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Compressed Sensing DOA Estimation in the Presence
of Unknown Noise

Amgad A. Salama1, *, M. Omair Ahmad2, and M. N. S. Swamy2

Abstract—A new compressive sensing-based direction of arrival (DOA) estimation technique for source
signal detection in the presence of unknown noise, based on the generalized correlation decomposition
(GCD) algorithm, is presented. The proposed algorithm does not depend on the singular value
decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA
estimation can be done without an a priori knowledge of the number of sources. The proposed
algorithm can estimate more sources than the number of physical sensors used without any constraints
or assumptions about the nature of the signal sources. It can estimate coherent source signals as well
as closely-spaced sources using a small number of snapshots.

1. INTRODUCTION

Array signal processing has been of great research interest over the past decades [1]. Array signal
processing applications include radar [2], sonar [3], seismic event prediction [4], microphone sensors [5],
and wireless communication systems [6]. Direction of arrival (DOA) estimation involves estimating the
direction from which the signal sources impinge on a sensor array; which is a set of sensors arranged
in a specific configuration, and able to measure the values of the impinging source signals. Common
DOA estimation methods include conventional beamforming techniques [7], subspace-based techniques
like MUSIC [8] and ESPRIT [9], and maximum likelihood (ML) methods [10, 11].

Most of the DOA estimation techniques are developed using uniform arrays, and the number of
source signals to be estimated is upper bounded by the number of sensors in the array. For example, a
uniform linear array (ULA) containing M sensors will be able to detect up to (M − 1) source signals.
In order to increase the available degrees of freedom and consequently be able to estimate more sources
than the available sensors, various techniques based on sparse sensor arrays, such as the minimum
redundancy arrays (MRA) along with augmented covariance matrices (ACM) [12–14], Khatri-Rao (KR)
product [15, 16], co-prime arrays [17–19], and nested arrays [20], have been presented. Among all these
techniques, nested arrays have shown superior performance compared to that of the others [20].

Many of the DOA techniques that have been proposed assume spatially white noise [21–26]. Hence,
the array noise covariance matrix is related to the noise power through an identity matrix. However,
the assumption of spatially white noise is not realistic in many practical applications [27–35], where the
noise fields are spatially colored. The colored noise significantly degrades the performance of the DOA
estimator. Furthermore, estimating the number of signal sources becomes a problem. In addition, some
of the peaks due to the non-white noise background may be identified as source signals.

To overcome this degradation, certain constraints are imposed on the signal or on the colored noise.
In [23], the signal is assumed to be partially known as a linear combination of a set of basis functions,
while in [36] the noise is modeled as an autoregressive process. However, these assumptions are still not
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realistic, and furthermore, if they are not satisfied, then the DOA performance will be highly degraded.
In [16], an underdetermined KR based technique using a ULA was proposed for DOA estimation in
unknown spatial noise covariance. However, the source signals are assumed to be quasi-stationary.
Iterative methods using ULAs for DOA estimation in nonuniform noise were proposed in [37]. These
methods are based on estimating the signal subspace and noise covariance matrices simultaneously.
Yet, the number of sources to be estimated is assumed to be known in advance and the methods are
computationally intensive.

Sparse arrays are used to avoid the above unrealistic assumptions for DOA estimation in the
presence of spatially colored noise [28, 38]. In [38], the separation between the sub-arrays is chosen such
that the noise is uncorrelated between the sub-arrays. In this situation, the noise covariance matrix has
a block-diagonal structure, which allows the DOA estimation to be done accurately. In [28], the DOA
estimation was explored using two separated sub-arrays and based on the generalized correlation (GC)
analysis, a new method for DOA estimation in unknown noise (UN) fields known as, UN-MUSIC, is
proposed for DOA estimation. However, two separate ULAs are used for the DOA estimation and in
order to be able to decompose the received signal into its unique subspaces a long procedure is required.
In [29], an ML technique on a sparse sensor array is proposed for DOA estimation in the presence of
spatially colored noise. However, the technique requires a large number of snapshots. Furthermore, the
algorithm is based on the ML technique, which is computationally the most intensive amongst the DOA
estimation methods [39] and further, the number of sources to be estimated is assumed to be known a
priori [40].

Since the source signals being received by the sensor arrays can be considered as sparse
signals, compressive sensing (CS) techniques have received recent attention in array signal processing.
Compressive sensing was introduced for the DOA estimation problem in [41], where a new recursive
weighted minimum-norm algorithm known as the focal underdetermined system solver (FOCUSS) was
applied to the DOA estimation problem. In the work developed by Fuchs [42, 43], it was assumed that
the source signals are uncorrelated and that a large number of snapshots are available. Malioutov et
al. [44] proposed a new �1-norm based on the singular value decomposition (SVD), namely, �1-SVD.
However, in low signal to noise ratio (SNR), the signal subspace of the SVD will be dominated by the
noise effect and the �1-SVD performance will be degraded. Salama et al. [45] developed a new adaptable
least absolute shrinkage and selection operator (A-LASSO) for the DOA estimation problem. It was
shown that A-LASSO-based DOA estimation performance is superior to that of both the classical and
subspace-based DOA estimation techniques. Furthermore, the A-LASSO technique is able to detect the
sources even in very low SNR scenarios. It should be pointed out that the above-mentioned techniques
use ULA, except for [45]. Furthermore, the noise covariance structure is assumed to be known.

