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Fast Direction-Finding Algorithm by Partial Spatial Smoothing
in Sparse MIMO Radar
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Abstract—For reducing the computational complexity of direction-finding algorithm in sparse multiple-
input multiple-output (MIMO) radar, a low-complexity partial spatial smoothing (PSS) algorithm is
presented to estimate the directions of multiple targets. Firstly, by dealing with a partly continuous
sampling covariance vector in PSS technology, an incomplete signal subspace can be obtained. Then,
a special matrix can be obtained by using this incomplete signal subspace. Meanwhile the incomplete
signal subspace can also be repaired by the special matrix. At last, the multiple signal classification
(MUSIC) algorithm is used to obtain direction estimations. In the process of obtaining signal subspace,
no eigenvalue decomposition (EVD) needs to be performed. Compared with the traditional spatial
smoothing (SS) technology, the proposed algorithm has lower computational complexity and higher
estimation accuracy. Many simulation results are provided to support the proposed scheme.

1. INTRODUCTION

Recently, multiple-input multiple-output (MIMO) radar is widely concerned for its advanced
performances in enhancing degree of freedom (DOF) and improving resolution. Bistatic MIMO radar
and monostatic MIMO radar are two frequently-used radar structures for direction-finding of multiple
targets. The receiving array and transmitting array of a bistatic MIMO radar are installed with larger
distance. Many direction-finding algorithms [1–6] based on bistatic MIMO radar have been proposed
to estimate the directions of departure (DODs) of transmitted signals and directions of arrival (DOAs)
of received signals.

The receiving array and transmitting array of a monostatic MIMO radar are placed in close
together positions. For each target, the DOD of transmitted signal and the DOA of received
signal are approximately equal. In [7], a DOA estimation algorithm based on polynomial-root was
proposed, in which root-finding of polynomial was used to avoid the search of spectral peak. In
[8], the authors used selection matrix to reduce the dimension of received vector and proposed a
reduced-dimensional estimation of signal parameters via rotational invariance techniques (ESPRIT)
algorithm. This algorithm shows lower computational complexity and higher estimation precision than
SS algorithm. Subsequently, a reduced-complexity Capon algorithm [9] and a two-dimensional (2D)
reduced-dimensional ESPRIT [10] were proposed based on the reduced-dimensional technology. In [11],
a conjugate ESPRIT algorithm was proposed for non-circular signals and showed advantage in extending
virtual aperture. However, for the above algorithms [7–11], both the receiving array and transmitting
array are uniform linear arrays, and the utilization efficiency of sensors is limited.

In order to improve the utilization efficiency of sensors and enhance the DOF of MIMO radar,
many sparse MIMO radars have been proposed. Co-prime MIMO radars [12, 13] are designed around
the co-prime arrays [14, 15], whose both receiving array and transmitting array of are co-prime linear
arrays. Because of the sparse structure, co-prime MIMO has higher DOF than uniform radar MIMO.
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But compared with co-prime array, nested array [16–18] can provide higher DOF. In [17], using the
construction features of nested array [16], a nested MIMO radar [19] with hole-free difference and sum
co-array (DSCA) was proposed and had higher DOF than co-prime MIMO radars [12, 13]. In [20], this
nested MIMO radar was improved by substituting the nested array [17] into nested array [16], and
the DOF was improved further. The critical point for the use of a sparse MIMO radar is to construct
an extended covariance matrix. For the sparse MIMO radar [12, 13, 19, 20], SS algorithm [15] is used
to construct an extended covariance matrix, and multiple signal classification (MUSIC) algorithm is
used to estimate DOA. However, in order to obtain the signal subspace or noise subspace, this process
involves EVD which has higher computational complexity.

In this paper, a low-complexity DOA estimation algorithm is proposed to reduce the computational
complexity for sparse MIMO radar. The proposed algorithm uses PSS technology to obtain equivalent
signal subspace, and no EVD needs to be carried out. Compared with the traditional SS algorithm,
the proposed algorithm has two advantages: (1) the proposed algorithm has lower computational
complexity; (2) the proposed algorithm has higher estimation precision.

Notation: Symbols [•]∗, [•]T , [•]H , [•]+, ⊗, and E[•] are conjugate, transpose, conjugate transpose,
generalized inverse, Kronecker product, and expectation, respectively. M(i : j, :) represents the matrix
consisting of the ith row to the jth row of M; M(:, i : j) represents the matrix consisting of the ith
column to the jth column of M; and v(i : j) represents the vector consisting of the ith element to the
jth element of v.

