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A Beamformer Design Based on Fibonacci Branch Search

Tianbao Dong*, Haichuan Zhang, and Fangling Zeng

Abstract—An approach towards beamforming for a uniform linear array (ULA) based on a novel
optimization algorithm, designated as Fibonacci branch search (FBS) is presented in this paper. The
proposed FBS search strategy was inspired from Fibonacci sequence principle and uses a fundamental
branch structure and interactive searching rules to obtain the global optimal solution in the search
space. The structure of FBS is established by two types of multidimensional points on the basis of
shortening fraction formed by the Fibonacci sequence, and in this mode, interactive global searching
and local optimization rules are implemented alternately to reach global optima, avoiding stagnating in
local optimum. At the same time, the rigorous mathematical proof for the accessibility and convergence
of FBS towards the global optimum is presented to further verify the validity of our theory and support
our claim. Taking advantage of the global search ability and high convergence rate of this technique, a
robust adaptive beamformer technique is also constructed here by FBS as a real time implementation to
improve the beamforming performance by preventing the loss of optimal trajectory. The performance
of the FBS is compared with five typical heuristic optimization algorithms, and the reported simulation
results demonstrate the superiority of the proposed FBS algorithm in locating the optimal solution with
higher precision and reveal the further improvement in adaptive beamforming performance.

1. INTRODUCTION

Since the conception of the adaptive arrays came into usage in aerospace and military applications via
the employment of electronically steered beamformer, the ultilized technique adaptive beamforming
(ABF) has drawn significant attention in various fields [1–4]. ABF possesses the potential ability to
optimize the radiation pattern in real time, which obtains a larger output signal to interference-plus-
noise ratio (SINR) by steering the main lobe of radiation toward a desired signal while placing respective
nulls toward several interference signals [5].

Classical adaptive beamforming methods used to extract the excitation weights are based on
two main criterions: maximum signal-to-noise ratio (MSINR) and minimum mean square error
(MMSE) [6]. Minimum variance distortionless response (MVDR) is one of the typical adaptive
beamforming approaches on the basis of MSINR criterion. The design of this beamformer involves
minimizing the output power subject to the unit gain constraint to desired signal [7–9]. Although the
MVDR beamformer is capable of suppressing the interference and improving system reliability, the
weights computed by MVDR are not able to form deep nulls towards the interference source in various
interference scenarios on account of the characteristics of this technique. Closed-form (CF) design or
the classic algorithm exists to easily find the optimal solution for a actually convex problem, such as the
algorithm known as the sample matrix inversion (SMI) technique; however, the weight calculation of this
solving process takes into account the interference correlation matrix which makes this beamforming
process very difficult, time consuming, and sometimes, in ABF application, is unmanageable. Besides,
the closed-form design for the convex ABF model problem always needs to compute the matrix inverse

Received 31 March 2020, Accepted 1 July 2020, Scheduled 3 September 2020
* Corresponding author: Tianbao Dong (dtb 1@163.com).
The authors are with the School of Electronic Countermeasures, National University of Defense Technology, China.

Sticky Note
See the errata at the end of this paper for the second author's affiliation.

Sticky Note
See the errata at the end of this paper for the corresponding author



74 Dong, Zhang, and Zeng

process which introduces high computational complexity especially for large number of array elements
and not suitable for certain real-time beamforming situations [10–12]. In addition, the classic closed-
form design algorithms have hardware component device limitations. It is not possible to change the
hardware of the filter for signal processing or to change the design of the antenna based on the increased
number of components, but this is necessary. Another criterion for computing the array weights is
to minimize the MMSE. One of the most widely used MMSE-based adaptive algorithm is the least
mean square (LMS) approach, and this method needs a training sequence of signal of interest (SOI)
to adaptively adjust the complex weights and minimize the difference between the array output and
the desired signal for forming the optimum array pattern. Consequently, the inherent shortcomings of
above mentioned derivative-based and gradient-based ABF methods have compelled many researchers
to explore meta-heuristics (MH) methods for overcoming these difficulties.

The main advantage of the evolutionary heuristics algorithms over the classical derived approaches
in antenna systems is that they have no requirements for extra iterative derivations or computationally
extensive routines in objective functions of ABF model, and some of the evolutionary algorithms
have been dedicated to beamformer implementations for their ability to search the global optimum.
Approaches such as genetic algorithms (GA), particle swarm optimization (PSO), and other modified
techniques are a set of optimization algorithms that have been suggested in the past decades to solve
a variety of ABF problems [13, 14]. Many researches have shown that the excitation weights extracted
by these optimization techniques defined by specific criteria can be used to place a maximum beam
and null in an array pattern in specified locations, and they also require relatively lower mathematical
complexity than derivative-based or iterative-based ABF methods. However, there still exist weaknesses
and limitations in the application of ABF with these techniques. Most iterative evolutionary methods
are highly dependent on starting points in the case of large number of solution variables [15]. Yet the
weights of ABF are regularly associated with a large number of array elements, and the excitation of
array elements is complex, i.e., having both amplitude and phase, hence the size of the ABF solution
space cannot be very small, and in case, these evolutionary algorithms are not really applicable to
beamforming. Besides, the classic optimization methods are prone to get trapped in local minima
and not reach the global optimum when solving complex multimodal optimization problems of array
weight extraction, resulting in a suboptimum beamforming performance [16, 17]. In addition, most of
MH algorithms are population-based optimization techniques which require long execution times to
converge, specifically when solving large scale complex ABF engineering problems, and the complexity
required for implementing the algorithms would also result in huge cost and consumption of hardware
resources.

In consideration of the above-mentioned studies, we propose a novel interactive-based random
iterative search strategy, called FBS in this paper to deal with complicated optimization problems of
ABF. The motivation for considering the FBS with application to such a robust adaptive beamformer
is that we expect to be able to form deep nulls towards the interference source in various interference
scenarios without the requirement of apriori information such as the training sequence of signal of interest
and avoid complex mathematical processing such as the inverse calculation of the interference correlation
matrix compared to the derivative-based approaches, and with respect to a traditional meta-heuristic
algorithms applied to beamformer, it is anticipated that the FBS based on beamformer could obtain
the near optimal nulling level performance featuring a high global optimization resolution capability
and prevents the loss of optimal search trajectory low computational load possesssing to improve the
convergence performance with the design flexibility of the algorithm in the framework of ABF.

The concept of the proposed FBS is defined from two aspects: The first one is the generation
principle of the Fibonacci branch architecture. The basis for building a branch structure in FBS is to
establish search points and the shortening fraction based on the Fibonacci sequence to generate a set
of optimization elements composed of two types of search points. The optimization endpoints search
for the optimal solution according to the branch’s growth path pattern. The second view of the FBS
concept is that the construction of interactive iteration applies rules to the calculation of optimization
elements. The iterative rules are composed of global searching and local optimization, which are the two
phases necessary to update the optimization elements. Global tentative points and local searching points
are formulated in the phase of two interaction processes, and the points with the best fitness converge
towards the global optimum in searching space. At the same time, computer memory can be fully used
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to record the optimizing process during the interaction optimization course. Global randomness is one
of the important characteristics of FBS, and this mechanism is implemented on those points that are
not easy to fall into the local optimum and not able to find a better solution. The novelty of this
paper lies in the fact that we design the Fibonacci branch optimization structure and propose the novel
global searching and local optimizing interaction iterative technique. In addition, the Fibonacci branch
search algorithm proposed here has been applied to antenna array beamforming in several cases and
in comparison with other evolutionary optimization-based techniques on several test functions and the
robust ABF.

