k1ρ) is the Hankel spherical function of the second sort;

jn(k1ρ) =
√

π
2k1ρJn+1/2(k1ρ) and yn(k1ρ) =

√
π

2k1ρNn+1/2(k1ρ) are the Bessel spherical function and

the Neumann one, correspondingly; Jn+1/2(k1ρ) is the Bessel function; Nn+1/2(k1ρ) is the Neumann

function, and H
(2)
n+1/2(k1ρ) is the Hankel function of the second sort with the half-integral index.
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