2. DATA MODEL

Suppose that a sparse monostatic MIMO radar array consists of an M -element transmitting array and
an N -element receiving array. Fig. 1 and Fig. 2 show two recently proposed nested MIMO radars [19, 20]
with a 4-element transmitting array and a 4-element receiving array. The position of physical sensors,
the non-negative positions of sum co-array (SCA) and DSCA are shown in the two figures, where the
unit interval is half-wavelength (λ/2) of the incident signal.

The transmitting array transmits multiple orthogonal signal waveforms, and the reflected signals
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from targets are received by receiving array synchronously. d̃m is the distance between the first
transmitting sensor and the mth transmitting sensor, and dn is the distance between the first receiving
sensor and the nth receiving sensor. Denote the DOA of kth target as θk, k = 1, 2, . . . ,K, and the
output of the matched filter from the receiving array in the tth period can be written as [12, 13]

x(t) = A(θ)α(t) + n(t), t = 1, 2, . . . , T (1)

where A(θ) = [ar(θ1) ⊗ at(θ1),ar(θ2) ⊗ at(θ2), . . . ,ar(θK) ⊗ at(θK)] ∈ CMN×K , x(t) =

[x1(t), x2(t), . . . , xMN (t)]T ∈ CMN×1, ar(θk) = [1, e−
j2πd2 sin θk

λ , . . . , e−
j2πdN−1 sin θk

λ , e−
j2πdN sin θk

λ ] ∈ CN×1,

at(θk) = [1, e−
j2πd̃2 sin θk

λ , . . . , e−
j2πd̃M−1 sin θk

λ , e−
j2πd̃M sin θk

λ ] ∈ CM×1, α = [α1, α2, . . . , αK ]T , αk is the
reflection coefficient of the kth target, and n(t) = [n1(t), n2(t), . . . , nMN (t)]T ∈ CMN×1 is the Gaussian
white noise vector with zero mean.

For the proposed data model above, suppose that the reflection coefficient αk(t) is a random
sequence with zero mean. Assume that the element position errors, the mutual coupling effect between
elements, and the effect of Doppler frequencies in the orthogonality of signals are ignored.

3. TRADITIONAL SPATIAL SMOOTHING

In this section, we introduce the procedure of traditional spatial smoothing (SS). Suppose that
the number of DOFs of a sparse MIMO is 2F + 1 and that the covariance matrix is denoted as
Rxx = E{xxH}. 2F + 1 elements with consecutive lags samples are selected from Rxx to construct a
covariance vector γ as [19, 20]

γ = BP + δne (2)

where B = [b(θ1),b(θ2), . . . ,b(θK)] ∈ C(2F+1)×K , b(θk) = [e
j2πdF sin θk

λ , . . . , e
j2π sin θk

λ , 1, e−
j2π sin θk

λ , . . .,

e−
j2πF sin θk

λ ]T , P = [ p1 p2 . . . pK ]T ∈ CK×1 is a vector with pk = E{αkαH
k }; e =

[ 0 . . . 0 1 0 . . . 0 ]T ∈ C(2F+1)×1 is a vector with only one nonzero element at the (F + 1)th
position; and δn is the power of noise.

Then, using SS algorithm, the extended covariance matrix R′
xx or R′′

xx can be constructed by

R′
xx =

1
F + 1

F+1∑
i=1

γ(F + 2 − i : 2F + 2 − i)γH(F + 2 − i : 2F + 2 − i) (3)

or
R′′

xx = [ γ(F + 1 : 2F + 1) γ(F : 2F ) . . . γ(1 : F + 1) ] (4)

We can also refer [17–21] to find the detailed procedure of the traditional SS algorithm. According
to Eqs. (3) and (4), it is clear that both R′

xx and R′′
xx contain noise covariance δn. In order to obtain

signal subspace or noise subspace, EVD of R′
xx or R′′

xx should be performed. Then, the subspace-
based approaches such as MUSIC algorithm [22] and ESPRIT algorithm [23] can be utilized to get the
estimation of DOA. Of course, we can also deal with the matrix R′

xx or R′′
xx by the low-complexity

propagator method (PM) [24]. However, the precision of PM algorithm is far lower than MUSIC
algorithm and ESPRIT algorithm.

