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Theory of Electromagnetic Radiation in Nonlocal Metamaterials —
Part I: Foundations

Said Mikki*

Abstract—Nonlocal radiating systems are new functional structures composed of externally applied
currents radiating in nonlocal material domains, for example hot plasma, optically active media, or nano-
engineered spatially dispersive metamaterials. We here develope the requisite mathematical foundations
of the subject needed for investigating how such new generation of radiating systems may be analyzed
at a very general level (Part I), while radiation pattern constructions for applications are provided in
Part II. A key feature in our approach is the adoption of a fully-fledged momentum space perspective,
where the spacetime Fourier transform method is exploited to derive, analyze, and understand how
externally-controlled currents embedded into nonlocal media radiate. In particular, we avoid working
in the spatio-temporal domain popular in conventional local radiation theory. Instead, we focus on the
basic but nontrivial problem of infinite generic (anisotropic or isotropic) homogeneous nonlocal domain
excited by an external source and investigate this structure in depth by deriving the dyadic Green’s
functions of nonlocal media in momentum space. Afterwords, the radiated energy in the far-zone is
estimated directly in the spectral domain using a generalized momentum space energy density concept
after the use of a suitable power theorem. The derived expressions of the radiation power pattern of the
source can be computed analytically provided that the medium dielectric functions and the dispersion
relation data of the nonlocal metamaterial are available. Detailed examples and applications of the
theory and its algorithm are given in Part II of the present paper.

1. INTRODUCTION

The main objective of this paper is to formulate several essential themes of electromagnetic radiation
theory in a language conductive to research on novel and future types of radiating systems, in particular
those operating in complex non-classical environments best described by a nonlocal electromagnetic
material response function. Nonlocality includes most prominently spatial dispersion, i.e., the
dependence of the material response function on the wavevector k in addition to the classical (temporal)
dispersion type characterized by the appearance of another dependence on ω, the circular frequency [1–
3]. Fully nonlocal domains are inherently inhomogeneous nonlocal media, and they cannot be described
by a single wavevector k, requiring instead two dependencies on wavelength via k and k′. Such more
general type will not be addressed on this paper where in what follows by the term nonlocality we mean
just spatially dispersive (homogeneous) media.

Nonlocal metamaterials (NL-MTMs) are often defined as engineered material domains exhibiting
controlled nonlocal behaviour serving a preassigned function [4–6]. Examples of NL-MTMs include
engineered plasma domains, nano-structured thin films, and composite arrays of nanotubes [7–13].
Most of the research conducted on the impact of nonlocal domains has focused on source-free wave
propagation, especially dispersion analysis. In recent years, the subject of radiation and emission in
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nonlocal environments started to attract attention, e.g., see [14–20]. Much of this research was conducted
in the optical regime and is usually tied up with specialized geometries and material properties. The goal
of this paper is to provide a more source-oriented perspective where salient features of the excitation
signals and how they interact with the nonlocal antenna system are explicitly formalized and investigated
within the framework of a concrete setting, the special but important case of generic homogeneous
isotropic/anisotropic nonlocal domains, which will be elaborated with examples in Part II [21].

Inspired by the earliest formulation of the problem of electromagnetic wave propagation in spatially-
dispersive media, we adopt the Fourier space approach for solving and studying the less-known problem
of antenna analysis and design in such media. The Fourier space approach replaces the frequency
domain formulation where in the latter the fields are considered in the frequency-space domain — i.e.,
where fields are typically expressed as functions in the form F(r, ω) — by moving to a fully-fledged
4-dimensional Fourier space in which all fields (electromagnetic fields and their current sources) take
the form F(k, ω). Following the common convention in physics, we capture the dependence on k
by the term momentum space since momentum p and the wavevector k are related to each other in
quantum physics by mere constant (via the de Broglie relation p = �k, where � is the reduced Planck
constant). The momentum space formulation of electromagnetic theory has been extensively deployed in
diverse research disciplines, including condensed-matter physics [22], plasma physics [3], quantum field
theory [23], quantum optics [24]. However, momentum space does not seem to have been widely used
in classical antenna theory where most treatments tend to favor the frequency-space formulation, with
some exceptions like [6, 25–32]. For example, the plane-wave spectrum, a momentum representation of
electromagnetic (EM) fields, was utilized for applications to near-field measurement [33], computation
of Green’s functions in inhomogeneous media [34, 35], subwavelength imaging [36], and characterizing
mutual coupling and interactions [25, 28, 37–39]. Periodic structures are examples of systems in which
wave propagation analysis is fundamentally conducted in the spatial Fourier space, although in that
case it is usually referred to as reciprocal space [40].

Some previous work on controlling the radiation emitted by sources embedded into metamaterials
(MTMs) include [14–19], where most of the focus there has been on conventional metamaterials exploited
to modify the emission characteristics of optical sources inserted into such artificial electromagnetic
environments. However, many conventional metamaterials already exhibit spatial dispersion so the
subject has been taken up more explicitly in more recent works such as [20]. In this paper, we propose
a momentum space formalism for antenna theory using techniques that had originated in some earlier
applications in physics but here adapted and extended for the needs of antenna theory in engineering
and applied physics [41, 42]. Our goal is to sketch out in broad manner the general ideas, basically how
to define radiation patterns and array theory in momentum space (instead of time-space or frequency-
space) when the radiation domain is filled up with infinite homogeneous generic nonlocal metamaterial
(NL-MTM).

A good theory of electromagnetic radiation in nonlocal domains should also provide a framework
for understanding how the surrounding metamaterial domain itself should be designed such that the
combined current source/MTM can deliver new functional performance. The main application of the
theory is for future antennas utilizing engineered metamaterials exhibiting carefully-tailored nonlocal
behaviour, where in that particular case we argue that the Fourier space approach adopted here provides
the best means to tackle the subject [6, 41, 43].

One of the key advantages of the proposed theory is that only dispersion relations are needed to
construct the radiation pattern (far-zone energy/power density) using an analytical procedure that can
be easily automated and canonized. The proposed theory is valid for arbitrary isotropic and anisotropic
homogeneous domains surrounding a fully arbitrary radiating (external) current. The only restriction
imposed on our metamaterial in this theory is that it must be homogeneous. Aside from this, the entire
theory has been developed using exact analytical methods and in particular no approximations were made.
The proposed theory is cross-disciplinary and is expected to involve multiple different fields of research,
including both fundamental theory and applications, see Fig. 1.

The theory of nonlocal antenna systems is expounded in two stages. The focus of Part I (the
present paper) is on the generic and fundamental aspects of the problem, which are developed rigorously
starting from Maxwell’s equations. Moreover, Part I also provides some additional conceptual insights
and further general methodological guidelines and remarks on the emerging research field of nonlocal
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Figure 1. Nonlocal antenna theory is a new emerging cross-disciplinary research area involving several
existing subjects.

antenna systems. Part II [21] is concerned with applying the general theory developed in Part I
to concrete settings (specific metamaterials and radiating sources) and will be reviewed in its own
Introduction section. For the remainder of the current introduction, we give an overall view on the
various sections of the present paper.

Section 2 offers an overall philosophical and conceptual take on the emerging research area whose
main object of study is nonlocal antenna systems. We propose a precise definition of such systems,
explain their physical nature, explicate why it is important to investigate their behaviour, and explore
methods to design and build them. The theory proper starts in Section 3 where the presentation
commences from Maxwell’s equations in space-time and gradually introduces in self-contained fashion
the various analytical tools needed for the subsequent sections and Part II [21], e.g., the 4-dimensional
Fourier transforms, the proper vector potential formalism, the generalized material (dielectric) response
method, and tensor Green’s functions. The main goal here is to set up the problem entirely in momentum
space with all main results created from first principles to facilitate understanding with maximum possible
clarity and self-completeness. The Green’s functions of nonlocal domains just derived are then exploited
in Section 4 in order to recruit an idea originally due to Brillouin [44] in which the far field radiation
energy density is estimated directly from the source without the need to invert the spectral Green’s
functions to obtain the spatio-temporal fields first. Therefore, using our method, we can analytically
obtain the angular frequency-dependent radiation energy density in the far field, though not the fields
themselves in space-time. Since the initial efforts of researchers in the emerging domain of nonlocal
antenna systems are now focused on the far-zone radiation pattern, we expect that these results — here
obtained by means of momentum space methods — should help answering several present and near-
future research needs. At the end, in Section 5 we summarize the overall analytical and computational
aspects of the derived radiation pattern expressions and also point out advantages of the proposed
theory in addition to providing some remarks on future antennas. Finally, we end with the conclusion.
Several carefully written appendices are given to collect technical results used throughout the present
paper in addition to various mathematical properties and theorems that will be also used in Part II [21]
to perform calculations on concrete examples and application. A list of all abbreviations and acronyms
used in this paper is provided in Table 1.
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Table 1. List of abbreviations used in this paper (Parts I and II).

