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Moment Method Treatment of Corrugations with Fins over Ridges
and Stratified Covers Using Dyadic Cavity and Multilayer Green’s

Functions for Studies of Higher-Order Diffraction Modes

Malcolm Ng Mou Kehn1, 2, *

Abstract—Herein presented is a numerical treatment of plane-wave scattering by gratings with metallic
strip linings over both exterior surfaces of each conducting bar to create flanged groove apertures, which
altogether is covered on both sides by multiple dielectric layers. The technique hinges on the method
of moments that employs parallel-plate waveguide cavity dyadic Green’s functions and a numerical
spectral Green’s function for planar stratified media along with Floquet concepts as well as the PEC
equivalence theorem. In terms of reflection and transmission characteristics as well as surface wave
modal dispersion, results computed by codes written based on this formulation are validated with
those simulated by a commercial solver as well as in literature. Arising from the special complex
geometry, the additional degrees of freedom offer measures for enhancing the performances of various
applications such as beam deflectors, resolution of spectroscopic gratings, grating couplers, and grating
pulse compression/decompression.

1. INTRODUCTION

Having proven vital to numerous engineering technologies in recent decades, metallic corrugations find
applications as filters [1, 2], grating couplers [3–5], mode converters [6–9], modulators [10–12], beam
deflectors [13–16], amongst many others. Through the years, numerous forms of methods to analyze or
numerically treat such periodic structures have been reported [17–25]. However, none has yet to consider
the special topology investigated in this paper, which is a periodic array of infinitely long penetrable
conducting bars with wider strip covers or metal fins on both the lower and upper surfaces of each
narrower ridge, which altogether is sheathed by multiple dielectric layers on both sides that sandwich
the gratings. A rigorous full-wave modal analysis of plane-wave scattering by this structure is presented.
Along with the PEC equivalence theorem, the approach entails the moment method using parallel-
plate waveguide (PPW) cavity Green’s functions and a numerical spectral-domain Green’s function
for planar stratified media accompanied by the Floquet theorem, the details of which are presented in
Section 2. The former type of dyadic Green’s functions is used to model the fields within the grooves of
the corrugations, the information of which are bridged with those of the exterior multilayer structure
derived from the latter form of Green’s functions. Due to the full-wave nature of this computational
technique, a multitude of Floquet modal harmonics is considered. Particular focus in this paper shall
be on the higher-order diffraction modes.

A related but still dissimilar structure: the conductor grounded corrugated surface was studied
in [26]. However, the analytical details remain substantially different and neither treatment is derivable
from the other. Moreover, while reflection phase studies were conducted previously, investigations into
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the reflection and transmission properties of plane-wave incidences are instead relevant here. That prior
work also considered only the zeroth-order Floquet harmonic whereas the dominant mode as well as
higher diffraction orders is investigated here. Dielectric slab covers that were formerly neglected are also
now considered. Furthermore, there were no studies earlier on how that related version could be put to
practical use. Whereas in this paper, ways into which the new topology may enhance the performances
of actual applications are presented, achieved through its many new degrees of parametric freedom that
are absent from [26]. Finally, no experimental work was carried out in the latter whereas measurements
performed on manufactured prototype gratings shall be reported in this paper.

Through the new structural as well as material attributes offered by the present special geometry,
such as those afforded by dielectric slab covers loadable on both sides of the gratings, dielectric filling
of the grooves, as well as flanged slits creatable by metallic fins loaded on the conducting bars, the
performances of a multitude of applications can be boosted, such as grating couplers, spectroscopy,
pulse compression and decompression gratings, grid polarizers, holography, and polarimetry, among
many others in the fields of optics and antennas. This work is a thorough extension of the short
paper [27], absent from which are the full mathematical details of the formulation as well as textual
descriptions and pictorial illustrations of the concepts that shall be presented in this paper. In addition,
ways in which the novel structure can enhance further applications absent earlier are also portrayed
here.

In terms of reflection and transmission coefficients as well as modal surface-wave dispersion
diagrams, computed results obtained from codes written based on the upcoming formulation shall
be validated in Section 3 with those simulated by a commercial full-wave software solver and results
from existing literature. Higher diffraction orders are then investigated in Section 4 and a convergence
study is carried out in Section 5. Conclusions are then drawn in the final section.

2. THEORETICAL FORMULATION

The penetrable grating structure to be analyzed is shown in Fig. 1. The periodicity is along the x
axis, with the period and groove width denoted as dx and g, respectively. The depth (or height) of the
gratings along z is given by h and the grooves are generally filled with a dielectric material of parameters
(μgrv, εgrv). Infinitesimally thin metallic wider strip plates are placed over the upper and lower faces of
each narrower vertical conducting bar to form H-shaped dominos with iris-type slits across the groove
apertures. The resultant widths of the upper and lower irises are defined as aup and a�o respectively.
When the widths of both strips equal that of the bar, thus shedding the iris-type slit apertures, the
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Figure 1. Corrugations with period dx along x, depth h along z, generally dielectric filled grooves
(εgrv, μgrv), thin fin strip lined over both upper and lower ends of each ridge (bar) to create flanged
groove apertures of widths aup and a�o, and generally sheathed by multiple layers of dielectric slabs
on both sides that sandwich the gratings. (a) Translucent external dielectric slab covers to reveal the
interior fin-loaded bars, and (b) fully opaque version.
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structure then simplifies to conventional gratings. Multiple layers of planar dielectric sheaths cover each
of the two sides of the gratings.