4. PARTIAL SPATIAL SMOOTHING

4.1. Construction of Incomplete Signal Subspace

Just for the existence of noise, SS algorithm needs EVD of covariance to separate signal subspace and
noise subspace. Observing the covariance vector γ, we can find that only the (F + 1)th element of γ
contains noise component. In order to eliminate the impact of noise, we remove the middle element of
γ and denote the new vector as

r =
[

r1

r−1

]
=

[
B1

B−1

]
P (5)
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where r1, r−1 are the first F rows and last F rows of γ, respectively, and B1, B−1 are the first F rows
and last F rows of B, respectively.

Because of the deficiency of middle element, the continuity of samples is cut off. Traditional SS
technology cannot be used directly in the vector r. Hence, we can only use the PSS technology to deal
with this vector. Denote vector r̃k and matrix B̃k as

r̃k =
[

r1k

r−1k

]
, k = 1, 2, . . . ,K (6)

and

B̃k =
[

B1k

B−1k

]
, k = 1, 2, . . . ,K (7)

where r1k = r1(k : F − K + k), r−1k = r−1(k : F − K + k), B1k = B1(k : F − K + k, :) and
B−1k = B−1(k : F − K + k, :).

Since the two sub-manifold matrices B1 and B−1 still correspond to two independent hole-free
virtual arrays, B̃k and B̃1 satisfy the equation

B̃k = B̃1Ψk−1 (8)

where B̃1 = [ BT
11 BT−11 ]T , B11 = [b11(θ1),b11(θ2), . . . ,b11(θK)] with b11(θk) = [e

j2πdF sin θk
λ ,

e
j2πd(F−1) sin θk

λ , . . . , e
j2πK sin θk

λ ]T , B−11 = [b−11(θ1),b−11(θ2), . . . ,b−11(θK)] with b̃−11(θk) =

[e−
j2π sin θk

λ , . . . , e−
j2π(F−K+1) sin θk

λ ]T , Ψ = diag{e− j2π sin θ1
λ , e−

j2π sin θ2
λ , . . . , e−

j2π sin θK
λ }.

From Eqs. (6) and (8), r̃k can be expressed as

r̃k = B̃kP = B̃1Ψk−1P (9)

Being similar to [18, 21, 25], denote a partitioned matrix R̃ as

R̃ = [ r̃1 r̃2 . . . r̃K ]

=
[

B̃1P B̃1ΨP . . . B̃1ΨK−1P
]

= B̃1W (10)

where W = [ P ΨP . . . ΨK−1P ]. It is easy to know that W is a K-order invertible matrix as
[21, 25].

In fact, since W in Eq. (10) is an invertible matrix, R̃ can be seen as a signal subspace which
corresponds to the manifold matrix B̃1. Because the manifold matrix B̃1 does not belong to a hole-free
virtual array, R̃ can only be seen as an incomplete signal subspace. In this case, if MUSIC algorithm or
ESPRIT algorithm is used to deal with R̃ directly, it is difficult to get precise DOA estimation. Only
when R̃ is repaired into a complete signal subspace, high precision DOA estimation can be obtained in
MUSIC algorithm or ESPRIT algorithm.

4.2. Repair of Signal Subspace

Although B̃1 does not belong to a hole-free virtual array, it is shown that the two sub-matrices B11

and B−11 correspond to two virtual arrays with consecutive virtual sensors. For taking the advantage
of this property, R̃ is partitioned into

R̃ =

[
R̃1

R̃−1

]
(11)

where R̃1 = B11W ∈ C(F−K+1)×K and R̃−1 = B−11W ∈ C(F−K+1)×K .
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Then, six matrices, R̃11 ∈ C(F−K)×K, R̃12 ∈ C(F−K)×K, R̃13 ∈ CK×K, R̃−11 ∈ C(F−K)×K ,
R̃−12 ∈ C(F−K)×K, and R̃−13 ∈ C(K−1)×K , are extracted from R̃1 and R̃−1 by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R̃11 = R̃1(1 : F − K, :)
R̃12 = R̃1(2 : F − K + 1, :)
R̃13 = R̃1(F − 2K + 2 : F − K + 1, :)
R̃−11 = R̃−1(1 : F − K, :)
R̃−12 = R̃−1(2 : F − K + 1, :)
R̃−13 = R̃−1(F − 2K + 3 : F − K + 1, :)

(12)