Acronym Meaning

EM Electromagnetics/Electromagnetic
MTM Metamaterial

NL-MTM Nonlocal metamaterial
NR-NL-MTM Nonresonant nonlocal metamaterial

L Longtitdunal
T Transverse

GF Green’s Function
NL-AS Nonlocal antenna system

2. AN OVERALL VIEW ON NONLOCAL RADIATING SYSTEM: WHAT THEY
ARE AND WHY DO WE NEED TO STUDY THEM

2.1. Motivations

Why do we need to study nonlocal antenna systems? First of all, the theory of how spatial dispersion
modifies radiation by external sources is interesting in itself and hence has aroused the curiosity of some
past researchers several decades ago, with deep roots going back into the earliest days of plasma and
condensed-matter physics. Indeed, like any new research area, the subject had not suddenly erupted into
the scene without precursors, but is the cumulative outcome of a long process in waiting. In fact, the
study of spatially dispersive problems goes back to the 1940s and 1950s when people were investigating
propagation of electromagnetic waves in crystals and plasma. Until very recently the subject had been
treated as part of optics and plasma physics where, for example, spatial dispersion is key to explaining
the generalized response function of magnetic materials (spatial dispersion can be induced by such
magnetic response) and optical activity [1, 45].

However, nowadays a resurgence in nonlocal metamaterials is due to the general desire to enlarge
the concept of material from “natural” to “artificial” media (metamaterials.) Since classical antennas
have been investigated very extensively either in free space or temporally dispersive media, nonlocal
antenna theory, or the analysis of radiators in nonlocal domains, is a natural enlargement of radiation
and antenna theory whose study, we believe, is now very timely.

A second advantage of studying nonlocal radiation theory is the fact that nonlocal wave propagation
may lead to completely different physical behaviour absent in even the “wildest” types of temporally
dispersive metamaterials. Some of these new phenomena will be briefly treated in Part II [21], including
virtual arrays, longitudinal waves, and the remarkable ability to design perfectly isotropic radiating
structures using dipole antennas as external source.

We also add some other potential applications, such as negative group velocity and dispersion
management [4], energy storage and recovery [5, 6, 46], directive emission control using MTMs [14, 20].
These applications and numerous others collectively suggest the need to kick start systematic new
research programs focusing on exploring novel applications exploiting such less-known spatially
responsive (nonlocal) generation of engineered material domains. However, we believe that in order
to fully understand and motivate some or all of these applications, strong theoretical and conceptual
foundations for the topic (best given in the shape of a comprehensive rigorously developed mathematical
theory of radiation by external sources in nonlocal MTM domains) are needed. The present paper
(Part I) attempts to provide an initial such general theory along this direction, while we leave numerical
examples and applications to Part II [21].
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2.2. Definition of Nonlocal Radiating Systems and the Fundamental Assumptions

We next define these nonlocal radiating systems and also insert some additional remarks about the
general scope of the present two-part paper.
Definition. A nonlocal antenna system (NL-AS) is an engineered structure composed of two major
components:
(i) An externally-controlled current distribution Jant(r, t).
(ii) A surrounding nonlocal metamaterial domain into which the current Jant(r, t) is embedded.

An overall sketch of this system is given in Fig. 2. The most immediate observation about the
definition given above is that the subject of nonlocal radiation theory is inherently multidisciplinary
since it involves interaction between classical antenna (radiation) theory (the science of understanding
radiation into free space and designing efficient radiators) and the physics of electromagnetic materials,
while the latter in turn is a large and cross-disciplinary field involving several subdomains like condensed-
matter physics, plasma physics, optics, electromagnetic engineering, and so on.

Figure 2. An overall sketch of a generic nonlocal radiating (antenna) system.

A second observation about the definition of nonlocal antenna systems is that it is crucial to
maintain the independence of the radiating current Jant from the surrounding metamaterial domain.
That is, the value of the radiating current should not be affected by the ongoing radiation processes.
This is the fundamental idea behind any externally-controlled radiator. Indeed, if back-reaction of the
radiated fields (now existing in the MTM domain) can change the current supplied by the user, then
use of the system for applications like wireless communications will be severely limited. For example,
if sending a pulse encoding the digital symbol 1 may lead to radiation back-reaction distorting the
pulse to the degree it now more resembles the the signal representation of the digital symbol 0, then
the probability of correct detection at the receiver will be degraded even with high signal-to-noise-
ratio (SNR). We note that in all traditional antenna theory and applications the assumption that the
externally-supplied current is indeed external is taken for granted.†

† However, in nanoscale radiation problems and other processes depending on quantum effects, the combined system of radiating
particles and photons (radiation) are usually treated self-consistently, leading to back-reaction of radiation on the radiating currents.
For that reason, true antennas do not exist in the ultimate microscopic realm, but only approximations of them can be maintained
if a stabilizing mechanism can be put in use in order to ensure the protection of radiating currents from their own radiated fields.
In nonlocal domains, since many nonlocal phenomena are due to quantum effects, stating that the current source in the NL-AS is
assumed to be exactly external is then important for the purpose of developing an initial viable theory of nonlocal electromagnetic
radiation. Clearly, the most simple and direct such theory would be a nonlocal antenna theory where the radiating current enjoys
stability and absence of back radiation reaction. Laser sources are famous examples of such radiating systems where the radiating
current is shielded from the back reaction of the photons it produces through a self-regulating feedback mechanism [42, 47].
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Throughout this paper we write the current in space-time as an externally determined function in
the form Jant(r, t), while the corresponding momentum-space representation is Jant(k, ω). As usual in
antenna theory, a current distribution is ultimately produced by an external localized source (electric
and/or magnetic fields). For simplicity, we refer for completeness to the voltage source signal vs(t) in
Fig. 2. However, in this paper we do not address how the current is excited by a given voltage source.
Instead, we focus on understanding how a given current distribution will radiate into the surrounding
MTM domain and how the domain itself (and possibly the current) may be modified in principle such
that a given radiation characteristics might be obtained (a complete example, the isotropic nonlocal
radiator design, is given in Part II [21]).

Immediately surrounding the external current Jant in Fig. 2 is the MTM domain, which in this
work is assumed to satisfy the following fundamental assumptions:
(i) The material is electromagnetically homogeneous, i.e., the characteristic microscopic scale of matter

a satisfies a� λ = 2π/k for all ranges of k we are interested in. In particular, the medium is infinite
(unbounded).

(ii) The MTM domain is large enough for the radiated fields to reach its “outer edge” to be considered
far-zone fields, i.e., the characteristic scale of the MTM, say D, satisfies D � λ = 2π/k. However,
in the exact theory developed below there is no real “outer edge” since the medium is spatially
homogeneous.

(iii) The material is time-invariant, i.e., the material properties do not change with time.
Under these conditions, it is well known that the general dielectric tensor can be written as ¯̄ε(t− t′, r−
r′) [1–3, 22, 24, 48, 49]. By performing a Fourier transformation F on R

4, we end up with

¯̄ε(r− r′, t− t′) F←→ ¯̄ε(k, ω), (1)

which — after the earlier mentioned assumption on the independence of the radiating current —
represents the second key assumption in the momentum space approach of this paper. The dielectric
tensor used above will be defined more carefully in Section 3. The form ¯̄ε(k, ω) is the momentum
space representation of the space-time response function. The dependence on k is often referred to in
literature as spatial dispersion [1, 2, 45].‡

An important remark should be added here regarding the scope of the present theory. In both
Parts I and II, we completely avoid the issue of how incident waves interact with interfaces separating two
different spatially dispersive domains. Such problems clearly involve inhomogeneous dielectric functions
and hence are not within the general form of Eq. (1), the main material tensor model treated in our
present work. However, a vast body of literature has been dedicated to the excitation of surface waves in
such domains and several solutions to particular problems were proposed in various contexts. A popular
approach is the use of additional boundary conditions (ABCs), leading to the analytical derivation and
numerical computation of new modes excited in nonlocal domains that would otherwise not show up if
the medium is local. Nevertheless, and as was pointed out long time ago in a penetrating analysis of the
problem [2], no completely general description of electromagnetics at the interface between two nonlocal
domains is possible using the form (1), the reason being that the very presence of an interface forces the
microscopic nonlocal response to differ near the interface from its behaviour in the deep bulk region.
The bulk domain form in Eq. (1) is indeed valid only away from the edge or surface of the material. It
is not clear how a very general boundary between the fuzzy “surface region” and “bulk region” interface
can be established without using quantum theory, and that in turns requires working with specialized
assumptions about the relevant light-matter interaction Hamiltonian, leading to loss of generality.