2.1. Orthonormalized Parallel-Plate Waveguide Modes

Consider first, the parallel-plate waveguide (PPW) in Fig. 2. For just the non-vanishing components,
the orthonormalized PPW eigenmodal field functions for TM z and TE z modes are then written as
follow (all other excluded components vanish).[
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either the groove or aperture (iris) region, respectively, as also labeled by the left case “grv” and right
case “ap” in the curly braces.
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Figure 2. Parallel-plate waveguide with plate-separation � that may represent g or a along x, for
groove or aperture, respectively.
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By these preceding equations, the PPW modes are orthonormalized, i.e.,
w̄/2∫

−w̄/2

[
eζ̄xpr (x)h
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yuw

(x) − eζ̄ypr (x)h
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xuw
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{

1, only when pr ≡ uw, i.e., p = u, r ≡ w = TE or TM
0, otherwise

(4)

as required for the derivation as well as utility of the PPW cavity Green’s functions.

2.2. Expansion of PEC-Equivalent Magnetic Aperture Current into PPW Modal Basis
Functions

The PEC equivalence theorem has been well explained in [28]. Also in this textbook, the use of this
theorem to treat aperture problems is clearly described. As for the expansion of the unknown function
(being the aperture magnetic current in the present context) into basis functions, this constitutes one
of the pillars in the method of moments, which has been well documented in [29], another classical
textbook. Upon invocation of PEC equivalence, the grooves of the gratings are filled up with PEC and
the irises on both sides are replaced with equivalent magnetic strip current densities of infinite expanse
along the y-direction; one being at z = 0+ deemed as being the “upper one” while the other at z = −h−,
perceived as being the “lower one”. These two magnetic slit current densities are succinctly expressed
as:
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y (xs)

]× {±} ẑ
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whereby for each of the two kinds of braces, namely the curly and triangular brackets, the two items in
either of them correspond to one another throughout the equation, but such tying up among any one
brace type is independent of the other. The ‘s’ subscript of xs signifies that this is the source coordinate.

The term e−jky0y is pertinent to the treatment of plane wave scattering by the gratings, in
connection with the illumination by an incident plane wave with a forcing wavenumber ky0 along y
determining the dominant Floquet harmonic.

Again to showcase the way the concise expressions get unzipped, arbitrarily choosing the lower
item within curly braces in Eq. (5) unfolds it to the following.
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whereupon the use of Eqs. (1) and (2) in the paper further expands it to
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which is the most explicit form.
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2.3. H -Field Radiated into Grooves via PPW Cavity Green’s Function

The groove region of the H-shaped bars, as shown in Fig. 3, is modeled as a two-ends shorted parallel-
plate waveguide cavity, with propagation direction along z being perpendicular to the two infinitely-
long (along y) metallic walls (parallel to xy plane, i.e., cross-sectional with respect to the propagation
z-direction) serving as the shorting walls, at z = −h and 0. On each of these two “end walls”, upon PEC
equivalence, locates an infinitely-long (along y) magnetic strip current aperture, which may generally
be smaller than the cross-sectional shorting metallic strip-wall, so as to model an iris.

aup 

z 

x 
y 

g 
h 

alo 

Figure 3. Groove region of corrugations modeled as a virtual parallel-plate waveguide (PPW) cavity,
with “propagation” direction along z being perpendicular to the two infinitely-long (along y) metallic
plate-walls (parallel to xy plane, i.e., cross-sectional with respect to the propagation z-direction) serving
as the shorting walls, at z = −h & 0. On either one of these two “end walls” locates an infinitely-long
(along y) magnetic strip current aperture, which may generally be smaller than the cross-section of the
PPW, so as to model an iris.

For the magnetic slit current source located at either of the two ends of the PPW groove namely at
zs = 0 or −h, and for H-field observation on either of these two bounding faces, i.e., zo = 0 or −h, the
observed transverse xy components of the H-field are collectively expressed by the following expression:
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in one brace type throughout the expression being independent of the other kind, as stressed earlier.
The o and s subscripts of x denote the observation and source coordinates. The truncated numbers of
TM and TE type PPW-cavity modes considered for the aperture fields are U ′ap

TM = Uap
TM − 1 and Uap

TE
while P ′grv

TM = P grv
TM − 1 and P ′grv

TM are those of the groove.