According to Eqs. (10), (11), and (12), the six sub-matrices can be written as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R̃11 = B11(1 : F − K, :)W
R̃12 = B11(2 : F − K + 1, :)W
R̃13 = B11(F − 2K + 2 : F − K + 1, :)W
R̃−11 = B−11(1 : F − K, :)W
R̃−12 = B−11(2 : F − K + 1, :)W
R̃−13 = B−11(F − 2K + 3 : F − K + 1, :)W

(13)

Continue to construct two block matrices
�

R1 = [ R̃T
11 R̃T

−11 ]T ∈ C2(F−K)×K ,
�

R2 =
[ R̃T

12 R̃T−12 ]T ∈ C2(F−K)×K, and the two matrices have the relationship

�

R2 =
[

B11(2 : F − K + 1, :)
B−11(2 : F − K + 1, :)

]
W

=
[

B11(1 : F − K, :)
B−11(1 : F − K, :)

]
ΨW

=
�

R1ΨW (14)

From Eq. (14), it is easy to know
�

R
+

1

�

R2 = W−1ΨW (15)

Like ESPRIT algorithm [23], we can get the estimations of DOAs by EVD of
�

R
+

1

�

R2. If this is
done, only the partial completeness of R̃ is utilized. Obviously, it is almost impossible to get satisfactory
estimation results.

For repairing the incomplete signal subspace R̃,
�

R
+

1

�

R2 is used to construct two matrices R̃′
1 =

R̃13(
�

R
+

1

�

R2)K ∈ CK×K and R̃′−1 = R̃−13(
�

R
+

1

�

R2)K−1 ∈ C(K−1)×K . According to Eq. (15), R̃′
1 and R̃′−1

have the other forms

R̃′
1 = B11(F − 2K + 2 : F − K + 1, :)W(W−1ΨW)K

= B11(F − 2K + 2 : F − K + 1, :)ΨKW
= B′

11W (16)

and

R̃′
−1 = B−11(F − 2K + 3 : F − K + 1, :)W(W−1ΨW)K−1

= B−11(F − 2K + 3 : F − K + 1, :)ΨK−1W
= B′

−11W (17)

where B′
11 can be expressed in detail as B′

11 = [b′
11(θ1),b′

11(θ2), . . . ,b′
11(θK)] with b′

11(θk) =

[e
j2πd(K−1) sin θk

λ , . . . , e
j2πd sin θk

λ , 1]T , and B′−11 can be expressed in detail as B′−11 = [b′−11(θ1),b′−11(θ2),

. . . ,b′−11(θK)] with b′−11(θk) = [e−
j2π(F−K+2) sin θk

λ , . . . , e−
j2πF sin θk

λ ]T .



132 Liu et al.

Observing the property of B11, B′
11, B−11, and B′−11, it is easy to know that B =[

(B11)T (B′
11)

T (B−11)T (B′−11)
T

]T ∈ C(2F+1)×K . According to this relationship, we denote
a new partitioned matrix Rnew = [ (R̃1)T (R̃′

1)
T (R̃−1)T (R̃′

−1)
T ]T ∈ C(2F+1)×K .

According to Eqs. (16) and (17), we can know

Rnew =

⎡
⎢⎢⎢⎣

R̃1

R̃′
1

R̃−1

R̃′
−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

B11W
B′

11W
B−11W
B′−11W

⎤
⎥⎥⎦ = BW (18)

From Eq. (18), it is obvious that Rnew is a complete signal subspace. At this point, we can deal
with Rnew directly to get high-precision and unambiguous DOA estimations in MUSIC algorithm [22]
or ESPRIT algorithm [23]. We should also mention that ESPRIT algorithm [23] can be used
indiscriminately. But for MUSIC algorithm, we need to maximize the function f(θ) as [25]

f(θ) =
1

bH(θ)(I − RnewoRH
newo)b(θ)

(19)

where Rnewo is the Smith orthonormalization of Rnew. We should state that the function f(θ) is given
by reference to [25]. For avoiding redundancy, we did not give the derivation on the orthogonality of
b(θk) and I − RnewoRH

newo.
Seeing the process of constructing complete signal subspace Rnew from Eqs. (11) to (18), we can

know that no EVD needs to be performed.