The reminder of this paper is organized as follows. Adaptive beamforming model incorporation with
metaheuristic algorithm is described in Section 2. Section 3 presents the proposed FBS optimization
algorithm and the accessibility convergence proof of FBS. The validation of the proposed FBS via
benchmark functions and the simulation results are reported in Section 4. Section 5 gives the conclusion.

2. ADAPTIVE BEAMFORMING MODEL INCORPORATION WITH
METAHEURISTIC ALGORITHM

Consider a uniform linear antenna array of M omnidirectional array elements employed in adaptive
beamforming receiver, one desired signal and Q uncorrelated interferences which impinge on the array
at the kth snapshot can be expressed by [18]

x (k) = s (k) a (θd) +
Q∑

i=1

ii (k) a (θi) + n (k) (1)

where s(k) and ii(k) are the desired global navigation satellite systems (GNSS) signal and the ith
interference, and n(k) denotes the complex vector of sensor noise. a(θd) and a(θi) represent M × 1
steering vectors of s(k) and ii(k) as given by

a (θd) =
[
1, e−j2π dc

λ
cos θd , · · · , e−j2π dc

λ
(M−1) cos θd

]T

a (θi) =
[
1, e−j2π dc

λ
cos θi , · · · , e−j2π dc

λ
(M−1) cos θi

]T
(2)

where θd and θi denote the direction of the desired signal and the ith interference; dc = λ
2 is the

inter-element spacing; λ is the wavelength of GNSS carrier; T is the transpose operation.
The array beamformer output can be written as

y (k) = wHx (k) (3)

where w is the complex beamforming weight vector of the antenna array, and H stands for the Hermitian
transpose.

The schematic structure of a linear adaptive antenna array processor on the front end of the receiver
is shown in Figure 1. Solid incident arrow represents the GNSS signal, and dotted arrow represents the
interference.

In the above model, the adaptive beamformer studied in this paper aims to calculate a complex
weight vector that satisfies the requirement of achieving a deep nulling level for interference to maximize
the output SINR, and is usually a low nulling level for multiple interference sources. The non-global
optimal weight vector is one of the main disadvantages of MVDR beamforming technology. Therefore,
in this section, the proposed FBS algorithm incorporated into the beamforming model will extract the
optimal array excitation weights to achieve the improved performance of the technique.

Altering the radiation pattern of an antenna array by adjusting the weights is an inherently multi-
objective problem, since multiple sets of agent weight vectors w with amplitude and phase to make deep
nulls toward the interference place and steer the radiation beam toward the desired user to achieve the
maximum SINR must be satisfied. The optimization method to the designed ABF aims at finding the
near-global minimum of a fit mathematical function called fitness function; therefore, the best weight
vector is determined according to the fitness value obtained from the object function defined based on
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Figure 1. The schematic of the linear antenna array processor.

the SINR. Therefore, a typical fitness function constructed from the perspective of SINR for calculating
complex excitation weights using FBS can be appropriately expressed in the following form:

Fitness Function (w) =
Pd

Q∑
i=1

Pi + PN

(4)

where

Pd =
1
2
E

[∣∣wTxd

∣∣2] (5)

Pi =
1
2
E

[∣∣wTxi

∣∣2] (6)

are, respectively, the power of the desired signal and the power corresponding to the ith interference,
and PN is the noise power. xd and xi denote the desired signal and interference component of the
received signal in Equation (1), and E is the expectation operator.

Then, the design objective function can be properly stated in the following form

Fitness Function (w) =
wTRdw

wT

Q∑
i=1

Riw + σ2
noisew

Tw

(7)

where Ri and Rd are the covariance matrix of the ith interference and the desired one. The noise
variance is calculated from the value of signal-to-noise ratio (SNR) in dB as follows:

σ2
noise = 10−SNR/10 (8)

By maximizing Eq. (7), the optimal excitation weight corresponding to the minimum level of the
interference sources but with the desired user gain of the beamformer can be achieved by the proposed
FBS algorithm, and the optimum performance of the weight corresponding to the maximum SINR can
be evaluated based on the best fitness account. Next section of the paper provides a brief description
of the implementation steps for extracting the weight using Fibonacci branch search method.
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3. PROPOSED FBS ALGORITHM

Since the inception of Fibonacci optimization strategy, the effectiveness of the algorithm for solving a
set of nonlinear benchmark functions has been proven in one dimension space; however, this algorithm
is seldom applied to the search optimization problem of multidimensional space for the properties and
structure of itself, and very few of its variants have been implemented for the beamforming applications
in open reported literatures. In this section, the conventional Fibonacci sequence method will be briefly
introduced, and the inspired FBS will be explained in principle and provide an in-depth insight into
this technique.

3.1. The Standard Principle of Fibonacci Sequence Method

The famous Fibonacci sequence was proposed initially by Etminaniesfahani et al. [19], and the recurrence
formula of the general sequence term is given by [20]{

F1 = F2 = 1
Fj = Fj−1 + Fj−2, j ≥ 3

(9)

where Fj represents the jth general term of Fibonacci sequence.
Fibonacci sequence optimization method makes the tentative optimization points in the defined

interval converge to the optimal solution by compressing the search interval proportionally based on
Fibonacci sequence term, and it has been perceived as one of the most effective strategies to solve
one-dimension unimodal problem [21]. Let us investigate below how the optimization method using the
Fibonacci sequence works for a unimodal continuous function in an interval for a minimization problem.
Supposing a unimodal f(x) function which is defined on the intervals [A,B]. Initially, the technique
starts a choice for two feasible points x1 and x̃1, x1 < x̃1 in the given range for the first iteration.
Then, it is necessary to reduce the initial box of range to a sufficiently small box region including the
minimum solution of f(x) (through an iteration process) for the interval that can be narrowed down
provided that the function values are known at two different points in the range. The implementation
of the classical Fibonacci serial optimization algorithm can be found in [22], and we will not go into
further details here.

Let xp and x̃p denote the different random selected new points over the range of [Ap, Bp] to be
chosen for shortening the length of the interval at the pth iteration involving optimal point, xp < x̃p.
Hence for each p = 1, 2, ..., N , N represents the maximum number of iterations, and Fibonacci algorithm
can be executed as following proceedings.

3.2. Fibonacci Branch Structure and FBS Optimization Algorithm

The standard Fibonacci strategy cannot efficiently solve multi-variate problems and reliably perform
the optimum fitness evaluation of multimodal functions [23]. While this is in contradiction to the classic
heuristic optimization algorithms, the FBS algorithm, proposed in this paper, is used to overcome these
defects while avoiding a loss of the optimal search trajectories by using the searching elements with a
dendritic branch structure and interactive searching optimization rules.