2.4. Fourier Transform of PEC-Equivalent Magnetic Strip-current over Iris-Type
Aperture

The magnetic current of Eq. (5) may be restated as
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evaluated at a single kyn=0 = k sin θ0 sinφ0, in which θ0 and φ0 are the incident angles of the incident
plane wave (determining the dominant Floquet harmonic) that illuminates the corrugations from above,
and k is the wavenumber of the medium exterior of the corrugations from which the excitation plane
wave arrives (emerges).

Transforming these into spectral (kxm, kyn=0 = kex
y ) domain [involving just a single (line/contour)

integration with respect to xs], we write:
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with
kxm = k0 sin θ0 cosφ0 + 2mπ/dx, (12)

such that the inverse transform from spectral kx to spatial x domain only requires a summation over
discrete spectral components defined by Eq. (12) due to the periodicity along only x (but not y) with
period dx. m is an integer; θ0 and φ0 are the angular coordinates determining the direction of the
dominant Floquet modal beam, defined simply by the incidence angles of the incident plane wave (the
primary excitation of the corrugations), and k0 is the usual freespace wavenumber.

2.5. Spectral Magnetic Fields Radiated by Spectral Basis Magnetic Currents on Infinite
PEC Surface

The spectral basis currents of Eq. (11) are subsequently employed as the secondary sources for the
scattering scenario (as opposed to the primary incident plane wave source for the excitation scenario),
which is the excitation of the smooth uncorrugated perfect electric conducting (PEC) planar structure,
for which the grooves of the corrugations have been filled up with PEC (upon PEC equivalence).
The spectral fields radiated by these spectral basis currents (placed just on the PEC surface) into the
medium exterior to the corrugations are obtained from a numerical spectral Green’s function for treating
multilayer structures [30], the generic form of which is stated as
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where the w subscript may denote either x or y component of the radiated spectral H-field, and the
superscript (i) represents the ith layer of the associated multilayer structure. The spectral dyadic
Green’s function G, appended by its dyadic dot operator, is characterized by superscript MΩ∼ signifying

the magnetic current source type and its x or y component (via Ω
∼

=
〈
x
y

〉
) of the secondary excitation

source, whereas its subscript Hw indicates the type of the radiated field and its component. The driving
spectral basis current is indicated as ˜̃mξ̄

Ω∼
uχ

∼

, which is from Eq. (11), and it is reminded that it pertains to

a certain mth Floquet harmonic being the kxm spectral component of Eq. (12) and in the present context,
accompanied by a fixed dominant Floquet modal wavenumber component kyn=0 = k sin θ0 sinφ0. Note
in Eq. (13) the explicit subscripted (zo) which signifies the functionality in just the observation zo
coordinate level, which shall find convenience of use later. The complete details of this numerical
spectral Green’s function and its explicit expressions are found in the Appendix of [30].

2.6. Spatial Fields Radiated by Array of Magnetic Strip Currents into Region Exterior
to Corrugations

As explained earlier at Eq. (12), the inverse transform of the spectral field of Eq. (13) is written as
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whereby the first equation in the above Eq. (14) amounts to the inverse transform from spectral kx to
spatial x domain, the resultant quantity on its left-hand side becoming a function of x but remaining
in the spectral ky domain with the absence of functionality in y (independent of it) and thus explaining
its single tilde. The second equation constitutes the further inverse transformation of this latter (x, ky)
domain quantity to finally become a fully spatial-domain field that is a function of both x and y, totally
free of tildes. This final quantity of Eq. (14) then constitutes the w-component of the spatial-domain
H-field radiated by the x or y-directed semi -spatial (in x only) domain (uχ

∼
)th basis current m̃ξ̄

Ω∼
pχ

∼

of

Eq. (6). Assuming an odd M as the total truncated number of Floquet harmonics considered, the
summation typically runs from m = −(M − 1)/2 to (M − 1)/2.

Subsequently, the total fields radiated by all basis currents would just entail a summation over the
basis indices, each term scaled by an amplitude coefficient, according to Eq. (5) or its scalar form of
Eq. (9), i.e.,

H
(i)M̃ ξ̄

Ω∼

w(zo)
=

Uapχ
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−δ∼
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uχ̄=δ∼

Aξ̄
uχ
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w(zo)
(15)

whereby the superscript on the left-hand side, less the (i), is that of Eq. (9), which states the superposed
combined sum contributions to the total magnetic current by numerous basis currents, each scaled by
a certain amplitude coefficient, being thus far unknown and to be solved for. This represents the w-
component of the spatial-domain H-field radiated by the x or y-directed magnetic current scatterer
source components. It is noted that this remains only the scattered magnetic fields.

