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Contribution to the Experimental Characterization of the
Electromagnetic Properties of HTS
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Abstract—This work is a contribution to the characterization of the electromagnetic properties of high
temperature superconductors (HTS) made of Bismuth Strontium Calcium Copper Oxides (BSCCO).
The electromagnetic proprieties (critical current density and self-field AC losses) of a tape and a coil
are determined experimentally at different frequencies, and compared to analytical models and finite
element simulations for a better analysis of the physical phenomena. As shown in this work, the
transition from the element to the system is not straightforward, and the characterization of such a
material at the system scale is necessary due to their high sensitivity to the magnetic field. Solutions
to some measurement problems are also highlighted.

1. INTRODUCTION

Superconducting materials present extraordinary electromagnetic properties [1]. Since their discovery
in 1911, research on these materials evolves on both the theoretical aspects to understand the physical
phenomena and their applications, especially after the discovery of high temperature superconductors
(HTS). However, the integration of HTS in power systems remains very limited, particularly in AC
electrical machines, where their use is generally restricted to the function of inductors in synchronous
machines [2]. The reasons for that are not only related to the technical constraints of realization, but
also related to the high sensitivity of such materials to their electromagnetic environment. Even if a lot
of work has been done on the characterization of superconducting elements (bulks, tapes. . . ) [3–5], the
transition from the element to the system is not obvious, because the behavior of an isolated HTS element
is very different when it is integrated into a system. In this context, in this work, the electromagnetic
proprieties (critical current density and AC self-field losses) of samples and coils, made of BSCCO type
tapes, are determined experimentally at different frequencies, and compared to analytical models [5]
and finite element simulations, where the electrical properties of the HTS are represented by the power
law combined with the Kim’s law to take into account the dependence of the critical current with the
magnetic field.

The experimental characterization procedures are described in the next section, followed with
results and discussions presented in the last section.

2. CHARACTERIZATION METHODS

2.1. Experimental Characterization of the E(J) Relation

Assuming that the current density is homogeneously distributed in the section of the characterized
element, the E(J) characteristic is deduced from the measurement of the U(I) curve of the HTS element
(tape sample or coil) by using the four-point method [2]. It consists of supplying the superconducting
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The authors are with the Université de Lorraine, GREEN, F-54000 Nancy, France.



138 Statra, Menana, and Douine

Figure 1. Experimental setup for the E(J) curve characterisation.

element by a DC current source (I), and then the voltage drop (U) over the element’s terminals is
measured by mean of a nanovoltmeter as shown in Fig. 1. The critical value of the electric field (Ec) is
set to 1µV/cm. The critical voltage (Uc) of the element is the product of Ec by the tape length between
the potential measurement points. The critical current (Ic) is the magnitude of the supplying current
giving a voltage drop U = Uc.

2.2. AC Losses Measurement

The experimental setup for AC losses measurement, using a synchronous detection voltmeter, is shown
in Fig. 2 [6]. The superconducting element (tape or coil) is supplied by a sinusoidal current provided
by an AC current source of variable amplitude and frequency. The measured voltage at the element’s
terminals is composed of two parts: an inductive part and a resistive part which is responsible of the
power losses. The first part is several hundred times higher than the second one. If the measuring device
is calibrated for this voltage level, the resistive part would be embedded in its error’s margin, which
would lead to significant measurement errors of this part. To overcome this constraint, the measurement
of the inductive part is compensated. A compensating coil is added in series with the measuring circuit
and placed close to the supply cable (Fig. 2). The coil is oriented such as its mutual inductance with
the power cable opposes the inductance of the measuring element (tape or coil). The measured voltage
is then expressed as follows:

U (t) = Ulosses (t) + (L − M)
di(t)
dt

(1)

The distance between the compensating coil and the power cable is varied so that the value of the
mutual inductance M approaches to the self-inductance (L) of the superconducting sample. It is not
necessary to completely eliminate the inductive part, but to reduce it to a value close to that of the
resistive part.

The current signal is used as a reference in the synchronous detection voltmeter. The measured
voltage is non-sinusoidal because of the nonlinear behavior of the HTS. Only the fundamental of this
voltage contributes to the AC losses. It should be noted that the measurement at the network frequency

Figure 2. AC losses measurement setup.
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(50 Hz) is to be avoided because it is generally very disturbed by the surrounding equipment powered
at this frequency.

3. RESULTS AND DISCUSSIONS

A HTS tape made from non-insulated DI-BSCCO (Dramatically Innovative Bismuth Strontium Calcium
Copper Oxide) manufactured by Sumitomo electric (ACT type) in 2011 is used [7]. The coil is wound
by a fully insulated tape. The tape and coil specifications are listed in Table 1. All the measurements
were carried out at 77 K, in liquid nitrogen.

Table 1. Tape and coil specifications.

Tape Coil
Width 2.8 mm Inner radius 25 mm

Thickness 0.33 mm Outer radius 50 mm
Section 0.93 mm2 Number of turns 63

Distance between the voltage taps 20 cm Distance between the voltage taps 14.8 m

3.1. The E(J) Curves

The measured U(I) curves for the tape and coil are shown in Fig. 3. The determined critical current
of the tape is 69.5 A, while that of the coil is about 44 A. This degradation is due to the influence
of the coil’s magnetic field on the HTS tape. Indeed, the behavior obeys to a power law expressed
by Eq. (2), in which the critical current (Ic) and the creep exponent (n) strongly depend on the
intensity of the magnetic field and its orientation (Eqs. (3) and (4)) [8–10]. As a result, the shape of
a superconducting coil directly affects its electromagnetic performances. In Eqs. (3) and (4), n0 and
Ic0 represent respectively the values of the zero field creep exponent and critical current; B‖ and B⊥
represent the components of the magnetic field parallel and perpendicular to the tape width, and k, β,
BJ0 and Bn0 are constants characterizing the material used.