The basic structure of FBS expanded to the multi-dimensional space D can be illustrated in
Figure 2, where XA, XB , and XC are the vectors in D dimensional Euclidean space. XA and XB

represent the endpoints of the search element satisfying the optimization rule, and XC denotes the
segmentation points which can be determined from the searching rule. A certain proportion of the
vectors can be constructed as follows

‖XC − XA‖
‖XB − XA‖ =

‖XB − XC‖
‖XC − XA‖ =

Fp

Fp+1
(10)

Figure 2. Basic structure of the proposed FBS.
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where Fp is the pth Fibonacci number.
Considering that the multimodal function with multiple variables f(X) is to be minimized in search

space, the fitness function value calculated by the endpoints in the structure should be evaluated as
f (XA) < f (XB) (11)

Then, the coordinate computing formula of segmentation point XC can be written as

XC = XA +
Fp

Fp+1
(XB − XA) (12)

The FBS optimization algorithm introduced in this section is based on a framework that is built
around the concept of endpoints and segmentation points in basic structure. Although a similar
relevant algorithm theory has been studied in [24], it did not elaborate on the steps and principles
of the algorithm. In this section, the principle part of FBS is well explained, and the details of the
implementation content are fully described including the implantation procedure being regularized, and
it is successfully applied to the adaptive beamforming field.

Combining with the basic structure, the process of searching for global optimum solution which
can also be regarded as establishing a search element in FBS is divided into two stages, the local
optimization process and the global searching process, which are the corresponding two interactive
rules. Let G denote the point sets of the object function searching for in current processing phase, and
set |G|num = Fp, p = 1, 2, · · · , N . | · |num represents the total number of points in a set, and N is the
depth of the Fibonacci branch. The fitness value of the endpoints XA and XB are initialized using
the two corresponding interactive optimization rules, then the segmentation points XC can be obtained
from Equation (12). By comparison of the fitness values of all the points in the structure, we can get the
results that the best fitness value accordingly corresponds to the closest optimal solution. To the next
optimization phase, the optimal point with the best fitness value is provided in the forefront position of
the set, and the points corresponding to the suboptimal fitness are arranged below the optimal point in
accordance with the order from the best to worst. Throughout the operations above, the points set G
can be updated in every optimizing phase to attain the aim of growing the Fibonacci branch and global
optimization in search space simultaneously.

The two interactive searching rules of FBS in the optimization stage are summarized as follows:
Rule One: Let us consider the endpoints XA and XB in the structure, which are defined by

{XA} = Gp = {Xq|q = [1, FP ]} (13)

{XB} =

⎧⎨⎩X|X ∈
D∏

f=1

[
Xf

lb,X
f
ub

]U

⎫⎬⎭ (14)

where Gp is the search points space set in the pth iteration; Xq are the points in set Gp, and this search
point was randomly selected in the whole search space with random search mechanism. q is the sequence
number lying on the interval between 1 and the pth Fibonacci number, and it represents the Fibonacci
layer used for searching the global optima. XA take all the points from Gp of the pth iteration. The
other endpoints XB take random points in search space, and the number of XB is equal to FP . D is
the dimension of the points, and Xf

ub are the upper and lower bounds of the search points. Given that
∀X ∈ {XB}, component x of vector X is a random variable that satisfies a uniform distribution over
the interval [Xlb,Xub]

U , where the usual character U stands for the uniform distribution of the variable,
and the probability distribution of the component can be written as

P (x) = U (Xlb,Xub) =
1

Xub − Xlb
(15)

Using the given endpoints XA and XB , we can determine the segmentation points XS1 in the first
global search stage by Equation (12).

Rule Two:
Suppose that Xbest is the optimal solution corresponding to the best fitness value of the search

space in the current iteration containing the endpoints and the segmentation points generated from rule
one, as given by

Xbest = BEST (GP ) (16)
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(a) (b)

Figure 3. The process of building Fibonacci branch for the global optimization. (a) The first global
searching stage. (b) The second local optimization stage.

where BEST (·) means the best solution of the set at the pth iteration.
Then, we set the endpoints XA = Xbest and have that:

f (XA) = min {f (Xq) , q = [1, FP ]} (17)
XB = {Xq|Xq ∈ GP ∧ Xq �= XA} (18)

Using the calculation formula of the segmentation point, the segmentation point XS2 of the second
local optimization stage can be determined according to the endpoints defined in Eqs. (17) and (18),
and the segment search point is computed by Equation (12).

From the two interactive searching rules mentioned above, new points including endpoints XA, XB

and segmentation points XS1, XS2 are generated in the two optimization stages, and the total number
of points is 3FP . Evaluating the cost functions in new points determines their fitness, and all these
points are sorted from the best to the worst based on their fitness values. The population size of the
search points is chosen as the Fibonacci series, thus, the top best FP+1 sets of these points are saved,
and the remaining 3FP − FP+1 points need to be dropped. After this procedure, the sets of the search
space in the current pth iteration are renewed from the saved points, e.g., the saved points form a new
set GP+1 in search space for the next iteration.

The two stages of building Fibonacci branch for the global optimization in space is shown in
Figure 3.

As can be seen from Figure 3, the depth of the Fibonacci branch layer illustrated in the figure
is initialized as expected, and the number of points in every branch layer remains in the sequence of
Fibonacci number. The white dashed circle in the figure represents the search points set of the previous
iteration, and the black solid circles denote the endpoints XA in the current iteration. The global
random endpoints XB are represented in grey solid circles. Figure 3(a) shows the first global searching
stage of the global optimization process, and the segmentation points XS1 which are represented by solid
white line circles are constructed on the basis of global random points and XA. As shown in Figure 3(b),
the second local optimization stage combines the remaining end points of the best adaptation points
XA and XB in the search space of the current iteration, and a new segmentation point XS2 can be
obtained through iteration rules. The fitness values of XA, XB , XS1, and XS2 are evaluated, and the
best found FP+1 solutions with optimum object function evaluations need to be saved.

Figure 4 shows the flowchart of the general procedures for the specific implementation of FBS.

3.3. Implementation Flowchart of Fibonacci Branch Search to Adaptive Beamforming

In this subsection, in light of the results described in detail previously, an optimization scheme of ABF
problem combining with the novel FBS is presented to enhance the maximum power for target signal
and generate deep nulls for interferences. The basic idea of the design of such an adaptive beamformer
is to utilize the global searching and local convergence capability of the novel efficient search algorithm
to reduce the local minimum problem of the solution to weight vector for getting the maximum SINR.
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Figure 4. Flowchart of Fibonacci branch search optimization method.

The general procedures for the implementation of Fibonacci branch search method with application to
adaptive beamforming are presented in Figure 5, in which the key steps are briefly described below.

(a) Choose the depth R of Fibonacci branch to determine the population FR of the top branch
layer, and set the maximum number of iterations of the optimization process.