2.7. Two Multilayer Scenarios Bounded by PEC Half-Spaces

There are two different multilayer scenarios pertaining to either ξ ≡ up or ξ ≡ �o; the upper or lower
aperture surface of the grating. These two stratified configurations are illustrated in Fig. 4; Fig. 4(a)
is for ξ ≡ up while Fig. 4(b) is for ξ ≡ �o. The former, being PEC grounded at the bottom, is for the
treatment of the upper half-space above the gratings that is generally stratified into multiple layers.
Conversely, the latter depicts a multilayer scenario that is bounded at the top by PEC and is for treating
the lower half-space below the gratings that is also generally stratified into layers. For Fig. 4(a), the
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Figure 4. Multilayer scenarios associated with either (a) ξ ≡ up that is PEC grounded at the bottom
for treatment of upper half-space above gratings, or (b) ξ ≡ �o that is PEC bounded at the top for
treating lower half-space below gratings. In (a), a semi-infinite PEC takes up the lower half-space, above
which is an upper half-space that is generally stratified into multiple dielectric layers. The lowermost
one of these latter that interfaces with the grating is indexed as “iup”. In (b), a semi-infinite PEC
takes up the upper half-space, below which is a lower half-space that is generally stratified into multiple
dielectric layers. The uppermost one of these latter that interfaces with the grating is indexed as “i�o”.
The arrows in both (a) and (b) depict the PEC-equivalence magnetic slit current densities.

lowermost layer of its upper stratified half-space which interfaces with the upper surface of the grating
(transformed into a planar PEC ground) is indexed as “iup”, whereas in Fig. 4(b), the topmost layer of
the lower stratified half-space that interfaces with the lower surface of the grating (transformed into a
PEC ceiling) is labeled as “i�o”. Hence whenever the former index is involved, it is understood that the
associated field is that of the multilayer scenario of Fig. 4(a) whereas when it is the latter that comes
into play, Fig. 4(b) is the one that applies.

2.8. Boundary Conditions: Continuity of Tangential H -Fields across PPW Cavity
Aperture

The boundary condition enforcing the continuities of the tangential magnetic field components across
both the upper and lower iris-type apertures of just one unit cell of the gratings is stated as:
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ξ̄

⎡
⎣ x̂H

(iξ̄)1
◦ex

x(zo=ζ̄)

ŷH
(iξ̄)1

◦ex

y(zo=ζ̄)

⎤
⎦
⎫⎬
⎭

−aξ̄/2≤xo≤aξ̄/2

(16)

δ1
◦ex

ξ̄ =

⎧⎨
⎩

1 if prim excit plane-wave incid from{
above
below

}
gratings

0 otherwise

noting the subscripted −aξ̄/2 ≤ xo ≤ aξ̄/2 on both sides of Eq. (16), which expressly indicates that the
tangential H-field continuities are enforced only across the upper and lower slits (of just one unit cell),
excluding the PEC flanges or fins. This Eq. (16) unfolds into two separate equations, one for each of the
upper and lower cases of the implicitly-entailed curly braces, which represent the boundary conditions
for the upper and lower slit surfaces. The item in the second vector on the right-hand side, H

(iξ̄)1
◦ex

w(zo)
, also

acquired by the core routine that solves planar stratified structures in the spectral domain, represents
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the known fields due to the primary excitation source (pertaining to the dominant Floquet harmonic
associated with the forcing wavenumber determined by the angular coordinates θ0 and φ0 of the incident
plane wave direction) which radiates in the multilayer structure that is bounded by a semi-infinite half
space of bare (or smooth) uncorrugated PEC. As before, the superscript (iξ̄) denotes which multilayer
scenario of Fig. 4 applies. The explicit representations of this H1◦ex

w are also obtainable from [30].

2.9. Galerkin Weighting and Construction of Matrices

The technique of using the basis function as the weighting function is called the Galerkin’s method [31].

With �eap,ξ̄
tvψ

= x̂eap,ξ̄
xvψ

+ ŷeap,ξ̄
yvψ

, where ψ may denote TE or TM, then taking
aξ̄/2∫

−aξ̄/2

[�eap,ξ̄
tvψ

(xo) × · ẑ]dxo

throughout the boundary condition (16), for vTE = 1, 2, . . . , Uap
TE and vTM = 0, 1, . . . , Uap

TM −1, for each
of the two cases in the curly braces of ξ, a total number of equations [2(Uap

TE + Uap
TM)] that equals the

number of unknown coefficients of the basis functions expanding the aperture magnetic currents are
generated. This system of equation can be cast into a matrix equation. The intermediate matrices that
build up to this matrix equation are as follows.

Before proceeding, some definitions have to be first laid out. In all upcoming relations, the following
generic form applies:

[M(αi, βj)]P×Q �→ Zij (17)

The left-hand side square-bracketed quantity named as M is a matrix with a size of P rows by Q
columns as specified by the exterior subscript. The (αi, βj) expresses the two sequentially-running
entities α and β indexed respectively by positive integers i and j that constitute the row and column
dimensions, respectively. In other words, the element occupying the ith row and jth column is given
by the right-hand side quantity Zij which is characterized by the ith and jth integer indices of these
α and β. Subsequently, the symbol �→ denotes “whose (i, j)th element is”. By the rate of Eq. (17),
[M(αi, αj)]P×P represents a square diagonal matrix whose (i, i)th element is given by Zii, thus entailing
just one characterizing variable α.