Since our goal is to develop the theory at the macroscopic level of the phenomenological bulk model
in Eq. (1), it is assumed throughout that the entire MTM domain is one homogeneous region modeled
‡ However, and as mentioned earlier, we should keep in mind that nonlocality is more general than spatial dispersion since
inhomogeneous nonlocal domains, which must be modeled by dielectric response function of the form ¯̄ε(r, r′; t − t′), can not be
expressed in Fourier space as ¯̄ε(k, ω) [22]. Since in this paper our focus is only on homogeneous media, and those still fall under
the form in Eq. (1), we need not consider any response function other than the general tensorial form ¯̄ε(k, ω) of spatially dispersive
domains. To the author’s best knowledge, generalized nonlocality is rarely addressed in literature except in the condensed-matter
physics treatment of the optical response of mesoscopic or nanoscale structure [24, 49–52]. Moreover, even when spatial translation
symmetry is destroyed by the presence of boundary conditions, there is a wide-spread insistence on using effective additional boundary
conditions at the interfaces of such inhomogeneous systems while treating each bulk domain as homogeneous.
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by otherwise completely unrestricted and general material tensor of the form of Eq. (1). In particular,
the radiating source current is an externally supplied current distribution directly embedded into the
surrounding nonlocal MTM domain and no gaps or discontinuities need to be considered since we will
use the Green’s function (GF) to compute radiation. As known, the GF method works best with an
external input smoothly embedded into a host domain [34, 35, 53].

2.3. Scope of the Present Theory, Future Antennas, and Prospects for Applications

We now move on to draw a broad sketch of the subject of future nonlocal antenna systems. The
cross-disciplinary research field within which these systems are expected to be investigated is nonlocal
radiation theory, see Fig. 1. There are three major components in any viable future nonlocal antenna
theory:
(i) Forward radiation theory.
(ii) Reverse design methodology.
(iii) Final physical layout realization.
In (i), the fundamental question is how to compute the radiated fields given a specific current
source inserted into an embedding (host) nonlocal MTM. This is a forward problem, and the usual
solution method is the Green’s function technique. On the other hand, (ii) asks about how the
current source itself, and the MTM parameters should be jointly co-determined such that a desired
radiation characteristics may obtain. Finally, in (iii) specific physical domains, processes, manufacturing
techniques, etc. are sought in order to realize the model while utilizing the optimum design parameters
found in (ii).

In this paper, Part I will focus mainly on step (i) at the most general level. Part II [21] will
continue to address (i) but within a more concrete MTM framework — isotropic nonlocal MTM — but
also touches on the design aspects of (ii). The final physical realization requires more concrete focus
on specific physical problems like plasma, crystals, manufactured thin films, nanotechnology, quantum
optics, and other specialized areas, and hence may be treated elsewhere since the subject falls outside
the scope of the present work.

Nevertheless, we would like to add a few more words about steps (ii) and (iii) here before moving
forward to the fundamental theory of (i) to be covered in the remaining sections of the present paper
(Part I). Using a proper microscopic theory, ultimately quantum theory, it is possible in general to derive
fundamental expressions for the components of the response tensor function ¯̄ε(k, ω) [1–3, 22, 24, 49]. In
general, these functions are often expanded using series summations with a few terms involving powers of
k. For simplicity, let us assume here that only k appears in these expansions.§ Experience accumulated
with several types of nonlocal domains since the 1950s suggests that there are two major types of media,
resonant (R) and nonresonant (NR) materials, with domain functions having the forms

εR
ij(k, ω) =

∑M
m=1 am

ij (ω)km∑N
m=1 bm

ij (ω)km
, εNR

ij (k, ω) =
N∑

m=1

cm
ij (ω)km, (2)

respectively, where in general M ≤ N .‖ We can define the process of designing a nonlocal metamaterial
as simply finding the data M,N, am

ij , b
m
ij , c

m
ij , in multi-wavelength-scale expressions such as Eq. (2). In

general, we will not assume any form like Eq. (2) in Part I, where the discussion is intentionally kept
at a very general level conforming only to the homogeneous domain criterion of nonlocality given in
Eq. (1). On the other hand, in Part II [21] the nonresonant nonlocal metamaterial case (NR-NL-MTM)
is singled out and studied in details for the case of only quadratic dependence on k.¶

§ This is the case with the isotropic nonlocal MTMs examples treated in more details in Part II [21]. However, there is no loss in
generality for the discussion to follow.
‖ The expansions (2) are often obtained in the following way: First, fundamental theory is deployed to derive analytical expressions
for εR

ij(k, ω) and εNR
ij (k, ω). Afterwards, depending on the concrete values of the various physical parameters that enter into these

expressions, e.g., frequency, temperature, molecular charge/mass/spin, density, etc., the obtained analytical expressions are expanded
in power series with the proper number of terms. Since the wavenumber is inversely proportional to the field physical spatial scale via
k = 2π/λ, expanding in terms of powers of k is equivalent to estimating the relative size of the nonlocal domain radius as measured
from r′ [1, 45].
¶ We expect that in future applications more complicated types of MTMs will need to be considered, for example, those involving
resonant excitation of surface waves. However, detailed investigation of all possible types of NL-MTMs is outside the scope of the
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3. THE DYADIC GREEN’S FUNCTION OF NONLOCAL DOMAINS: THE VIEW
FROM MOMENTUM SPACE

3.1. The Nonlocal Material Response Function

The key mathematical apparatus to be deployed throughout this work is the spatio-temporal Fourier
transform. In fact, this is precisely the very idea of doing antenna theory in momentum space: expressing
the radiated fields, radiating currents, and the material constitutive response functions, all in terms
of both frequency ω and wavevector k. Both are spectral variables, and hence they naturally arise
from taking the 4-dimensional Fourier transforms of all relevant quantities. The 4-dimensional Fourier
transform of a generic vector field F(r, t) in space-time is defined by [54]

F(k, ω) :=
∫

R4

d3rdt F(r, t)e−ik·r+iωt. (3)

If the field F(r, t) is well-behaved in R
4, then the inverse Fourier integral exists and is giving by [55]

F(r, t) =
∫

R4

d3kdω

(2π)4
F(k, ω)eik·r−iωt. (4)

Throughout this paper, we assume that all relevant electromagnetic fields and currents in nonlocal
material domains possess Fourier transforms in the sense that the pair Eqs. (3) and (4) exist.+

In the spatio-temporal domain, Maxwell’s equations can be expressed as a system of partial
differential equations in the form:

∇×E(r, t) = −∂B(r, t)
∂t

, (5)

∇×B(r, t) = μ0ε0
∂E(r, t)

∂t
+ μ0J(r, t), (6)

∇ ·B(r, t) = 0, (7)

∇ · E(r, t) =
1
ε0

ρ(r, t). (8)

Here, ε0 and μ0 are the electric permittivity and magnetic permeability of free space, respectively.�
In order to move from the spatio-temporal domain to the momentum-frequency space (hereafter,
momentum space for brevity), i.e., the main configuration space on which electromagnetic fields live in
the present work, we simply apply the 4-dimensional Fourier transformation in Eq. (3) to the space-time
form of Maxwell’s equations. In fact, in the Fourier domain Maxwell’s Equations (5)–(8) become

k×E(k, ω) = ωB(k, ω), (9)

ik×B(k, ω) = μ0J(k, ω) − iω
c2

E(k, ω), (10)

k ·E(k, ω) =
−i
ε0

ρ(k, ω), (11)

k ·B(k, ω) = 0, (12)

present paper, which is mainly developing the rudiments of radiation theory in nonlocal antenna system analysis and design with the
simplest examples required to explain the physics of this new generation of antenna systems.
+ For further details about the precise mathematical conditions, see [23, 54, 55]. It is enough for example to merely assume that
the fields and currents are smooth (have continuous derivatives of all orders) and decay rapidly enough. However, this might be
too restrictive in some applications, especially when it comes to the behaviour of current and charge source distributions, which are
usually required only to be Holder continuous (for a condition of slightly stronger continuity, e.g., see [56].) Nevertheless, in what
follows, we will not worry much about how exactly the fields and sources mathematical functions are acting, but assume they are
“sufficiently well behaving” such that the integrals in Eqs. (3) and (4) exist. Sometimes even more restrictions might be needed —
such as uniform convergence or stronger conditions — in order to ensure that integrals and other limiting operators, e.g., integro-
differential operators, can be interchanged. However, we will not address this here at a very general level due to space limitations
but instead leave such issues to be handled on case-by-case whenever they arise throughout the development of the theory.
� The electric field vector E is measured in V/m, while the magnetic flux density has the units of Tesla. The source distributions
are two types, volume current density J measured in A/m2, and volume charge density ρ in C/m3.
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where E(k, ω), B(k, ω), and J(k, ω) are the space-time Fourier transforms of the electric field, magnetic
flux intensity, and source current distribution, respectively.