(b) Initialize the population of the first branch layer Fj , and determine the dimension of the weight
vectors acting as search points in space according to the element number of ULA. Also, define the
amplitude search space of the weight within [0, 1], and limit the range of weight phase to [−π, π].

(c) Assign the values to the amplitude and phase of the weight elements inside the search space for
constructing the initial population of the weight vector set Gw, and the weight element in the vector
sets Gw constructed by the amplitude and phase can be expressed as follows:

wjd = rand [0, 1] · ej·rand[−π,π] (19)

where the generated weight wjd represents the dth dimension of the jth individual in the population,
d ∈ [1,M(dimension of the search space)], j ∈ [1, Fj(population of the vectors)], and rand[·] denotes
the random value generation in the range.
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(a) (b)

Figure 5. Three dimensional and contour plots for the Langermann function. (a) Three dimensional
of Langermann function. (b) Contour plots of Langermann function.

(d) Take the random amplitude and phase values in search space for generating the Fj population
of the weight vectors wB which act as the global search points.

(e) Set the vector elements of Gw and wB as the endpoints in Equation (12), and compute the
first set of weights wS1 according to the iterative rule one.

(f) Calculate the fitness in the object function of Eq. (18) using Gw, wB , and wS1, then give the
evaluation to the values to find the best weight vector wbest with maximum fitness value among all the
vectors in space.

(g) Generate the second set of weight vectors based on the best weight vector wbest and the other
weights from the weight space set using Equation (12) in iterative rule two.

(h) Select the top Fj+1 best weight vectors depending on the maximum fitness value in the
optimization process, and these best weights are selected to compose the new population of the set
Gw.

(i) Check the termination criteria Gw = FR. If the termination criteria are not satisfied, then
increment j, and go to step (d). Otherwise, stop.

(j) If the maximum number of iterations is not reached, repeat the algorithm from step (d), or else
report the output results and terminate.

3.4. Accessibility and Convergence Proof of FBS towards the Global Optimum for
Multimodal Functions

In this section, accessibility and convergence proof of Fibonacci tree optimization algorithm are analyzed
and investigated based on global randomness of Fibonacci branch structure. Additional rigorous
mathematical proofs were implemented to prove and clarify that the proposed FBS algorithm can
achieve global optimality and ensure that FBS converges towards global optimality.

3.4.1. Accessibility Investigation of FBS Algorithm

Mathematical proof one: The solution set in the domain of objective function can be reached via
the accessible set in search space by FBS.

According to the principle of interactive searching rules in Fibonacci branch search algorithm, after
enough long iterations n < +∞, the endpoints XB are generated by rule one in the basic structure of
Fibonacci branch obeying the uniform distribution between the space defined by the upper and lower
bounds, i.e., ∀X ∈ XB , X = (Xd)D×1 where D is the dimension of the vector, and its probability
distribution is P (Xd) = U(Xmin,Xmax); therefore, Xd satisfies the following relation in the domain of
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the target function ∫ D︷︸︸︷· · ·
∫

1
Xmax − Xmin

dXd = 1 (20)

From the above proof process, ∀X ∈ XB obey X ∈ B, namely, the optimization set B is the accessible
set of XB by FBS algorithm.

Mathematical proof two: The global optima of objective function in search space are accessible
for FBS algorithm.

Suppose that the global optima X∗ in search space are in the definition domain B of objective
function, then, it can be known that according to the mathematical proof one, the solution X∗ is within
the accessible set of B. Then, consider that the probability of the uniformly distributed in search space
for random search points is P , and make a hypothesis that the local optimal solution obtained by FBS
is XL. Therefore, after long enough iterations n < +∞, the probability of falling into a local optimal
solution for FBS is P ∗ ≤ ∏n

i=1(1 − P ) on the basis of proof one, then we can obtain that

limn→+∞ P ∗ ≤ limn→+∞
n∏

i=1

(1 − P ) = 0 (21)

From this point of view, the global optima of objective function in search space are accessible for FBS
algorithm.

Consequently, it can be demonstrated from the above two mathematical proofs that the global
optima in the domain of objective function are reachable for the accessible solution of FBS in search
space.

3.4.2. Convergence Analysis of FBS Algorithm

Suppose that long enough iterations n < +∞ are implemented by FBS to search for the global optima
of objective function, and the current search element set G of the basic structure obtained by FBS
can form the increasingly optimized search point sequences {xT } = {xt |xbest ∈ St }, t = 1, 2, · · · , n.
xbest is the optimal solution in the current set of iterations. Then, we establish a probability
P (t) = P (|X∗ − xt| ≥ ς), the chance that FBS algorithm converges to the global optimal solution,
and ς represents a fixed variable with a small value. According to the generation rules of Fibonacci
branch P (t) = PX(t)+Pς(t). PX(t) is the probability of generating uniformly distributed random points
in the definition domain of Rule one, and Pς(t) is the probability of generating uniformly distributed
random search points in a region defined by the radius parameter ς based on Rule two. Therefore, after
t iterations by FBS, the probability of the search points not falling into the region of ς spacing distance
around the global optima X∗ is P̃ (t) = P (|X∗ − xt| ≥ ς), then we have limt→+∞ P̃ (t) = 0, hence, the
following results can be obtained

P (n < +∞) > P (t) = 1 − P̃ (t) , P (n < +∞) > 0 (22)

Let t → +∞, and we can get
P (n < +∞) = 1 (23)

So FBS converging to the global optimal solution with probability 100% can be demonstrated and
proven.

From the above proof of Section 3.5.1 and Section 3.5.2, we can make a comprehensive conclusion
that the proposed FBS algorithm is effective, convergent, and accessible for the global optimal solution
of the objective function.

4. SIMULATION RESULTS

4.1. Verification of the Proposed FBS

In order to validate and analyze the efficiency and effectiveness of the proposed FBS, the algorithm is
verified from the following aspects in simulation experiments:
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(1) The accessibility to the global optimum of the proposed search algorithm for multimodal
function with numerous local optima is revealed by the location history of the search points towards
the optimal point.

(2) The convergence of the FBS is proved and discussed by the presented gradient of the iteration
curves which manifest the convergence rate speed and the average fitness of the chosen benchmark
function.

(3) The optimization precision of the solution and other relevant optimization assessment aspects
of the proposed algorithm are tested on eight representative standard benchmark functions, and the
results are compared with typical heuristic algorithms.

The details of the parameter settings for every heuristic algorithm used in the experiments are
given in Table 1.

Table 1. Reference parameters of the algorithms briefly used in this study.