In a similar but modified fashion of Eq. (17), column and row vectors are also generically written
as:

[V (αi, 1)]P×1 �→ Zi; [V (1, αi)]1×P �→ Zi (18)

With these definitions established, the various matrices are ready to be written.
The first one is stated as:

[
A

χ
∼

,ξ̄

w (m,uχ
∼
)

]
M×Uapχ

∼

�→ (1/dx) ˜̃H

(iξ̄)
˜̃mξ̄

Ω∼
uχ

∼

w(zo=ζ̄)
(19)

for w = x or y. Due to the three characterizing items: w, χ
∼

, and ξ̄, each with two options, just this

Eq. (10) alone unfolds to 23 = 8 distinct matrices.
Subsequent ones are written as:

[
B

χ
∼

,ξ̄

�∼
(vχ

∼
,m)

]
Uapχ

∼
×M

�→
aξ̄/2∫

−aξ̄/2

eap,ξ̄
�∼
vχ

∼

(xo)e−jkxmxodxo (20)

[
C ξ̄

χ
∼

(uχ
∼
, pχ

∼
)
]

Uapχ
∼

×P grvχ
∼

�→
aξ̄/2∫

−aξ̄/2

eap,ξ̄
�∼
uχ

∼

(xs)h
grv
Ω∼
pχ

∼

(xs)dxs (21)
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Next, the following diagonal matrices are defined:[
Φpχ

∼

(pχ
∼
, pχ

∼
)
]

P grvχ
∼

×P grvχ
∼

�→ coth(γgrv
zpχ

∼

h) (22)

[
Ψpχ

∼

(pχ
∼
, pχ

∼
)
]

P grvχ
∼

×P grvχ
∼

�→ csch(γgrv
zpχ

∼

h) (23)

whose diagonal (i, i)th elements are respectively coth(γgrv
zpχ

∼
i

h) and csch(γgrv
zpχ

∼
i

h) whereby pχi is the ith

integer index of the sequential variable pχ
∼
, for both modal cases of χ

∼

=
〈
TE
TM

〉
.

The following column vectors are also constructed.

[
V ξ̄

χ
∼

(vχ
∼
, 1)
]

Uapχ
∼

×1

�→ 〈±〉 δ1◦ex
ξ̄ H1◦ex

Ω∼

aξ̄/2∫
−aξ̄/2

eap,ξ̄
�∼
vχ

∼

(xo)e−jkxm=0xodxo (24)

[
V final(v, 1)

]
2(UapTM+UapTE)×1

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
V up

TM (vTM , 1)
]
UapTM×1[

V up
TE(vTE , 1)

]
UapTE×1[

V �o
TM (vTM , 1)

]
UapTM×1[

V �o
TE(vTE , 1)

]
UapTE×1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(25)

this latter being the finalized column vector containing the known excitation terms that shall be placed
on the right-hand side of the upcoming ultimate matrix equation.

2.10. Matrix Operations and Construction of Ultimate Moment-Method Matrix
Equation

With the foregoing intermediate matrices laid out, the following matrix operations are then performed.

[M11(vTM , uTM )]UapTM×UapTM
=
[
BTM,up

x (vTM ,m)
]
UapTM×M

[ATM,up
y (m,uTM )]M×UapTM

+
{
[Cup

TM (vTM , pTM )]UapTM×P grvTM
[Φp

TM
(pTM , pTM )]P grvTM×P grvTM

}
UapTM×PgrvTM[[{[

Cup
TM (uTM , pTM )

]
UapTM×P grvTM

}T
]]

P grvTM×UapTM

(26)

[M 12(vTM , uTE)]UapTM×UapTE
=
[
BTM,up

x (vTM ,m)
]
UapTM×M

[ATE,up
y (m,uTE)]M×UapTE

(27)

[M13(vTM , uTM )]UapTM×UapTM
= −

{
[Cup

TM (vTM , pTM )]UapTM×P grvTM
[Ψpχ

∼

(pTM , pTM )]P grvTM×P grvTM

}
UapTM×PgrvTM[[{[

C�o
TM (uTM , pTM )

]
UapTM×P grvTM

}T
]]

P grvTM×UapTM

(28)

[M 14(vTM , uTE)]UapTM×UapTE
= [0]UapTM×UapTE

(29)

[M 21(vTE , uTM )]UapTE×UapTM
= − [BTE,up

y (vTE ,m)
]
UapTE×M

[ATM,up
x (m,uTM )]M×UapTM

(30)

[M22(vTE , uTE)]UapTE×UapTE
= − [BTE,up

y (vTE ,m)
]
UapTE×M

[ATE,up
x (m,uTE)]M×UapTE

+
{
[Cup

TE(vTE , pTE)]UapTE×P grvTE
[Φp

TE
(pTE , pTE)]P grvTE ×P grvTE

}
UapTE×PgrvTE[[{

[Cup
TE(uTE , pTE)]UapTE×P grvTE

}T
]]