We immediately notice how in momentum space the system of Maxwell’s laws has acquired
a considerably simpler and more manageable algebraic form, in direct contrast to the complicated
differential form possessed by the original set Eqs. (5)–(8). This is not accidental but has been one of
the key motivations to the now universal use of Fourier transform methods in physics and engineering.
More remarkable still, the relations in Eqs. (9)–(12) are still valid in arbitrary material domain with
both temporal and spatial dispersion. This, in fact, provides another fundamental motivation for
rebuilding antenna theory in momentum space. Indeed, as will be shown below, it is often very
difficult — if not nearly impossible — to fully characterize and understand how antennas embedded into
nonlocal media operate if one restricts the formalism to space-time. This is because in generic spatially
dispersive domains the space-time forms of the constitutive relations become 4-dimensional convolution-
type integrals, transforming Maxwell’s equations from partial differential equations to complicated and
unfamiliar integro-differential equations. On the other hand, while working within momentum-frequency
space it is found that most of the calculations can be done first algebraically, after which only one
inverse 4-dimensional Fourier transformation in the form of Eq. (4) is needed to go back to space-time
(if needed.) At this point, it is interesting to anticipate what will be rigoursly proved later in this
paper, namely that if we are only interested in the far-field of the antenna, then even the last mentioned
inverse Fourier integration becomes unnecessary, which is one of the key advantages of the choice of the
momentum space approach to construct a radiation theory of nonlocal antenna systems.

However, in spite of such considerable reduction in complexity, the purely algebraic Equations (9)–
(12) cannot be solved till we provide a description of the material response function, most preferably
in the form of constitutive material relations dictating how matter responds to external fields at the
macroscopic level [1, 2, 45]. In this paper, we follow the Fourier transform approach — adopted from
some formulations commonly used in plasma and condensed-matter physics — for our quest to construct
the constitutive relation.�

Our starting point is an unambiguous and direct demarcation between the antenna current
distribution on one hand and the current induced in the nonlocal medium as a result of interaction
between direct fields originally produced by the antenna current source and matter. Since this separation
process possesses a microscopic origin, it should be ultimately grounded on solving a set of appropriate
coupled quantum-Maxwell’s equations, e.g., within the framework of the semiclassical approach or by
way of a fully-fledged quantum-field theoretic formalism [22]. However, we work at the macroscopic level,
leaving only averaged currents and fields as the permissible type of the unknown dynamic variables to be
determined by solving the Maxwell’s Equations (9)–(12). In particular, within such phenomenological
framework the total current J(k, ω) may be decomposed into two parts [45, 57]

J(k, ω) = Jant(k, ω) + Jind(k, ω), (13)

where Jant(k, ω) is the externally supplied antenna current distribution, while Jind(k, ω) is the current
induced in the medium as a response to the excitation electric field. The ultimate proof of Eq. (13)
rests on the linearity of the coupled matter-Maxwell’s equations since one may envision the current
production process as the quantum-mechanical response of charged microscopic material particles to
the presence of electromagnetic fields. Since in microscopic scattering formulations the total field is
the sum of the direct and scattered field, it is possible to immediately deduce that the various current
distribution components, which are here essentially manifestation of a linear processes responding to
applied fields, will also add up to give the form of Eq. (13) above. Alternatively, one may consider
Eq. (13) a fundamental axiom in the antenna theory model developed in this paper.

Now, within the regime of linear response theory, the response of matter to applied fields should
be representable in the form of a linear operator [1, 22, 24]. The simplest such an operator is a dyadic
tensor transformation, allowing us to write

Jind(k, ω) = ¯̄σ(k, ω) ·E(k, ω), (14)
� Therefore, in what follows the much more familiar multipole expansion approach, which is very often used in the engineering
literature, will not be deployed. Monographs on the electromagnetics of continuous media often either use the Fourier transform
approach or the multiple expansion, but rarely both. Even rarer is a comparison between the two, but see [6, 43, 48] for more extensive
discussion of the background to the use of alternative formulations to describe matter-field interaction.
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where ¯̄σ(k, ω) is called the material conductivity tensor [22]. Note that spatial dispersion (nonlocality) is
captured by the dependence of conductivity on k, while the appearance of ω reflects normal or temporal
dispersion [1, 2].&

Let the electric displacement vector in space-time be D(r, t), with corresponding space-time Fourier
transform denoted by D(k, ω). In momentum-frequency space, the relation between the electric
displacement vector D(k, ω) and electric field E(k, ω) can now be written as

D(k, ω) = ε0 ¯̄ε(k, ω) · E(k, ω), (15)

where the dimensionless dyadic tensorial quantity ¯̄ε is defined by

¯̄ε(k, ω) := I +
i

ωε0

¯̄σ(k, ω). (16)

Here, I is the unit dyad operator capturing the direct field, while the tensor ¯̄ε(k, ω) in Eq. (16) is
called the equivalent dielectric function of the medium in frequency-momentum space [2, 43]. The
additive structure in Eq. (16) parallels that of Eq. (13). The dielectric tensor ¯̄ε(k, ω) supplies the
most general description of the nonlocal medium in the frequency-momentum space [22]. Note that
in contrast to the traditional multipole formalism, the Fourier space approach to the electromagnetic
response of material domains includes all electric and magnetic responses in one response tensor, namely
the tensor ε, while enjoying several properties that are based on universal principles such as energy
conservation, causality, reciprocity, etc, hence valid irrespective to the actual microscopic details of the
medium [2, 6, 22, 45, 57, 58].

We mention here only those generic properties of the material tensor related to dissipation and
non-dissipation because they will pop out frequently in the radiation theory to be developed below.
Namely, the material response tensor in general can be expanded as

¯̄ε(k, ω) = ¯̄εH(k, ω) + ¯̄εA(k, ω), (17)

where here we define the hermitian and antihermitian components by

¯̄εH(k, ω) :=
1
2

[¯̄ε(k, ω) + ¯̄ε∗(k, ω)] , ¯̄εA(k, ω) :=
1
2

[¯̄ε(k, ω)− ¯̄ε∗(k, ω)] . (18)

respectively. Here, ∗ is the complex conjugation operation. In component form, it is clear that the
hermitian and antihermitian functions satisfy the symmetry properties ¯̄εH = ¯̄εH∗, ¯̄εA = −¯̄εA∗. It can
be shown that only the antihermitian part of the response functions ¯̄σ and ¯̄ε actually contributes to
dissipative processes such as wave growth or decay inside the medium [2, 22, 24]. Throughout this paper,
we assume as typical in literature that dissipation is either small or negligible such that losses can be
treated as perturbation on the lossless dispersion modal solution [1]. In this case, the relevant dispersion
relations of propagating modes will be determined solely by the hermitian part of the material response
function. On the other hand, information regarding losses are contained in the antihermitian tensor.

3.2. Solution of the Field Equations in the Fourier Gauge and the Nonlocal Doamin’s
Green’s Functions

As mentioned in Section 2, a key assumption posed in the momentum space radiation theory presented
here was that the antenna current is an independent function externally imposed from the “outside” of
the material. That is, in contrast to Jind, the antenna current Jant is not determined by microscopic
processes immanent in the nonlocal material system itself; instead, the induced current Jind collects all
individual subprocesses in the material system produced in response to the applied external source, e.g.,
polarization current, conductive current, magnetization, etc. Now, in order to find the electromagnetic
fields produced by the antenna current source Jant, the vector magnetic potential A(r, t) and the scalar
electric potential φ(r, t) are often introduced where

E(r, t) = −∇φ(r, t)− ∂A(r, t)
∂t

, B(r, t) = ∇×A(r, t). (19)

& Recall that spatial and temporal dispersion can be physically interpreted as indication of the presence in the material/metamaterial
of phenomena expressive of nonlocality and memory, respectively [45, 57].