Particle Swarm Optimization (PSO) Genetic Algorithm (GA) Comprehensive Learning PSO (CLPSO)

Population size Np = 20 Population size Np = 20 Learning Probability 0.05 ∼ 0.5

Cognitive ratio c1 = 2 Mutation probability Pm = 0.05 Population size Nc = 20

Social coefficient C2 = 2 Cross probability Pc = 0.7 Cognitive ratio c1 = 2

inertia weight 0.4 ∼ 0.9 Rate of chromosome elite Pe = 0.2 Social coefficient C2 = 2

inertia weight 0.4 ∼ 0.9

Differential Evolution (DE) Artificial Bee Colony (ABC) Fibonacci Branch search (FBS)

Population size Np = 20 colony size Cs = 20 Nested branch depth 2

scaling factor F = 0.6 onlooker bees percentage Lp = 50% Total branch depth 6

Crossover rate CR = 0.8 scout bees Sb = 1 Search Space [Min, Max]

All the experimental tests are implemented on Intel (R) Core (TM) i7-7700 HQ Core Processor
@2.8 GHz and 2.8 GB RAM, and all the meta-heuristics algorithms are coded and carried out in Matlab
2017b version under the Windows10 Professional.

4.1.1. The Location History of the Search Points in FBS for Langermann Function

In this section, the global optimization ability of the proposed FBS is demonstrated by employing
the location history of the search points during optimization process for locating the global optimum
solution rather than trapping into local optimization of the benchmark example, with results compared
against metaheuristic PSO algorithm. The benchmark function chosen in this section is the Langermann
function with several known local optimal points and one global optimum solution point which is taken
from [25, 26] and is summarized in Table 2. As can be found in Table 2, two typical extreme points
exist in the function. The extreme point 1 shown in the table is the global optimum solution, and
the extreme point 2 is the local suboptimal solution. The three-dimensional Langermann function and
contour plots are illustrated in Figure 5.

Table 2. Langermann benchmark function.

Extreme point Extreme point 1 Extreme point 1
Evaluation in [25] global optimum solution local suboptimal solution

Langermann function fL (2.003, 1.006) = −5.1612 fL (7, 9) = −3

The performance of the proposed FBS in terms of the movement trajectory of the search points
scattering around the best solutions and converge towards the optimal point in the search space for
Langermann are illustrated in Figure 6(b). This figure shows that the FBS model is able to simulate
the position history of search points in three dimensional and trajectory contour plots over different
iterations. For the verification of the results, we compare our algorithm to PSO in the same manner
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(a)

(b)

50 iterations 200 iterations 500 iterations 1000 iterations

50 iterations 200 iterations 500 iterations 1000 iterations

Figure 6. Location history of the search points for the Langermann function over the course of
different iterations. (a) Visualization results of the points location history in contour plots for PSO. (b)
Visualization results of the points location history in contour plots for FBS.

and provide the results in Figure 6(a). The initial positions of the search points in both FBS and PSO
are set at the extreme point 2.

As the results exhibited in Figure 6, the search points tend to explore the promising regions of the
search space and cluster around the global optima eventually in multimodal Langermann pattern. From
the results depicted in Figure 6(a), we can know that as the number of iterations increases, the points
of PSO algorithm gradually cluster around the extreme point 2 and proceed toward local optima, and
almost no particles enter the region near the global optimum extreme point 1, providing the further
evidence that PSO inherently suffers from local optima entrapment and stagnation in the search space.
Under the same conditions, it can be seen from the trajectories and 3D version of the search points as
shown in Figure 6(b) that although the Langermann function is non-symmetric and multimodal with
different levels of peaks, finding its global optimum is challenging due to many local minima in the
search space. Remarkably, FBS is extricated from the initial local optimum at extreme point 2 and
jumps out of the trapped solution in a local optimum point assisted by global random searching. It is
evident from the location history of the search points during the process of converging toward the global
optima that the points grow towards the optimal point from the area of initialization, tending to scatter
around extreme points gradually and moving towards the best solutions in the search space in both 2D
and 3D spaces over the course of iteration. More than half of the agents have already approached the
global optimum valley after the first 50 iterations and begin converging on the optimum. As iteration
increases, more agents aggregate at the extreme points and scatter around the extreme point, especially
attracted intensively at the global optimum target region. Eventually, the search points find the global
optimum and converge toward the global optima. This can be discussed and reasoned according to
the global randomness concepts introduced by the endpoints XB which is generated in rule one of
FBS. Furthermore, the convergence of FBS is guaranteed by the local exploitation optimization ability
emphasized in the other endpoints XA of the proposed algorithm. Since the global random points tend
to move from a less fit universe to a more fit universe by global searching in space, the best universe is
saved and moved to the next iteration. Consequently, these behaviors and abilities will assist the FBS
not to become trapped in local optima and converge towards the target point quickly in the iterations
of optimization.

The above simulations and discussions demonstrate the effectiveness of the FBS algorithm in finding
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the global optimum in the search space, and the convergence performance and the rate of obtaining
the global optima of the proposed algorithm by employing a set of mathematical functions will be
investigated in the next sections.

4.1.2. Convergence Performance of the Multimodal Function

To confirm the convergence behaviour of the proposed algorithm, in this subsection, we provide the
convergence curves that exhibit the objective fitness value of the typical benchmark functions obtained
by the best solutions so far in each iteration. A large set of complex mathematical benchmark functions
to be tested are listed in Table 3. These functions have many local optima which make them highly
suitable for benchmarking the performance of the metaheuristic algorithms in terms of optimization and
convergence exploration. The illustrated results are compared against those of PSO, GA, CLPSO, DE,
and ABC metaheuristic algorithms on the same set of multi-dimensional numerical benmark functions.
The properties and formulas of these functions are presented below.

Table 3. The details of multimodal benchmark functions (D: dimensions).

No. Function Formulation D
Search

Range

Global

Optima

F1 Griewank
D∑

i=1

x2
i

4000
−

D∏
i=1

cos
(

xi√
i

)
+ 1 10 [−600, 600] 0

F2 Rastrigin
D∑

i=1

(
x2

i − 10 cos (2πxi) + 10
)

10 [−5.12, 5.12] 0

F3 Michalewicz2 −
D∑

i=1

sin(xi) sin
(

ix2
i

π

)20

10 [0, π] −1.8013

F4 Rosenbrock
D∑

i=1

100
(
xi+1 − x2

i

)2
+ (xi − 1)2 10 [−2.048, 2.048] 0

F5 Ackley −20 exp

(
−0.2

√
1
n

D∑
i=1

x2
i

)
− exp

(
1
n

D∑
i=1

cos (2πxi)

)
+ 20 + e 10 [−32, 32] 0

F6 Schwefel 418.9829 × D −
D∑

i=1

xi sin
(
|xi| 12

)
10 [−500, 500] 0

F7 Weierstrass

D∑
i=1

(
k max∑
k=0

[
ak cos

(
2πbk (xi + 0.5)

)]) − D
k max∑
k=0

[
ak cos

(
2πbk (xi × 0.5)