P grvTE ×UapTE

(31)
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[M 23(vTE , uTM )]UapTE×UapTM
= [0]UapTE×UapTM

(32)

[M24(vTE , uTE)]UapTE×UapTE
= −

{
[Cup

TE(vTE , pTE)]UapTE×P grvTE
[Ψp

TE
(pTE , pTE)]P grvTE ×P grvTE

}
UapTE×PgrvTE[[{

[C�o
TE(uTE , pTE)]UapTE×P grvTE

}T
]]

P grvTE ×UapTE

(33)

[M31(vTM , uTM )]UapTM×UapTM
=
{
[C�o

TM (vTM , pTM )]UapTM×P grvTM
[Ψp

TM
(pTM , pTM )]P grvTM×P grvTM

}
UapTM×PgrvTM[[{[

Cup
TM (uTM , pTM )

]
UapTM×P grvTM

}T
]]

P grvTM×UapTM

(34)

[M 32(vTM , uTE)]UapTM×UapTE
= [0]UapTM×UapTE

(35)

[M33(vTM , uTM )]UapTM×UapTM
=
[
BTM,�o

x (vTM ,m)
]
UapTM×M

[ATM,�o
y (m,uTM )]M×UapTM

−
{
[C�o

TM (vTM , pTM )]UapTM×P grvTM
[Φp

TM
(pTM , pTM )]P grvTM×P grvTM

}
UapTM×PgrvTM[[{[

C�o
TM (uTM , pTM )

]
UapTM×P grvTM

}T
]]

P grvTM×UapTM

(36)

[M 34(vTM , uTE)]UapTM×UapTE
=
[
BTM,�o

x (vTM ,m)
]
UapTM×M

[ATE,�o
y (m,uTE)]M×UapTE

(37)

[M 41(vTE , uTM )]UapTE×UapTM
= [0]UapTE×UapTM

(38)

[M42(vTE , uTE)]UapTE×UapTE
=
{
[C�o

TE(vTE , pTE)]UapTE×P grvTE
[Ψp

TE
(pTE, pTE)]P grvTE ×P grvTE

}
UapTE×PgrvTE[[{

[Cup
TE(uTE , pTE)]UapTE×P grvTE

}T
]]

P grvTE ×UapTE

(39)

[M43(vTE, uTM )]UapTE×UapTM
= −

[
BTE,�o

y (vTE ,m)
]
UapTE×M

[ATM,�o
x (m,uTM )]M×UapTM

(40)

[M44(vTE , uTE)]UapTE×UapTE
= −

[
BTE,�o

y (vTE ,m)
]
UapTE×M

[ATE,�o
x (m,uTE)]M×UapTE

−
{
[C�o

TE(vTE , pTE)]UapTE×P grvTE
[Φp

TE
(pTE, pTE)]P grvTE ×P grvTE

}
UapTE×PgrvTE[[{

[C�o
TE(uTE , pTE)]UapTE×P grvTE

}T
]]

P grvTE ×UapTE

(41)

These 16 submatrices are then cascaded to form the final matrix expressed as:

[
Mfinal

]
2(UapTM+UapTE)×2(UapTM+UapTE) =

⎧⎪⎪⎨
⎪⎪⎩

M11 M12 M13 M 14

M21 M22 M23 M 24

M31 M32 M33 M 34

M41 M42 M43 M 44

⎫⎪⎪⎬
⎪⎪⎭ (42)

Finally, the ultimate matrix equation is stated as:[
Mfinal

]
2(UapTM+UapTE)×2(UapTM+UapTE)

[
Afinal

]
2(UapTM+UapTE)×1

=
[
V final(v, 1)

]
2(UapTM+UapTE)×1

(43)

where [
Afinal

]
2(UapTM+UapTE)×1

=
[
Aup

uTM
Aup

uTE
A�o

uTM
A�o

uTE

]
(44)

with the row vector: [
Aξ̄

uχ
∼

(1, uχ
∼
)
]

1×Uapχ
∼

�→ Aξ̄
uχ

∼

(45)
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Eq. (43) can then be solved for the vector containing the unknown coefficients via matrix inversion,
thereby concluding the solution treatment of the entire structure.

3. VALIDATION WITH COMMERCIAL SOFTWARE SOLVER

Two groups of numerical results computed by the entirely self-developed numerical code based on the
present formulation are now presented: (A) spectra of reflection and transmission coefficients, and (B)
modal surface-wave dispersion diagrams. These results shall be compared with those generated by a
commercial full-wave simulator: CST Microwave Studio R©; henceforth referred to simply as CST. It is
stated at this point that for all upcoming computed results, the permeabilities of all regions throughout
the whole structure are assumed to be that of free space, i.e., μgrv = μ�o = μup = μ0. The dominant m
= 0 Floquet mode is also assumed in this present section, until Section 4.