Progress In Electromagnetics Research B, Vol. 89, 2020 73

There is then the well-known freedom of choosing a suitable gauge condition (relation between A and φ)
since Maxwell’s equations in themselves are compatible with an infinite number of valid choices of these
potential functions (gauge freedom, see [23, 53, 54].) It turns out that for the development of antenna
theory in nonlocal material domains, a very convenient gauge condition to utilize is the Fourier gauge

The Fourier Gauge : φ(r, t) = 0. (20)

Consequently, in this case from Eq. (19) the electric field in space-time and momentum space can be
expressed as

E(r, t) = −∂A(r, t)
∂t

, E(k, ω) = iωA(k, ω). (21)

The gauge condition in Eq. (20) will be imposed throughout this work. In particular, let us write the
wave equation in the Fourier (momentum) space. From Eqs. (9)–(11), we easily deduce

ω2

c2
E(k, ω) + k× [k×E(k, ω)] = −iωμ0J(k, ω). (22)

With the help of Eq. (21), this leads to

ω2

c2
A(k, ω) + k× [k×A(k, ω)] = −μ0J(k, ω). (23)

Note that the remaining field and source components, namely B and ρ, can be determined from other
equations like Eq. (9) and the equation of continuity, giving rise to

B(k, ω) =
1
ω

k×E(k, ω), ρ(k, ω) =
1
ω
k ·E(k, ω). (24)

In other words, in momentum space, the only effective unknown is the frequency-momentum space
electric field E(k, ω) while all other quantities can be determined based on this field variable via simple
algebraic calculations. Moreover, using the Fourier gauge, only the momentum space vector potential
A(k, ω) needs to be found by solving Eq. (23). Both Eqs. (22) and (23) are in fact algebraic equations,
allowing us to derive exact analytical expressions for the antenna radiation in nonlocal media as will be
demonstrated later.∧

Using Eqs. (13), (14), and (21), we introduce a slightly different material tensor ¯̄ζ(k, ω) defined by

Jind(k, ω) = ¯̄ζ(k, ω) ·A(k, ω), (25)

where
¯̄ζ(k, ω) := iω ¯̄σ(k, ω). (26)

In terms of this tensor, the effective dielectric tensor can be re-expressed as

¯̄ε(k, ω) = I +
1

ω2ε0

¯̄ζ(k, ω). (27)

With the help of Eqs. (26) and (27), the wave Equation (23) is reinstated in the following more compact
operator form

G−1(k, ω)·A(k, ω) = −μ0c
2

ω2
Jant(k, ω), (28)

where the dyadic tensor

G−1(k, ω) := −k2c2

ω2

(
I− k̂k̂

)
+ ¯̄ε(k, ω) (29)

is the inverse of the momentum-space radiation operator (spectral dyadic Green’s function) G(k, ω)
defined through the relation

A(k, ω) = −μ0c
2

ω2
G(k, ω) · Jant(k, ω). (30)

∧ In the Fourier gauge, the only restriction is that ω �= 0, an assumption made here. However, for applications to antennas, this is
already the case since radiation does not occur in the static regime ω = 0.
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Here, k := |k| is the magnitude of the wavevector k, and k̂ := k/k is the unit vector pointing in the
direction of k. In the physics literature, the tensor G is often called the photon propagator [23, 24], but
will be referred to here as the nonlocal medium dyadic Green’s function (GF).

The relations in Eqs. (29) and (30) are essential for the entire momentum-space radiation theory
to follow in this paper. In particular, Eq. (30) provides a very convenient method to compute and
understand the radiation field A(k, ω) in momentum space when the space-time Fourier components of
the antenna current J(k, ω) are available. In fact, the momentum-space Green’s function G(k, ω) turns
out to be much easier to work with in nonlocal domains than the conventional dyadic GFs often used in
local electromagnetics such as in [34, 35].

Note further that the nonlocal medium Green’s function in Eq. (29) can be expressed analytically
by the following closed-form expression:

Gij(k, ω) =
Cij(k, ω)
G−1(k, ω)

, (31)

where Cij are the co-factors of the matrix representation of the tensor G−1 satisfying

G
−1(k, ω) ·C(k, ω) = IG−1(k, ω), (32)

with
G−1(k, ω) := det

[
G−1(k, ω)

]
. (33)

Here, ‘det’ is the determinant operator.� The detailed expressions of the co-factor matrix are lengthy and
will not be given here but can be found in comprehensive textbooks on matrix theory, e.g., see [59].	
Aside from the the general functional dependence of ¯̄ε(k, ω), the nonlocal medium Green’s function
is essentially a polynomial rational function in both k and ω. If the dielectric function itself is now
expanded in power series of both k and ω as in Eq. (2) and again in Part II [21], then the GF effectively
becomes a rational polynomial in the spectral variables k and ω.

3.3. Dispersion Relations and Radiation Modes

When there is no source (Jant = 0), the relation in Eq. (28) reduces to

G
−1,H(k, ω)·A(k, ω) = 0, (34)

where G
−1,H(k, ω) is the hermitian part of the tensor G

−1(k, ω). Here, we adopt the common practice
in plasma and condensed-matter physics in which losses — introduced in our case by dissipation in
G−1(k, ω), ultimately caused by the antihermitian part of ¯̄ε(k, ω) via Eq. (29) — is treated as small
perturbation added to the main component of the Green’s function tensor, which is hermitian [1, 2, 45].
For that reason, only the hermitian part is relevant to the determination of radiation modes.�

From the homogeneous wave equation in momentum space (34), the existence of nonzero solutions
representing source-free wave fields propagating in the nonlocal domain with positive group velocity is
guaranteed only at those special combinations of ω and k at which the operator G−1,H(k, ω) becomes
singular (non-invertible). Since the latter operator is dyadic, this case occurs when the following equation
holds

G−1,H(k, ω) = 0, (35)

� It can be shown that the determinant of C is equal to G−2. Consequently, from the determinant product rule and Eq. (32), it
follows that det(G) = G, which explains our notation.
� However, in Appendix B we give a series of general expressions suitable for electromagnetic theory applications derived using tensor
algebra methods.
� We will however drop the superscript H in the future whenever that does not cause confusion in order to simplify the notation.
Note that dissipation is a more general concept than losses. For example, Landau damping in plasma domains is a collision-free form
of dissipation, hence cannot be understood as losses. The mathematical treatment of all dissipation processes, however, invariably
involves the decomposition of some suitable quantities into hermitian and antihermitian components, see [2, 22, 45, 58] for more details.
In this paper, losses can always be taken into account using the standard method based on the antihermitian part of the response
tensor. That is, while the dispersion relation is written only in terms of the hermitian part, dissipation is added to the dispersion
relation later as additional perturbation.
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which is referred to universally as the dispersion relation of the domain whose dielectric function is
¯̄ε(k, ω). In general, there exists multiple solutions to Eq. (35), each labeled by an integer l to represent
the lth mode’s dispersion relation, where the latter is usually expressed either in the form ω = ωl(k) or
k = kl(ω). Each such solution of the dispersion relation will give rise to a field distribution Al(k, ω)
obtained by solving the corresponding wave Equation (34), where this field can be thought of as a vector
element belonging to the null space of the Green’s dyad operator G−1,H(k, ω).

Note that since the wave equation is homogeneous, an arbitrary complex normalization factor is
present, and hence it is best to work with normalized modal fields êl(k, ω) instead of Al(k, ω), which
we define by:

êl(k) :=
A(k, ωl(k))
|A(k, ωl(k))| . (36)

Furthermore, since a polarization vector is defined only with respect to a given modal dispersion relation
ω = ωl(k), the modal field is really a function of k only and hence it will always be written as êl(k)
instead of êl(k, ω). In addition, to normalize the modal fields, the following standard orthonormality
condition is imposed:

êl(k) · ê∗l (k) = 1. (37)

Clearly, the modal fields are complex. Additionally, a further classification of modes is also possible
depending on how the vector êl(k) is oriented with respect to k̂. Whenever êl(k) is parallel to k, we
say that the corresponding mode is longitudinal (L). On the other hand, when êl(k) is orthogonal to k,
i.e., êl(k) · k̂ = 0, the mode is called transverse (T). However, note that these L and T modal concepts
acquire clear meaning only within momentum space.

As will be illustrated next, it turns out that the antenna radiation pattern (evaluated here in the
momentum space), is completely determined by the propagating modes arising from the solution of
the dispersion relation in Eq. (35). For that reason, the art and science of designing antennas with
desired far-field radiation patterns in nonlocal metamaterials require careful proper engineering of these
radiation modes.†† For these reasons, the dispersion relation in Eq. (35) will play a crucial role in the
remaining fundamental and applied sections of this paper, especially in Part II [21] where concrete
solutions of specific dispersion equations of L and T modes are computed and compared. The overall
body of theory and experiments devoted to investigating the different types of modes arising from solving
dispersion relations in various local and nonlocal materials is enormous, extending over a bewilderingly
large range of applications. To probe deeper into dispersion relations and their solutions, the reader
may consult several references on plasma physics [1, 3, 58], optics of solids [2, 61], condensed-matter
physics [22, 62], magnetohydrodynamics [45, 63], and many other applications in astrophysics [3, 64] and
cosmology [65, 66].