)]
a = 0.5, b = 3, k max = 20

10 [−0.5, 0.5] 0

F8 Salomon − cos

(
2π

√
D∑
i

x2
i

)
+ 0.1

√
D∑
i

x2
i + 1 10 [−100, 100] 0

Figure 7 presents the convergence characteristics in terms of the best fitness value of the median
run of each algorithm for the test functions. Comparing the results and the convergence graphs, among
these six algorithms, we observe that the proposed algorithm has a good global search ability and
converges fast. FBS achieves better results on all multimodal groups than the compared algorithms,
and it surpasses all other algorithms apparently on functions 1, 2, 5, and 6, and especially significantly
improves the results on functions 1 and 2. The other algorithms show poor performance on the complex
problems since they miss the global optimum basin to approach the optimal fitness. The Schwefel’s
function is a good example, as it traps all other algorithms in local optima, while the FBS successfully
avoids falling into the deep local optimum which is far from the global optimum. On the complex
multimodal functions with randomly distributed local and global optima, FBS performs the best. It
should also be noted that the FBS algorithm in the graphs exhibits superiority regarding the convergence
speed over the other five algorithms, and it converge to a global optimum solution with less fitness
evaluations and terminates after no more than 5000 iterations on functions 1, 3, and 4, and always
converges faster than others on the remaining function problems.
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Figure 7. Convergence behavior of the FBS and other optimization algorithms on 10-D benchmarking
functions F1–F8. (a) F1: Griewank; (b) F2: Rastrigin; (c) F3: Michalewicz2; (d) F4: Rosenbrock; (e)
F5: Ackley; (f) F6: Schwefel; (g) F7: Weierstrass; (h) F8: Salomon.

These figures also prove that FBS not only improves the accuracy of the approximated optimum
initial, but also desirably enhances the convergence speed over the course of iterations that make it
converge faster than the other algorithms. Global random property and space region shortening fraction
guarantees a satisfactory convergence speed. Other algorithms could not converge as fast as the FBS,
since they have a large potential search space. The proposed FBS combines a global searching method
and local optimization strategy together to yield a balanced performance that achieves better fitness
and faster convergence. Besides, the convergence speed is a crucial parameter of real time applications
like adaptive beamforming system, thus, the FBS is highly suitable and affordable for ABF.
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4.1.3. Minimization Result of the Tested Benchmark Functions

In this subsection, experiments are conducted on a suite of multimodal functions illustrated in Table 3 to
evaluate six optimization algorithms including the proposed FBS. All the test functions are minimized,
and the relevant information can be found in [26, 27] for the standard benchmark functions, respectively.
The number of iterations for conducting the experiments is 400. For the selected benchmarking problems
F1–F8, the dimension of these functions is set to 10. Every algorithm runs 1000 times independently
to reduce the statistical error and achieve reliable results [28].

The statistical results considering the average value and the standard deviation function fitness
value as well as the success rate (SR) needed to reach the acceptable solution are summarized in
Table 4. For the results shown in Table 4, the smaller the mean value is, the better the performance of

Table 4. The comparative and statistical results for benchmarking function problems F1–F8. (SR:
success rate).

Method F1.Griewank F2.Rastrigin
Mean Stev SR Time Mean Stev SR Time

ABC 4.73E − 03 6.51E − 03 52% 88.20 s 1.43E − 02 4.59E − 03 30% 85.46 s
DE 7.38E − 06 6.51E − 07 100% 86.51 s 2.55E − 03 7.18E − 04 55% 80.03 s
GA 6.81E − 01 7.49E − 02 20% 79.36 s 5.29E − 01 1.21E − 02 11% 73.49 s
PSO 5.27E − 03 3.45E − 03 49% 82.32 s 7.61E − 03 8.29E − 02 38% 77.25 s
FBS 2.54E − 09 1.47E − 08 100% 68.12 s 9.53E − 05 2.17E − 06 86% 63.70 s

CLPSO 6.01E − 05 4.32E − 06 100% 74.94 s 6.18E − 04 7.18E − 03 74% 69.25 s

Method F3.Michalewicz2 F4.Rosenbrock
Mean Stev SR Time Mean Stev SR Time

ABC −1.6325E + 00 1.56E − 03 32% 81.20 s 3.67E + 01 1.90E + 00 0% 80.30 s
DE −1.7428E + 00 8.36E − 07 90% 78.53 s 8.37E − 01 3.27E − 01 8% 76.46 s
GA −1.6715E + 00 4.83E − 04 44% 69.37 s 9.42E + 01 2.15E − 02 0% 68.04 s
PSO −1.7002E + 00 3.95E − 03 84% 72.02 s 2.69E + 00 1.90E + 00 6% 71.84 s
FBS −1.8013E + 00 7.48E − 06 100% 58.92 s 2.98E − 02 5.61E − 04 29% 60.43 s

CLPSO −1.7332E + 00 6.28E − 05 90% 66.21 s 4.39E − 02 4.03E − 01 12% 65.44 s

Method
F5.Ackley F6.Schwefel

Mean Stev SR Time Mean Stev SR Time
ABC 8.87E − 03 2.98E − 02 47% 84.74 s 3.85E − 02 3.53E − 03 18% 79.03 s
DE 9.27E − 07 9.69E − 07 100% 79.53 s 1.53E − 03 6.25E − 06 68% 74.36 s
GA 1.46E − 02 5.32E − 03 29% 76.92 s 1.85E − 01 3.74E − 03 11% 70.37 s
PSO 6.09E − 05 5.49E − 04 92% 78.27 s 5.87E − 03 3.68E − 04 66% 73.09 s
FBS 4.34E − 07 5.74E − 08 100% 67.94 s 2.53E − 04 6.25E − 06 74% 65.57 s

CLPSO 5.74E − 06 5.84E − 08 100% 72.82 s 6.53E − 03 7.43E − 03 59% 69.93 s

Method
F7.Weierstrass F8.Salomon

Mean Stev SR Time Mean Stev SR Time
ABC 6.13E − 05 9.09E − 06 100% 93.85 s 3.85E − 02 1.12E − 03 19% 99.72 s
DE 1.08E − 08 4.17E − 09 100% 87.32 s 6.43E − 03 6.82E − 04 47% 93.73 s
GA 4.28E − 03 9.64E − 06 82% 79.43 s 2.67E − 02 6.63E − 02 29% 87.94 s
PSO 5.27E − 06 3.64E − 06 100% 84.38 s 5.74E − 04 2.63E − 03 68% 89.61 s
FBS 6.77E − 09 7.54E − 11 100% 73.87 s 7.74E − 05 9.48E − 05 85% 79.36 s

CLPSO 9.65E − 09 8.53E − 10 100% 75.38 s 6.24E − 05 9.48E − 04 92% 83.49 s
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algorithm is. The lower the standard deviation value is, the stronger the stability of algorithm is. As
seen, for most benchmark data sets, the average value and standard deviation calculated by the FBS
are both smaller than those other algorithms, and the proposed algorithm surpasses all other algorithms
on functions 1, 2, 3, 5, 6, and 7, and especially significantly improves the results on functions 1 and
3. When the other algorithms find their own best fitness of these functions, the proposed FBS could
still search better fitness closest to the optimal value. The CLPSO achieves similar results to the FBS
on function 7, and they both are much better than the other variants on this problem. The DE also
performs well on multimodal problems. The DE performs similarly to the FBS on functions 1, 3, 5, and
7. However, the FBS performs better on much more complex problems when the other algorithms miss
the global optimum basin.