3.1. Reflection and Transmission Spectral Diagrams

Presented in Fig. 5 is the validation of an arbitrary case in terms of reflection and transmission
coefficients plotted against frequency, for normal incidence (θinc = θ0 = 0 with φinc = 9◦) of a TEz

y-polarized plane wave onto a grating with dx = 4 mm, εgrv/ε = 4, h = 3 mm, g = 3.6 mm, aup = a�o =
3.2 mm, ε�o/ε = 2, d�o = 1 mm, εup/ε = 3, dup = 2 mm. The agreements between the curves computed
by the present modal method and those simulated by CST are seen to be excellent for both the reflection
and transmission.
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Figure 5. Validation with CST of variations of m = 0 modal transmission and reflection coefficients
with frequency for TM z polarized plane-wave incidence with θinc = 0, φinc = 90◦ (thus y-polarization),
for dx = 4mm, εgrv/ε0 = 4, h = 3mm, g = 3.6 mm, aup = a�o = 3.2 mm, ε�o/ε0 = 2, d�o = 1mm, εup/ε0
= 3, dup = 2 mm.

The same can be said of the upcoming transmission and reflection spectra of Fig. 6 for the same
topology of gratings, but now for θinc = 30◦ and φinc = 0. Evidently, the traces of the present method
and CST are again almost indistinguishable.

3.2. Surface-Wave Dispersion Diagram

Validation of the formulated modal approach is also carried out in terms of the surface-wave modal
dispersion diagram. For another arbitrary case of dx = 2 mm, εgrv/ε = 3, h = 1 mm, g = aup = a�o

= 1.8 mm (no fins), and ε�o/ε = εup/ε = 1.0 (uncovered on both sides), Fig. 7 conveys the dispersion
diagram for surface-wave propagation along x perpendicular to the gratings, i.e., φ = 0, generated using
the present method and CST. The agreement between both tools is seen to be good as well.
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Figure 6. Validation with CST of variations of m = 0 modal transmission and reflection coefficients
with frequency for TEz polarized plane-wave incidence with θinc = 30◦, φinc = 0 (thus y-polarization),
for dx = 4 mm, εgrv/ε0 = 4, h = 3 mm, g = 3.6 mm, aup = a�o = 3.2 mm, ε�o/ε0 = 2, d�o = 1mm, εup/ε0
= 3, dup = 2 mm.
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Figure 7. Validation with CST of surface-wave dispersion diagram with φ0 = ky0 = 0 (propagation
along x), for dx = 2 mm, εgrv/ε0 = 3, h = 1mm, g = aup = a�o = 1.8 mm, ε�o/ε0 = εup/ε0 = 1.0
(uncovered on both sides).

4. HIGHER DIFFRACTION ORDERS OF FLOQUET HARMONICS

For any higher ordered Floquet harmonic modal index m �= 0 along with a real incidence angle θinc =
θ0 (between 0 and π) and grating period dx, the frequency f crit

m beyond which this mth diffraction order
grating lobe starts to appear in real space is given by

f crit
m =

m

dx
√
μ0ε0 [sgn(m) − sin θ0]

(46)

where sgn is the sign function. This so-called critical frequency constitutes the transition boundary
between slow surface waves in the imaginary regime and fast space waves in the visible region. As the
frequency rises further beyond f crit

m , thismth Floquet harmonic (now a fast space wave) steers away from
its grazing propagation direction and moves deeper into the visible fast-wave region with progressively
reduced component of its wave-vector along the surface. A formula to prescribe this direction, denoted
as θdiffm (real angle measured from the vertical axis perpendicular to the gratings) is governed by:

θdiffm = sin−1 [sin θ0 + (mλ0/dx)] (47)

where λ0 = 1/[ f
√

(μ0ε0)] is the free space wavenumber. This relation thus connects θdiffm , θ0, f (=
c/λ0) and dx together.

As a corroboration with an existing result in [32], Fig. 8 presents the transmission spectrum of the
m = −1 diffraction order for TM z polarized plane-wave incidence with θinc = 31.5◦, φinc = 0 onto a
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Figure 8. Validation with Ref. [32] of variation with frequency of transmission coefficient of m = −1
Floquet harmonic for TMz polarized plane-wave incidence with θinc = 31.5◦, φinc = 0, for dx = 10 mm,
εgrv/ε0 = 1, h = 20.6 mm, g = 7.6 mm, aup = a�o = g, ε�o/ε0 = εup/ε0 = 1.
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Figure 9. Validation with Ref. [33] of variation with period relative to wavelength of transmission
coefficient of m = −1 Floquet harmonic with θinc = 30◦, φinc = 0, for dx = 4 mm, εgrv/ε0 = 4, h =
1.6 mm, g = 2.4 mm, aup = a�o = g, ε�o/ε0 = εup/ε0 = 1.

grating with dx = 10 mm, εgrv/ε0 = 1, h = 20.6 mm, g = 7.6 mm, aup = a�o = g (no fins), and ε�o/ε0
= εup/ε0 = 1 (uncovered on both sides). Fine agreement is observed.