4. THE NONLOCAL ANTENNA SYSTEM RADIATION PATTERN IN
MOMENTUM SPACE

In mainstream antenna theory and the treatment of other emission processes, the conventional approach
to estimating far-field radiation consists of solving Maxwell’s equations (often in vacuum) to find the
electric and magnetic fields in spacetime, forming the Poynting vector, then computing the radiated
power by integrating the latter in space and time [67–69]. This approach, however, is extremely difficult
to apply in generic anisotropic media, and in the case when the material tensor is also nonlocal, it
is probably not possible at all to work exclusively in spacetime. In what follows, we propose an
alternative pathway toward building the essential components of a computationally viable theory of
antennas radiating in nonlocal domains. The key idea is that within the momentum space of Fourier
transformed fields it is considerably easier to work with spectral components since in the latter case
they acquire their distinctive pure tensor-algebraic form developed above; simultaneously, using proper
Parseval (power) theorems, one may relate the physical meaning of some (squared) quantities in one
domain to the other. Our goal then will be to evaluate power delivered to the far zone by estimating (in
†† This conclusion was also reached — via different route — in the near-field engineering theory proposed in [5, 6]. Also, see [4, 60]
for similar conclusions in applications to dispersion management.
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momentum space) the energy leaving the current source in the near zone and use the Green’s function
in order to relate the two. This general idea appears to be due to Brillouin [44].

We start by rewriting The nonlocal medium Green’s function in Eq. (31) in the slightly different
form

Gij(k, ω) =
CH

ij(k, ω)
G−1,H(k, ω)

. (38)

That is, only the hermitian part is included in the momentum space Green’s function. The motivation
is what we have already alluded to earlier: dissipation in nonlocal media is often treated as perturbation
added to the pure propagation scenario described by hermitian response functions [3, 45, 70]. It is
remarkable, though, that in spite of the fact that only the hermitian part was originally taken into the
Green’s function in Eq. (38), there still exists an antihermitian component (given by Eq. (42) below) in
this Green’s function that must be added in order to enforce causality [3, 45]. This surprising observation,
which is not new but often overlooked in many accounts on electromagnetic radiation, deserves special
attention because — as will become clearer below — it lies at the heart of the momentum space antenna
theory being presented in this paper. For that reason, we will revisit the proof in a slightly detailed
form in order to better appreciate in depth the connection with the fundamental theory of antennas
embedded into nonlocal metamaterials.

Let us begin by noting that the Green’s function in Eq. (38) possesses “temporal poles,” i.e., poles
in the complex ω-plane, determined by the solutions of the dispersion Equation (35). This implies that
Gij(k, ω) would become singular at those values of ω and k satisfying the dispersion relation ω = ωl(k)
since by definition we have G−1,H(k, ωl(k)) = 0. But such situation presents a serious problem because in
order to find the spatio-temporal fields, one usually needs to invert the Fourier transform by computing
Eq. (4). This in turn will lead to divergent integrals when the spectral integration variables ω and k hit
the special values satisfying the dispersion relation ω = ωl(k). Unless a small perturbation in the poles’
location is introduced — usually attained by replacing ω by ω + iε, where ε is a very small positive real
number — no actual solution of the electromagnetic problem is possible [23, 45, 54, 71]. More explicitly,
we often enact the following formal transformation

ω → ω + i0, (39)

a notation adopted hereafter. The symbolic expression i0 indicates the presence of a formal perturbation
in the medium, i.e., small dissipation inserted by hand in order to push the pole slightly beyond the
real ω-axis [34, 35, 45]. It is clear then that around the lth mode, the determinant G−1 appearing in the
denominator of Eq. (38) may be approximated by

G−1(k, ω) ≈ ∂G−1(k, ω)
∂ω

[ω − ωl + i0]. (40)

Using the Plemelj formula [54, 72]

1
ω + i0

= P 1
ω + i0

− iπδ(ω), (41)

where P is the principal Cauchy value operator and δ the Dirac delta function, and the relations in
Eqs. (38) and (40) when summed over all radiation modes jointly imply the existence of the following
antihermitian component

GA
ij(k, ω) = −iπ

∑
l
ωl(k)Rl

ij(k)δ(ω − ωl(k)), (42)

where

Rl
ij(k) :=

CH
ij(k, ω)

ω∂G−1(k, ω)/∂ω

∣∣∣∣∣
ω=ωl(k)

(43)

is what we term the momentum-space radiation mode Green’s function. It captures the lth mode
contribution to the ijth component (i, j = 1, 2, 3) of the nonlocal medium Green’s function tensor
G(k, ω).
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It turns out that only the antihermitian part of this medium Green’s function as determined by (42)
actually contributes to the real radiated power of any antenna. On the other hand, the hermitian part
of G(k, ω) contributes only to the antenna near field.

We next explicitly compute this radiation power pattern in momentum space. Unfortunately, the
available method commonly applied to antennas radiating in free space or nondispersive media depends
on the Poynting theorem interpreted as energy conservation relation [67, 68]. It is well known that
this direct view cannot be extended without further assumptions to generally temporally dispersive
media [53]. Worse still, in nonlocal (spatially dispersive) domains, the standard interpretation of the
Poynting theorem itself breaks down since power will flow along new directions emanating from the
need to include higher-order corrections in energy calculations [1, 2, 4, 22, 60].

To circumscribe this problem, we adopt here an alternative method due to Brillouin [44] often
utilized in various settings [73]. The key idea is to estimate the energy transferred from the source to
the near field right at the source and equate this with the net (real) power delivered to the medium.
Since in low-loss media most of the delivered power (energy) will escape to the environment’s far zone,
we may then use this energy “balance” to estimate the antenna radiation pattern.

To achieve this in momentum space, we introduce a new radiation pattern intensity Ul(k), which
is formally defined as

Ul(k) :=
Density of energy transferred from the source current Jant(r, t) into the lth radiation
mode’s field per the momentum-space differential volume element d3k/(2π)3. (44)

Clearly, the units of this quantity will be J ·m3. Let the antenna current source Jant(r, t) be examined
within a standard time interval [−T/2, T/2]. Since radiation modes do not exchange energy with each
other, we can sum over all radiation intensity functions Ul(k) defined by Eq? (44) to obtain

−
∫ T/2

−T/2
dt

∫
Vant

d3rJant(r, t) ·E(r, t) =
∑

l

∫
R3

d3k

(2π)3
Ul(k). (45)

Here, Vant is the antenna (source) region (see Fig. 2).
The equality in Eq. (45) represents a more general statement of energy conservation since it does not

require using the Poynting vector, the latter being inadequate when nonlocality is present. Moreover,
the same relation may serve as an implicit formal definition of the modal momentum-space density
function Ul(k).

With the help of the standard Parseval (power) theorem, the total radiated energy can be re-
expressed in momentum space as

Erad := −
∫ T/2

−T/2
dt

∫
Vant

d3r Jant(r, t) ·E(r, t) = −
∫

R4

dωd3k

(2π)4
J∗

ant(k, ω) ·E(k, ω). (46)

The momentum space integration in the RHS of Eq. (46) is generally performed over the entire ω-k-
four-dimensional space R

4, but in practice it has to be terminated by an upper cuttoff frequency. Using
Eqs. (21) and (30), Eq. (46) becomes

−
∫ T/2

−T/2
dt

∫
Vant

d3r Jant(r, t) · E(r, t) =
∫

R4

dωd3k

(2π)4
iμ0c

2

ω
J∗

ant(k, ω) ·G(k, ω) · Jant(k, ω). (47)

The integral appearing at the RHS of Eq. (47) is real (because energy in the LHS is real), so it can
be written as half its sum with the complex conjugate, which implies that only the antihermitian part
of G(k, ω) will contribute to the integral’s net value. The latter value, however, has already been
computed and its expression is given by Eq. (42), which upon substitution into Eq. (47), evaluating
the trivial ω-integral involving the delta function, and noticing that negative frequencies have identical
contribution to positive frequencies, will yield the following result

Erad =
1
ε0

∫
R3

d3k

(2π)3
∑

l

J∗
ant[k, ωl(k)] ·Rl(k) · Jant[k, ωl(k)]. (48)
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The dyadic function Rl(k) is defined as the 3-dimensional dyad with Cartesian components given by
Rl

ij(k) as per Eq. (43), i.e., we have Rl(k) :=
∑3

i,j=1 Rl
ij(k)x̂ix̂j, where x̂i, i = 1, 2, 3, are three Cartesian

unit bases. This crucial tensor can be further expanded with the help of Eqs. (A3) and (43), leading to

Rl(k) = Rl(k) êl(k) ê∗l (k), (49)

with

Rl(k) :=
γl(k)

ω∂G−1(k, ω)/∂ω

∣∣∣∣
ω=ωl(k)

. (50)

For the definition of γl(k), see Eq. (A4).
The momentum-space function Rl(k) is the most important quantity in the theory of nonlocal

antennas proposed in this paper. As will be seen later, all calculations distinctive of this type of
antennas rely on accurate estimation of Rl(k) for various material domains. Example calculations will
be given in Part II [21].