As a result, in terms of performance in the global search ability and the optimization stability for
benchmarking function, the proposed FBS outperforms all other heuristics algorithms on the tested
functions. In addition, this table illustrates that FBS in comparison with others displays higher
percentage and accuracy reaching the acceptable solutions on these test functions. For the mean
reliability of test functions F1, F3, F5, F7, FBS exhibits the highest reliability with a 100% success
rate and smallest average errors. This performance superior property is due to the FBS’s interactive
updating rule. With the new updating rule and global randomness, different dimensions may learn from
different examples based on the historically optimal search experience, and the FBS explores a larger
search space than the others. Because of this, the FBS performs comparably to or better than many
meta-heuristic algorithms on most of the multimodal problems experimented in this section.

4.2. The Performance of the FBS Optimization Result in Adaptive Beamforming

To demonstrate the benefits of the FBS optimization with application to adaptive beamforming, in
this part of the section, several groups of simulation experiments are conducted using Matlab R2017b.
The desired GNSS signal is in the form of QPSK modulation mode with 0◦ for incident azimuth angle,
and the power of GNSS signal is extremely weak on the ground and far less than noise; therefore, the
selected SNR should not be too large in our simulation scenes. All the impinged signals are arranged
coming from zeniths 45◦. Simulation environment is additive white Gaussian noise channel (AWGN).
We have taken the structure size of the search element in weight vector to be five and the number
of search points per element in the first set 10 layers for Fibonacci branch increases according to the
corresponding Fibonacci sequence, and the sum of the element nodes in all the layer of search element
is 19. The maximum number of iterations in FBS is 400. The performance of the FBS-based ABF
is evaluated from the following two simulation metric aspects: the beampattern performance of the
adaptive antenna array and the steady state output signal-to-interference-plus-noise ratio (SINR) of
beamformer system. The performance criteria of the given beampattern in Section 5.2 are the nulling
level of interference, and the given criterion that we will use to compare the numerical results and make
the comparison of SINR is the numerical value.

Four groups of simulation cases corresponding to the defined measure metrics aspects conducted
in terms of various experimental critera are considered in this study. The effectiveness of the proposed
FBS based beamformer is investigated by the power patterns formed by extracted weights in terms of
different input SNRs in the first case. The second case considers the different numbers of array elements
for system output SINR using FBS by the suitable weight vectors. The performance measurement on
the number of interference sources of output SINR is studied in the third case. The rest case concerns
the impact of different INRs of input interference on output SINR in front of a ULA system.

The proposed FBS-based beamforming method is compared with the following five conventional
heuristics-based beamforming algorithms: 1) the differential evolution (DE) based beamforming
method of [29], 2) the particle swarm optimization (PSO) based beamforming method of [30], 3) the
comprehensive learning particle swarm optimization (CLPSO) based beamforming method of [31], 4)
the artificial bees colony (ABC) based beamforming method of [32], 5) Genetic Algorithm (GA) based
beamforming method of [33]. Besides, in order to fully evaluate FBS-based beamformer comprehensively
and accurately from all aspects, the performance of the classic closed-form method [12] for ABF has been
presented and compared with the other algorithms specially and separately in corresponding tables. A
total of 300 repetitions (independent trials) are implemented and then averaged to obtain each figure
of the results.
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(a) (b) (c)

Figure 8. Comparison of the beampattern performance synthesized by the heuristic algorithms with
different SNR. (a) SNR = −30 dB; (b) SNR = −10 dB; (c) SNR = 10 dB.

Table 5. Average nulling levels of the FBS and the closed-form method.

������������Method
Scenario SNR = −30 dB SNR = −10 dB SNR = 10 dB

FBS −93.02 dB −112.95 dB −129.37 dB
closed-form −98.45 dB −121.67 dB −143.29 dB

4.2.1. Input SNR Evaluation of the Beampattern

We first examine the beampattern performance synthesized by the FBS and compared it to the others
given in terms of input SNR in this case. A uniform linear array with 6 omnidirectional antenna elements
is considered in the simulation. For investigating the effect of the input SNR with different levels, we
consider three sets of input SNRs with SNR = −30 dB, SNR = −10, and SNR = 10 to demonstrate the
validity of our approach. Figure 8 shows the behavior of the beampatterns synthesized by the weight
vectors determined by the optimization algorithms under different SNRs. It can be seen from the figures
that the weight vectors found by FBS could synthesize an inerratic beampattern with deeper nulling
(with nulling level exceeding −70 dB) towards the interference compared to the other algorithms. The
proposed FBS-based adaptive beamformer has suppressed the jammers in all cases while maintaining
the beampattern gain in the direction of the desired signal. The other algorithms are able to achieve
the interference nulling performance for a higher SNR level, i.e., SNR = 10. As the level of SNR
decreases, the compared beamformers, especially ABC-based beamformer and GA-based beamformer
suffer from performance degradation of the corresponding metaheuristic-based beampatterns, and the
nulls do not align precisely with the interference sources. This indicates and demonstrates that the
proposed algorithm is more stable and finds better solutions with greater precision in ABF application.
To more clearly illustrate and comprehensively examine the nulling degrees of the proposed FBS, we
compare the results to the traditional classic closed-form method, and the separately independent
average nulling levels of the FBS and the closed-form method are illustrated in Table 5. We can see
from the table that compared to the sidelobe level of the closed-form method which performs the best
among the compared methods in each case and is 46.79, 52.96, and 71.95 dB for the classic closed-form-
based beamformer, either the objective function to be optimized or less computationally extensive,
and more computationally stable routines are required or else, specific characteristics of a statistical
decision-making problem are desired of; therefore, the superiority of computational complexity for FBS
is evident relative to it. The specific experimental comparison results and computational complexity
performance advantages of the FBS algorithm are described in Section 4.3.
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(a) (b) (c)

Figure 9. SINR performance versus SNR of the heuristic algorithms with varied array elements. (a)
Six elements; (b) ten elements; (c) fourteen elements.

4.2.2. Array Elements Assessment of Output SINR

In this section, the output SINR performance is measured by the number of array elements in three
various conditions in terms of the increasing input SNR value, and the SNR is assumed to be changed
from −25 dB to 5 dB (centered at −10 dB) in 5 dB steps. The interference with 5 dB INR is considered
in the experiment. The linear arrays in different scenarios are considered to be composed respectively
of 6, 10, and 14 elements. The results of the output SINR for heuristic-based beamformer and the
closed-form method are illustrated in Figure 9. From the graphs, it can be noted that closed-form
method achieves the highest SINR value among all the algorithms. The proposed algorithm achieves
better performance than the other optimization algorithms for all the array element scenarios and is
able to achieve near optimal closed-form performance over the entire range of the input SNR values.
CLPSO yields suboptimal higher values of SINR, but FBS yields optimal SINR values consistently in
all cases. Moreover, we can also observe that the performance difference in reaching optimum weight
vectors between the FBS and other algorithms is increased for the array element increment in each
algorithm, which is consistent with our previous analysis owing to the increasing search dimension of
the weight vectors solution in array element. With a view to the above fact, the global search capability
of the proposed FBS algorithm could achieve the improvement of the output SINR more so than the
compared metaheuristic-based beamformer in adaptive beamformer system.