U(I) = UC

(
I

IC (B)

)n(B)

(2)

Figure 3. Measured U(I) curves in the tape and coil in DC conditions.



140 Statra, Menana, and Douine

IC =
Ic0(

1 + B−1
J0

√
k2B2

‖ + B2
⊥
)β

(3)

n =
n0(

1 + B−1
n0

√
k2B2

‖ + B2
⊥
) (4)

3.2. AC Losses

The tested element is supplied by a sinusoidal current with variable amplitude Imax. The AC losses
measured in the tape at different frequencies are plotted in Fig. 4 as function of the ratio (i = Imax/Ic).
For comparison, the losses given by the Norris formulas for tapes of elliptical and strip sections [5],
expressed, per cycle and per unit length in Eqs. (4) and (5), are also plotted in Fig. 4.

Qsfe =
(
μ0I

2
c /π

)
[(1−i) ln (1−i)+ (2−i) i/2] (5)

Qsfs =
(
μ0I

2
c /π

) [
(1−i) ln (1−i)

+ (1+i) ln (1+i) − i2

]
(6)

As shown in Fig. 4, the AC losses for the considered frequencies fall between the Norris elliptical and
strip curves. At low frequencies, the measured losses are close to those calculated for an elliptical section
(Eq. (4)), and as the frequency increases, the measured losses fall more closely to the Norris strip curve
(Eq. (5)).

Figure 4. Self-field AC losses in the tape as a function of the current ratio i for two frequencies: 10 Hz
and 90 Hz.

The self-field AC losses per cycle decrease with frequency as shown in Fig. 5 which represents
the measured losses normalized to μ0I

2
c f/π. The physical aspects behind are well described in the

literature [11]. This evolution of the losses per cycle with the frequency is not predicted by the Norris
model. In order to quantify this evolution, we have implemented on COMSOL software a finite element
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Figure 5. Normalized self-field AC losses of the tape as a function of the current ratio i for different
frequencies.

modelbased on the H-formulation [12], where the power law is used to represent the E(J) characteristic
of the HTS, with the use of the Kim’s model to take into account the variation of the critical current
with the magnetic field: Jc(B). The H-formulation is given as follows:{

�∇×
(
ρ(J)�∇× �H

)
+ μ0∂t

�H= 0

ρ (J) = EcJ
−1
c (J−1

c J)n−1
(7)

where ρ, μ0, and H are the resistivity, vacuum permeability, and magnetic field, respectively. The
simulations were performed in 2D time domain.

The critical current density Jc is determined from the measured critical current considering only
the section of the superconducting material which represents 30% of the total section of the tape (matrix
+ superconductor). The AC losses are calculated on two periods of the applied current, and the mean
losses in the second period are compared to the measurements.

The parameters involved in Eqs. (3) and (4) are difficult to identify, in particular in self-magnetic
fields [13]. In this work, these parameters have been determined in such a way that the calculated losses
match the measured losses for a frequency of 10 Hz. The chosen parameters are listed in the Table 2.
Using these parameter, a good agreement is also found between simulations and measurements for the
other frequencies as shown in Fig. 6.

Table 2. Used parameters for the Kim’s model.

Parameter Jc0 BJ0 k β n0 Bn0

Tape 360.75 A/mm2 0.018 T 0.14 2.9 11 0
Coil 207.94 A/mm2 0.14 T 0.14 2.28 11 59.7 mT

As mentioned above, due to the strong dependence of the electromagnetic properties of HTS on
the magnetic field, the behavior of an HTS element is very different when it is integrated into a system.
This is illustrated in Fig. 7 which shows a comparison at 10 Hz between the measured self-field AC
losses of the HTS coil and the self-field AC losses of a straight HTS tape of length equal to that of the
coil wire. The tape losses are obtained by multiplying the measured losses per unit length by the tape
length. The significant difference between the results is due to the influence of the magnetic field which
considerably affects the performances of the HTS tape. This has to be taken into account when sizing
HTS coils.
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Figure 6. Comparison between the simulated and measured self-field AC losses per cycle in the tape.

Figure 7. Comparison of the measured self-field AC losses in the coil with those calculated in a straight
tape of the same length (f = 10 Hz).

Figure 8. Self-field AC losses in the coil as a function of frequency.
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Figure 9. Self-field AC losses in the coil as a function of cubed current.

Figure 10. Self-field AC losses per cycle in the coil as a function of frequency.

2D axisymmetric finite element simulations were also performed for the HTS coil, with a bulk
approximation of its section. The parameters given in [7] were used in the Kim’s model. These
parameters are listed in Table 2, where Jc0 takes into account the volume fraction of the HTS in
the coil section. Simulations results and measurements are in a good agreement as shown in Figs. 8
and 9. We also notice that the losses are proportional to the frequency and the cubed current (I3). It
means that in AC regimes, the hysteresis losses in HTS are predominant in self-field (i.e., no external
magnetic field applied). As for the tape, the self-field AC losses per cycle decrease as the frequency
grows which is shown in Fig. 10. This decrease follows a logarithm dependency on the frequency for
both measurements and simulations.

4. CONCLUSION

In this work, DI-BISCCO/Ag-sheathed HTS materials have been characterized as sample (tape) and
system (coil). The study shows the necessary of a characterization of such materials at the system
scale due to their high sensitivity to the magnetic field. Solutions to some measurements issues
are also provided. The good agreement between the simulation and the measurements shows that
the models used are quite realistic and representative of the physical phenomena at the considered
frequencies.Reliable modeling and experimental results are provided which could be used further for
models validation or HTS systems design and optimization.
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