Finally, by comparing Eq. (48) with Eq. (45), the following expression for the lth mode radiation
intensity is derived:

Ul(k) =
1
ε0

J∗
ant[k, ωl(k)] ·Rl(k) · J[k, ωl(k)]. (51)

Using Eq. (49), the radiation mode intensity formula (51) can be further simplified into

Ul(k) =
1
ε0

Rl(k) |ê∗l (k) · Jant[k, ωl(k)]|2 . (52)

The relation in Eq. (51) is very general and fundamental. It expresses the amount of radiated energy
within a unit volume in momentum-space in terms of the momentum-space radiation mode (spectral)
Green’s function Rl(k).

However, note that Eq. (51) is directly applicable to the case of nondegenerate waves like
longitudinal waves where for each l only one modal field êl(k) exists. In radiation theory in general,
and antenna theory in particular, transverse waves are ubiquitous. These waves are degenerate since for
each mode index (order) l, there exist two modal fields ê1

l (k) and ê2
l (k) that must be taken into account

satisfying ê1
l (k) · ê2

l (k) = 0, while both vectors are orthogonal to k̂. The net energy radiated by such
degenerate modes must then include an additional summation over a multiplicity (polarization) index
s = 1, 2. The expanded tensor in Eq. (49) can then be modified to

Rls(k) = Rl(k) êls(k) ê∗ls(k), (53)

while the radiation energy formula (48) acquires the form

Erad =
∫

R3

d3k

(2π)3
∑

l

∑
s

Uls(k)

︸ ︷︷ ︸
Ul(k)

. (54)

Here, the modified momentum-space modal radiation density function Uls(k) is defined by

Uls(k) := J∗
ant[k, ωl(k)] ·Rls(k) · Jant[k, ωl(k)]. (55)

It is apparent from Eqs. (54) and (55) that the following summation needs to be evaluated∑
s

Rls(k) = Rl(k)
∑

s

êls(k) ê∗ls(k). (56)

Using Eq. (A10), this can be readily computed as follows: if we define Ul(k) :=
∑

s Uls(k), then

Ul(k) =
1
ε0

Rl(k) J∗
ant[k, ωl(k)] · (I − k̂k̂) · Jant[k, ωl(k)]. (57)
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Noting that the transverse component of the current has an amplitude k̂ × J, the relation in Eq. (57)
can be put in the alternative form

Ul(k) =
1
ε0

Rl(k) |k̂ × Jant[k, ωl(k)]|2. (58)

The two main formulas (51) and (57) will be heavily deployed in Part II [21] in order to estimate the
radiation pattern of antennas embedded into example isotropic nonlocal metamaterials. The idea is to
re-write the wavevector k as k = kk̂ then make use of the dispersion relation ω = ω(k) in order to
replace k by ω and then evaluate the radiation energy density as function of k̂. Since the latter is an
angular function of θ and ϕ, we may then plot Ul(k, k̂) as function of angles around the source for a
given k, where k is obtained from both the desired frequency ω and the specific values of k̂ by solving
the dispersion relation ω = ωl(k, k̂) for k and then using the fundamental formulas (51) and (57).

5. DISCUSSION OF THE RESULTS AND TRANSITION TO PART II

5.1. Summary of the Nonlocal Radiating System Main Algorithm

The ultimate goal of the the momentum-space theory derived above is to provide a practical path
toward the estimation of the antenna current’s angular energy radiation pattern without first solving
for the spatio-temporal fields themselves by inverting the spectral domain GFs, a difficult and hard to
generalize task. The radiation density function Ul(k, k̂) discussed at the end of Section 4 is the key
quantity, but it is not the final form we will eventually work with in Part II [21]. Instead, a more
convenient form involves the slightly different function Ul(ω, k̂), where ω is the radiator’s frequency.
Since the technical details will be provided in details in Part II, we summarize here the fundamental
main features in the computational approach developed in this paper by Algorithm 1. The method
requires the dielectric tensor is known and that the dispersion relation is first derived and solved. The
transformation in Eq. (60) will be studied in details in Part II for isotropic nonlocal MTMs but will
also be generalized to arbitrary domains in the Appendix of [21].

Algorithm 1 Algorithm for constructing the radiation pattern of nonlocal antennas.
1: Everything starts from knowledge of the dispersion relations whether in the form ω = ωl(k) or

kl = kl(ω).
2: From the proper dispersion relations, the calculations of the source radiation density pattern in the

momentum space representation rests completely on evaluating the fundamental scalar functions
Rl(k).

3: The previous procedure is conducted for the lth mode. The total radiation energy density will
be the direct sum of the same calculations of all modes (superposition applies to modal energy
densities). This is a direct consequence of the way in which the momentum space radiation density
function Ul(k) was constructed.

4: Using the angular form

k̂ = k̂(Ω) = x̂ cos ϕ sin θ + ŷ cos ϕ sin θ + ẑ cos θ, Ω := (θ, ϕ). (59)

the radiation density function Ul(k) can be expressed as an angular radiation density function
Ul(k,Ω).

5: From the dispersion relation, enact the transformation

Ul(k,Ω)
k=kk̂, ω=ωl(k)−−−−−−−−−−→ Ul(ω,Ω), (60)

which is based on the dispersion relations of the lth mode. Here, ω is the frequency of the external
source energizing the radiating antenna system.
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5.2. Main Advantages of the Nonlocal Radiating System Algorithm

Like every general theory developed with a specific formalism or mathematical/conceptual apparatus
in mind, the proposed momentum space theory offers several advantages. For the sake of completeness,
we give a brief summary of the advantages of Algorithm 1 as follows:

(i) The theory leads to a straightforward computational formalism that requires only knowledge of the
dielectric tensor function ¯̄ε(ω,k), the dispersion relations in Eq. (35), and the modal fields êl(k)
(these can be obtained using the recipes of Appendix A).

(ii) Once the above data are found, the radiation pattern can be computed in a quasi-analytical fashion,
hence very efficiently.

(iii) There is no need to perform Sommerfeld-type spectral integrals to invert the Green’s functions of
nonlocal domains.

(iv) The theory is completely general and works with both isotropic and anisotropic media with the
same general mathematical expressions.

(v) The theory, being developed in momentum space, makes it quite natural and straightforward
to adapt to other settings in contemporary applied physics and condensed-matter physics. For
example, it is straightforward to generalize the present theory to account for fluctuation phenomena
using the methods of [58]. Moreover, the momentum space formalism provides a direct path toward
quantization of the theory [22, 24, 49].

Part II [21] will be focused on explicating some of the benefits of the proposed theory, especially in
light of concrete examples involving isotropic nonlocal MTMs. There, the derivation of Ul(ω,Ω) for
specific nonlocal domains will be illustrated with various examples and the potential for engineering
applications will be highlighted.

5.3. Practical Implications of the Theory

The theory of electromagnetic radiation in nonlocal domains has been designed and developed with
the expectation that it will help stimulate the research & development of futuristic radiating systems
exhibiting unusual or nonclassical behaviour. Future antenna systems can be defined as novel antenna
technologies that are being actively developed now or predicted to play a major role in the near or
far futures. Examples include plasma and quantum antennas, biological and molecular transmitters,
and intelligent electromagnetic agents, just to mention a few. The key feature in such systems is not
necessarily that they serve a specific role in an existing applications, but their ability to exhibit new and
unique radiation properties unseen in conventional antennas. The author believes that nonlocal antenna
systems as an example of future antennas present one of the most promising and exciting applications
of fundamental theory to technology. In Part II [21], we continue to explore how these future systems
perform in terms of standard measures like bandwidth, directivity, and isotropicity, in addition to new
ideas, meanwhile pointing out their potential deployment for further development, especially in areas
like wireless communications and nanotechnology.