4.2.3. Investigation of INR on the Output SINR

A ULA consisting of 6 monochromatic isotropic elements with different INRs is considered in this
scenario. Three groups INRs of the interference are set as 5 dB, 20 dB, 35 dB which are established in
different simulation scenarios. Figure 10 displays the SINR performance of these techniques versus the
SNR under different power levels of interference sources by using the proposed and other algorithms.
From the results depicted in Figure 10 we can know that in general, the optimization algorithms are all
able to achieve near-satisfactory closed-form based beamformer SINR performance in the situation of
INR = 5 dB, which means the lowest power process of the interference signal. The proposed algorithm
achieves improved performance in SINR compared to the other algorithms in all the simulations even
under the most severe interference situations when the value of INR is 30 dB. With the increase of
INR for the interference, the SINR performances of all the algorithms are degraded, and the proposed
algorithms have evident advantages over these algorithms. Therefore, note that the proposed algorithm
can perform more robust results and suitable precisions in adaptive beamforming for high interference
power levels.
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Figure 10. SINR performance versus SNR of the heuristic algorithms with different INR. (a)
INR = 5 dB; (b) INR = 20 dB; (c) INR = 35 dB.

4.2.4. Examination of the Interferences Number Impact on Output SINR

The simulations in this case are conducted to validate the effect of the interference quantity to the
output SINR performance. The beamformer is equipped with 6 array elements, and the INR is fixed to
10 dB for the received different numbers of interference signals. Table 6 illustrates the different numbers
of interferences and the corresponding incident angle values of the above-mentioned interferences. The
SINR performance of the proposed FBS and other optimization algorithms for different numbers of
interference signals is shown in Figure 11. As can be seen from Figure 11, closed form method performs
the best among all those in comparisons for its individual algorithm solving characteristics. With regard
to the proposed FBS and other optimization comparisons, when there are one interference at the receiver,
all the optimization algorithms can achieve the close-to-optimal SINR performance by considering the
requirement for maximizing SINR, and FBS demonstrates the best improvement, followed by DE.
ABC shows the lowest value of SINR. As the number of interferences increases from one to six, the
performance advantage of the FBS becomes more evident. The increase in the number of interference
sources increases the difficulty of the optimization problem. Failure of ABC, GA, and PSO to achieve
sufficiently high SINR clearly illustrates their limitations; therefore, the proposed FBS is more versatile
and robust than the other optimization methods in ABF application.

Table 6. Different number of interfereces for three scenarios.

Scenario One Scenario Two Scenario Three
Interference Incident Angle Interference Incident Angle Interference Incident Angle

1 40

1 40
1 40
2 −20

2 −20
3 −45
4 −30

3 −45
5 35
6 60

4.3. Time Complexity of the ABF Significant Model to Achieve Optimum Performance

In this part, the experiment results of the performed experiments between the FBS-based beamformer
and the classic closed form method are presented in the form of the time complexity in finding the global
optima in the ABF significant model. The percentage improvement of the proposed FBS in terms of
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Figure 11. SINR performance versus SNR of the heuristic algorithms with different number of
interferences. (a) One interference; (b) three interferences; (c) six interferences.

nulling level is also illustrated in this part. The methods are applied to optimize a ULA consisting of
isotropic elements. Different cases with 14, 18, and 22 array elements are simulated to further validate
the proposed approach for real-world large-array with more elements applications. The number of
iterations for conducting the experiments is 200. Under the same computer hardware configuration in
Section 4.1, the average CPU time consumption (in seconds) at key points is measured by the built-in
‘Matlab Profiler’, which determines the computational complexity proportions.

The optimization results considering the CPU time as well as the time consumption corresponding
to computation load for the significant ABF model of the proposed FBS and the comparison algorithms
under different numbers of array elements are listed in Table 7, Table 8, and Table 9.

Table 7. Comparison results of the algorithms with 12 array elements.

Algorithm CPU time (s) Percentage Improved
FBS 17.26 171.26%

Closed Form 46.82 Initial Comparison

Table 8. Comparison results of the algorithms with 16 array elements.

Algorithm CPU time (s) Percentage Improved
FBS 20.68 233.70%

Closed Form 69.01 Initial Comparison

Table 9. Comparison results of the algorithms with 20 array elements.

Algorithm CPU time (s) Percentage Improved
FBS 32.74 278.53%

Closed Form 123.93 Initial Comparison

From the above tables, it can be observed that the proposed FBS which achieves the near optimal
nulling level possesses a huge advantage in computational complexity compared to closed form method
in all cases. FBS requires far fewer evaluations and lower CPU time than closed form method consistent
with the computational costs, and FBS presents a more evident advantage over the algorithm in the
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large array element cases. CPU time cost of FBS in each case is 17.26 s, 20.68 s and 32.74 s, and the
improvements of FBS over the closed form are 171.26%, 233.70%, 278.53%. This indicates that FBS
requires much fewer function evaluations, and the closed-form approach needs to compute the matrix
inverse process which introduces high computational complexity especially for large number of array
elements, as shown in Table 8 and Table 9, since more array elements result in a larger dimensionality
of the weight vector solution, which requires a greater search time and number of computations to
optimize the beamformer. Although FBS achieves slightly less deep nulling level than the closed-
form solving algorithm, the percentage improvement of the CPU time can compensate and provide
an acceptable performance for the proposed FBS in the experiment for certain real-time beamforming
situations. Overall, the FBS approach is quite competitive in complexity computation and the global
search optimization compared with the other methods.

5. CONCLUSIONS

In this paper, we present a novel heuristic algorithm, called Fibonacci branch search, for achieving
the improved performance of adaptive beamforming. The interactive global and local searching rules
are proposed to reduce the probability of falling into the local optima, and the global randomness
characteristic and space region shortening fraction guarantee the convergence velocity in global
optimization process. In addition, we devise a specific implementation architecture based on FBS
for adaptive beamformer, and the amplitudes and phases of the weight vector acting as the solution
were acquired in the search space by FBS. The beamforming results synthesized by the vectors are
compared with conventional metaheuristic-based beamforming algorithms.

The simulation experiments in Section 4 demonstrate that the proposed FBS achieves increased
SINR over the suboptimally performing algorithm refereed to DE, CLPSO for different cases. In
addition, the significant improvements over PSO, GA, ABC have been achieved in separate scenarios.
With respect to computation complexity, FBS avoids the inverse calculation of the interference
correlation matrix compared to the classic closed form solving algorithm. Therefore, it is recognized
from academic and practical implications that the global optimization ability and fast convergence
searching of FBS-based beamformer would serve significant purpose for real-time spacial filtering
electronic countermeasures and large array elements of antenna design in military confrontation field.
However, the limitation of FBS caused by the uncertainty of the frequent changing outliers is a major
issue that needs careful consideration, and the technique may have unacceptable nulling performance
corresponding to dynamic and various interference scenarios. As a future work, the FBS will be explored
to apply in a more complicated time-varying situation in ABF field.
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