Another validation case is presented in Fig. 9, again for the m = −1 Floquet harmonic, but this
time with reference to [33] for θinc = 30◦, φinc = 0, dx = 4mm, εgrv/ε0 = 4, h = 1.6 mm, g = 2.4 mm,
aup = a�o = g, and ε�o/ε0 = εup/ε0 = 1. Once more, the results obtained by the present modal technique
cohere well with those of standing literature.

5. CONVERGENCE OF THE NUMBER OF MODES

There are two types of modes in the modal approach: those of the parallel-plate waveguide cavity
sections, and of Floquet harmonics associated with the periodicity of the structure. How the number of
each kind, henceforth denoted as Ncav and NF loq respectively, affects the computed transmission and
reflection spectra will be studied. The Ncav is the truncated largest modal integer for each of both the
TE and TM modal cavity modes, whereas the Floquet harmonic integers span from −NF loq to NF loq

through 0, in steps of unity.
For the same topology as Fig. 5, each left and right side subplot in Fig. 10 presents, for a certain

Ncav as labeled within, the transmission and reflection spectra, respectively, for six numbers of Floquet
modes, namely NF loq ranging from 1 through 6, as annotated. The upper and lower pair of panels in the
figure are for Ncav = 1 and 2, respectively. Also included within every graph is the so-called correctly
converged reference trace entailing Ncav = 10 and NF loq = 12 which concurs with the simulation results
from the commercial CST software in Fig. 5. Observing the upper pair of plots pertaining to Ncav =
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Figure 10. Transmission and reflection spectra of the case of Fig. 5 for various numbers of cavity
modes and Floquet harmonics (Ncav & NF loq) considered in the computation: each panel pertains to
certain Ncav and displays traces for NF loq = 1, 2, 3, 4, 5 & 6 as annotated. Upper pair of panel: Ncav

= 1, lower pair: Ncav = 2.

 

Figure 11. Transmission and reflection spectra of the case of Fig. 5 for various numbers of Floquet
harmonics and cavity modes (NF loq & Ncav) considered in the computation: each panel pertains to
certain NF loq and displays traces for Ncav = 1, 2, 3, 4, 5 & 6 as annotated. Upper pair of panel: NF loq

= 1, lower pair: NF loq = 4.
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1, although the traces converge to one another abruptly right upon the increment from NF loq = 1 to 2,
the bundled curves do not yet agree well with the correctly converged reference regardless of how high
NF loq gets. It is only with Ncav = 2 in the lower pair of plots that results which cohere adequately
well with the correct reference are achieved by NF loq > 4. Cases for larger values of Ncav have been
computed but are not presented. But they all also portray convergence behaviors consistent with the
above observations.

Swapping the two types of modes, each panel in Fig. 11 now presents, for a certain NF loq, the
transmission and reflection spectra for six values of Ncav, namely Ncav = 1, 2, 3, 4, 5 & 6 as annotated,
again for the structural case of Fig. 5. As before, the correctly converged reference trace is included in
each subplot. Observing the upper pair of plots associated with NF loq = 1, only the curve of Ncav = 1
in each of both graphs is distinctly dislodged from the rest that are closely-overlapping, but yet, none
of these latter has approached closely enough to the correctly converged reference. It takes an NF loq

of 4 in order for proper convergence to be attained by as few as Ncav = 2, as the lower pair of panels
demonstrate.

6. CONCLUSIONS

An accurate full-wave modal approach to analyze and numerically treat corrugations with strip-loaded
ridges which are sheathed on both sides by multiple layers of dielectric slabs has been presented. In the
moment method framework, the fields inside the grooves are obtained by parallel-plate dyadic waveguide
cavity Green’s functions whereas those within the exterior stratified media are derived from spectral
domain Green’s functions for planar multilayer structures, which rest upon classical concepts of Floquet
theory and the surface equivalence theorem. By the PEC equivalence theorem, mode-matching between
the two regions may then ensue. Among the graphs that have been computed by the code developed
according to this numerical technique include those that portray how the transmission and reflection
coefficients of any Floquet modal harmonic (or diffraction order) vary with any prescribed parameter,
as well as surface-wave modal dispersion diagrams. These results have been rigorously validated with
an independent commercial solver as well as results from literature.

Higher ordered diffraction modes that have been focused here other than the fundamental Floquet
harmonic are those of m = −1 and +1, which are typically the two most relevant ones in the context
of numerous applications ranging from mode converters and beam deflectors to grating couplers, pulse
compression gratings, and diffraction gratings in spectroscopy. The capabilities of these applications
such as the enhancement of transmission of the higher order Floquet harmonics, as well as the bandwidth
and scan-width over which this is achieved can be improved by tailoring the new parameters of the special
configuration.
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