6. CONCLUSION

We have provided a complete and rigorous derivation of an equivalent quantity that gives the amount
of energy radiated by an antenna embedded into a generic nonlocal metamaterial per unit Hertz per
unit solid angle. The method is based on carrying out all calculations in frequency-momentum space
instead of the conventional approach in spacetime. Since the Poynting vector in nonlocal media fails to
describe the direction of power flow, we computed the energy injected directly from the antenna current
into the near field in order to estimate the radiation energy intensity per unit frequency per unit solid
angle. It was found that the total radiation pattern is the sum of radiation functions each controlled
by the corresponding longitudinal and/or transverse mode launched by the antenna into the nonlocal
metamaterial. The derived expression can be evaluated analytically if the dispersion relation and hence
the modes of the nonlocal medium are known.
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APPENDIX A. AN ALGORITHM FOR COMPUTING POLARIZATION IN
NONLOCAL MEDIA

A rather direct routine exists for the computation of the polarization vectors corresponding to a given
mode provided the mode’s dispersion relation ωl(k) is available. We start from Eq. (32), which can be
re-adapted into the component form

3∑
n=1

GH
in(k, ω)Cnj(k, ω) = δijG

−1(k, ω). (A1)

For a given mode, G−1 = 0 and hence we have
∑

n GinCnj = 0. Therefore, every vector of the form
[ C1j C2j C3j ]T satisfies the homogeneous wave Equation (34) for each j, implying that Cij is
proportional to the mode polarization form eli defined by Eq. (36), where i = 1, 2, 3, enumerates the
three cartesian components of êl. However, note that from its defining relation in Eq. (A1), the co-
factor matrix Cij is hermitian because we operate only with the hermitian part of the propagator
(Green’s function) G. Consequently, Cnj is also proportional to e∗lj, j = 1, 2, 3. Combining these two
proportionality conditions, we write

Cij(k, ω) = γeli(k)e∗lj(k) (A2)

for some constant γ. To find this constant, we take the trace of Eq. (A2) and use Eq. (37), leading to

C(k, ωl(k)) = γl(k) êl(k) ê∗l (k), (A3)

where
γl(k) := tr

[
C(k, ωl(k))

]
. (A4)

This decomposition of the co-factor matrix (dyad) into modal polarization factors is very general and is
often useful in calculations. Note further that the following important symmetry relation also applies

ωl(−k) = −ωl(k), (A5)

which links the forward and backward wave solutions of the wave equation. Using the reality and
hermitian conditions, this leads to

êl(−k) = ê∗l (k). (A6)

Moreover, the expansion in Eq. (A3) together with (A6) jointly imply

C(−k,−ω) = C
T (k, ω). (A7)

Assuming that the dispersion relation is available, we may now summarize the algorithm needed to
compute polarization in nonlocal domains in Algorithm 2. In this way, the normalized êl(k) of the mode
under consideration can be explicitly computed starting from the material tensor function ε(k, ω), but
only if the dispersion relation ω = ωl(k) of the mode under consideration is available. Usually it is this
dispersion law that is more expensive to compute in the analysis of nonlocal materials.

Algorithm 2 Algorithm for constructing the modal fields in generic nonlocal MTMs.
1: Find the co-actor matrix Cij(k, ω) using the standard inversion approach in matrix analysis.
2: Substitute the dispersion relation ωl(k) into the co-factor matrix elements Cij(k, ω) in order to

obtain the k-functions Cij(k, ωl(k)).
3: Select any column Cij(k, ωl(k)). Normalize this column using the relation in Eq. (36). This will

serve as a possible modal field solution.

It is instructive to add a few words about energy exchange between different modes in nonlocal
domains since this behaviour is less intuitive than the case with normal (temporal) dispersion. Consider
two different modes l1 and l2 with dispersion relations ω = ωl1(k) and ω = ωl2(k), where dissipation is
neglected. The corresponding modal field distributions are captured by the vectors êl1(k) and êl2(k).
By direct calculation of the energy transferred from one the fields of one mode to another, it can be
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shown that a nonzero such energy exchange may occur if and only if the following strict condition is
satisfied

ê∗l2(k) · [¯̄εH(k, ω)− I
] · êl1(k) = 0. (A8)

In other words, in momentum space, geometrical orthogonality ê∗l2(k) · êl1(k) = 0 is not equivalent to
natural mode orthogonality.

We also add a useful identity enjoyed by modal polarization vectors of degenerate waves like
transverse modes with degeneracy index s = 1, 2. By its construction, the vectors êl1, êl2, and k̂
form an orthogonal basis set for R

3. Therefore, we have by the resolution of identity (completeness)
relation

êl1(k) ê∗l1(k) + êl2(k) ê∗l2(k) + k̂k̂ = I, (A9)

which is the completeness relation for the transverse modal fields. Summing over the two degenerate
modes, we find ∑

s

êls(k) ê∗ls(k) = I− k̂k̂, (A10)

another version of the resolution of identity for modal fields. The relation in Eq. (A10) is very useful
when attempting to estimate the total radiation power/energy without needing to account for the details
of polarization, which is often the case in scattering and radiation in random media.

APPENDIX B. EXPLICIT GENERIC SPATIAL DISPERSION DOMAIN TENSOR
FORMULAS AND SOME OF THEIR PROPERTIES

(i) The reality condition requires that

G−1(k, ω) =
[
G−1 (−k∗,−ω∗)

]∗
, (B1)

where we consider the most general case of dissipative medium in which both the spatial and
temporal frequencies k and ω are allowed to become complex.

(ii) The fundamental quantity G−1, the converse of the determinant of the forward Green’s function
dyad, can be explicitly computed in terms of the material tensor ¯̄ε(k, ω). The result is given by

G−1 = n4 k̂ · ¯̄ε(k, ω) · k̂ − n2
(
k̂ · ¯̄ε(k, ω) · k̂ tr [¯̄ε(k, ω)] − k̂ · ¯̄ε2(k, ω) · k̂ + |¯̄ε(k, ω)|

)
, (B2)

where tr [¯̄ε(k, ω)] and |¯̄ε(k, ω)| are the matrix trace and determinant operations applied to the
material tensor ¯̄ε(k, ω), while

n2 :=
k2c2

ω2
. (B3)

(iii) The tensor expression for the co-factor matrix is considerably more complicated but can be put in
the form

C(k, ω) = n4 k̂k̂ − n2
{
k̂k̂ tr [¯̄ε(k, ω)] + Ik̂ · ¯̄ε(k, ω) · k̂ − k̂ k̂ · ¯̄ε(k, ω) − k̂ ¯̄ε(k, ω) · k̂

}

+
1
2
I
{

(tr [¯̄ε(k, ω)])2 − tr
[
¯̄ε2(k, ω)

]}
+ ¯̄ε2(k, ω)− tr [¯̄ε(k, ω)] ¯̄ε(k, ω). (B4)

It is worth reminding the reader that when G−1 = 0, the matrix representation of the tensor
C, i.e, the array Cij, is a rank-one matrix, while G−1

ij has rank two. The formal proof of the
above relations in Eqs. (B2) and (B4) can be obtained using the Cayley-Hamilton’s theorem, which
states that a matrix satisfies its own characteristic equation. The details are straightforward but
the computations are lengthy and will hence be omitted. Some of the texts that discuss these
calculations include [2, 22].

(iv) The determinant of C is clearly given by

det [C(k, ω)] = G−2(k, ω). (B5)
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(v) A very general formula for evaluating the fundamental function Rl(k), alternative to Eq. (50), can
be derived using Eqs. (B2) and (B4). The result is

Rl(k) =
ω

∂

∂ω

[
ω2 ê∗l (k) · ¯̄εH(k, ω) · êl(k)

]
∣∣∣∣∣∣∣
ω=ωl(k)

(B6)

This alternative form can be very useful to either perform all calculations in practical settings or
to double check the correctness of results obtained by other means and will be used in Part II.
Its usefulness resides in the fact that only the dielectric function is needed and the latter is often
available from previous analysis or measurement. We provide only a brief sketch of the proof.
Taking the hermitian of Eq. (32) then the differential and using some of the tensorial (algebraic)
properties of the co-factor matrices, the following relation can be derived

d
[
G−1,H(k, ω)

]
=

3∑
ij=1

CH
ij(k, ω)d

[
G−1,H(k, ω)

]
(B7)

Combining the last equation with Eq. (A3), the main expression of Rl(k) given by Eq. (50) can be
put in the alternative shape

Rl(k) =
1

ê∗l (k) · ∂

∂ω
[ωG−1,H(k, ω)] · êl(k)

∣∣∣∣∣∣∣
ω=ωl(k)

. (B8)

The dyadic GF tensorial form in momentum space (29) can then be exploited in order to show that

ê∗l (k) · ∂

∂ω

[
ωG−1,H(k, ω)

] · êl(k) =
1
ω

∂

∂ω

[
ω2 ê∗l (k) · ¯̄εH(k, ω) · êl(k)

]
, (B9)

after which Eq. (B6) readily follows.
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