5. COMPLEXITY ANALYSIS

In this section, we compare the complexity of SS algorithm with the proposed PSS algorithm. The
main difference of two spatial smoothing methods is concentrated on obtaining signal subspace or noise
subspace. After the signal subspace or noise subspace is acquired, many common approaches can be
used to estimate the DOA. Hence, we only compare the computational complexity of the two spatial
smoothing methods in estimating signal subspace or noise subspace. Still suppose that the number of
DOFs of a sparse MIMO is 2F + 1 and that the number of snapshots is T . The main computational
complexities of SS algorithm and proposed PSS algorithm are O{(2F + 1)T + (F + 1)3} and O{2FT},
respectively. Obviously, the proposed PSS algorithm has lower computational complexity than SS
algorithm.

6. SIMULATION

In this section, we test the performance of proposed PSS algorithm by carrying out several groups of
simulation experiments. Because the DOF of a nested MIMO radar is higher than a co-prime MIMO
radar, we only consider that a nested MIMO radar [19] and an improved nested MIMO radar [20] are
used for DOA estimation. Both employed MIMO radars consist of a 4-element transmitting array and
a 4-element receiving array as shown in Fig. 1 and Fig. 2. Suppose that R̃ is constructed according
to Eq. (10), and R′′

xx is used for the traditional SS algorithm. Evaluation index of DOA estimation
accuracy is root mean square error (RMSE), which is expressed as

RMSE =

√√√√ 1
KJ

J∑
j=1

K∑
k=1

(θ̂kj − θk)2 (20)

where J = 500 is the number of repetitive experiments in the same condition, and θ̂kj is the estimation
of θk in the jth repetitive experiment. We select the MUSIC algorithm to estimate the DOA after
obtaining the signal subspace or noise subspace by PSS algorithm or SS algorithm.

In the first set of experiments, we test the spatial spectrums of SS algorithm and PSS algorithm in
two nested MIMO radar arrays. Suppose that the number of snapshots is 500 and that SNR is 5 dB.
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Figure 3. Spatial spectrums of nested MIMO radar.

Figure 4. Spatial spectrums of improved nested MIMO radar.

Fig. 3 shows the spatial spectrums of SS algorithm and PSS algorithm for the nested MIMO radar
arrays [19]. The DOAs of 11 targets are −50◦, −40◦, −30◦, −20◦, −10◦, 0◦, 10◦, 20◦, 30◦, 40◦, 50◦,
respectively. Fig. 4 shows the spatial spectrums of SS algorithm and PSS algorithm for the improved
nested MIMO radar arrays [20]. The DOAs of 13 targets are −60◦, −50◦, −40◦, −30◦, −20◦, −10◦, 0,
10◦, 20◦, 30◦, 40◦, 50◦, and 60◦, respectively. The presentation shown in Fig. 3 and Fig. 4 can illustrate
that both the SS algorithm and PSS algorithm have satisfactory angle resolution. Hence, these results
can also preliminarily demonstrate the feasibility of proposed PSS algorithm.
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In the second set of experiments, the comparison of RMSE is shown to further prove
the performance of proposed PSS algorithm. Suppose that the DOAs of 8 targets are
60◦, −50◦, −30◦, −10◦, 0◦, 20◦, 40◦, 60◦, respectively. Fig. 5 shows the RMSE of different algorithms
versus SNR with 500 snapshots. Fig. 6 shows the RMSE of different algorithms versus snapshots
with 5 dB SNR. From Fig. 5 and Fig. 6, we can see clearly that the proposed PSS has higher estimation
precision than SS, no matter what kind of nested MIMO radar. The accuracy of a space-based algorithm
is related to the number of rows of the signal subspace. In these experiments, for the proposed PSS
algorithm, the number of rows of the repaired signal subspace Rnew is larger than the signal subspace
got by EVD of R′′

xx. In this case, it is reasonable to arrive at such results.

Figure 5. Comparsion of RMSE versus SNR.

Figure 6. Comparison of RMSE versus snapshots.
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7. CONCLUSION

For the purpose of reducing the complexity of sparse MIMO radar in DOA estimation, this paper
proposes a PSS algorithm based on the traditional SS algorithm. Being different from SS algorithm,
PSS algorithm can get the complete signal subspace without EVD. Complexity analysis proves that the
proposed PSS algorithm needs less calculated amount than SS algorithm to get the signal subspace.
Two kinds of nested MIMO radars are used to test the performance of proposed algorithm. Simulation
results show that the proposed PSS algorithm has higher estimation precision than SS. Hence, the
proposed method may be a reference to the direction-finding in sparse MIMO radar.
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