In this paper, using a single sparse linear array, we propose a new CS-based DOA estimation
technique, called the generalized correlation decomposition (GCD) A-LASSO technique, that is capable
of performing DOA estimation for source signals in the presence of unknown noise fields. In Section 2,
we briefly describe the the co-array principle. In Section 3, GCD A-LASSO DOA estimation in unknown
noise fields frameworks is presented. In Section 4, the performance of the proposed technique is studied
using simulations and finally, conclusions are drawn in Section 5.

Notations

Superscript H denotes the conjugate transpose; superscript ∗ denotes the conjugation without transpose;
and T denotes the transpose operation. The symbol � denotes the KR product [46] between two matrices
of appropriate sizes.

2. DIFFERENCE CO-ARRAY

Consider L narrowband far-field source signals s1, . . . , sl, . . . , sL, impinging on a linear array (LA),
uniform or non-uniform, and consisting of M sensors, with angles of arrival (AOA) θ1, . . . , θl, . . . , θL.
Let xm(t) denote the resulting signal related to the mth sensor with time index t, where m = 1, . . . ,M .
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The output of the sensor array at the tth sample can be written as

x(t) = [a(θ1) a(θ2) . . . a(θL)]

⎡⎢⎢⎣
s1

s2
...

sL

⎤⎥⎥⎦ + n(t)

= As(t) + n(t) (1)

where x ∈ C
M×1 is the output of the sensor array; A ∈ C

M×L = [a(θ1) . . . a(θl) . . . a(θL)] is the array
manifold matrix, with a(θl) being the steering vector corresponding to AOA (θl), whose ith element
is e−jkodm cos(θl); s(t) ∈ C

L×1 = [s1s2 . . . sL]T is the vector which represents the source signals with
ko = 2π/λ being the wavenumber, dm the mth sensor position in the array, and λ the wavelength of the
propagating waves; and n(t) ∈ C

M×1 is an additive white Gaussian noise (AWGN) that is uncorrelated
with the source signals.

Given the sensor array output, x, the covariance matrix of the received signals, Rxx ∈ C
M×M , can

be obtained as [7]

Rxx = E
[
xxH

]
= ARssAH + σ2

nI (2)

where Rss ∈ C
L×L = E[ssH ] is a block diagonal matrix containing the received source signal powers

σ2
l , l = 1, . . . , L; I is the identity matrix of size (M × M); and σ2

n is the noise power. One can now
vectorize Rxx [15, 16] as

V = vec (Rxx) = (A∗ � A)p + σ2
n1 (3)

where p ∈ C
L×1 = [σ2

1 σ2
2 . . . σ2

L]T and 1 ∈ C
M×M = [eT

1 . . . eT
m . . . eT

M ]T with em ∈ C
M×1 being

a column vector of zeros except for a 1 at the mth position. Comparing Eq. (3) with Eq. (1), we
can see that V ∈ C

M2×1 in Eq. (3) have the same structure as that of the output of a sensor array.
However, in this case, the array manifold is given by (A∗ � A), p representing the equivalent source
signals and the noise given by σ2

n1 being deterministic. Further, it is noted that the dimension of V
is M2 which is greater than the physical array dimension M . Thus, underdetermined DOA estimation
can be performed. The distinct rows of (A∗�A) form a linear virtual array, and the locations of whose
distinct sensors are given by the set

D = {di − dj} , ∀i, j = 1, 2, . . . ,M (4)

where di is the position vector of the ith sensor in the original array. This array is known as the
difference co-array [20].

We now assume that the original array is a two-level nested array [20]. Detailed information about
the number of sensors in each level, the distinct sensors in the difference co-array, M̄ , and the maximum
number of source signals that can be estimated for odd and even M sensors, are as shown in Table 1.
In each case, the virtual array is a ULA consisting of M̄ sensors which are located from −(M̄ − 1)d/2
to (M̄ − 1)d/2 [20, 45].

Table 1. Sensors distribution for a two-level nested array.

M 1st level 2nd level M̄ Max L

Odd (M − 1)/2 (M + 1)/2 (M2 − 1)/2 + M ((M2 − 1)/2 + M − 1)/2 = (M̄ − 1)/2
Even M/2 M/2 M2/2 + M − 1 (M2/2 + M − 2)/2 = (M̄ − 1)/2

It should be noted that the equivalent source signal vector p (for the difference co-array) contains the
sources powers σ2

l , l = 1, . . . , L. Therefore, they act like fully-correlated sources. A spatial smoothing
technique was suggested by Pal and Vaidyanathan [20] to overcome this problem of correlated sources.
However, in [45], it was shown that using CS-based DOA estimation technique, spatial smoothing is no
longer needed, and source signals could be estimated directly without any preprocessing scheme.
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3. GCD A-LASSO FOR DOA ESTIMATION IN UNKNOWN NOISE FIELDS

Taking into account that the source signals are far-field sources, they can be considered as point sources
and consequently become sparse in space. Hence, the output of the sensor array, y ∈ C

M̄×1, can be
expressed as

y(t) = Φs̄(t) + n̄(t) (5)

where Φ ∈ C
M̄×N is the overcomplete steering matrix and is given by

Φ = [a′(θ̄1) a′(θ̄2) . . . a′(θ̄n) . . . a′(θ̄N )]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ejkod(−(M̄−1)/2) cos θ̄1 ejkod(−(M̄−1)/2) cos θ̄2 · · · ejkod(−(M̄−1)/2) cos θ̄N

...
...

...

1 1
. . . 1

...
...

...
ejkod((M̄−1)/2) cos θ̄1 ejkod((M̄−1)/2) cos θ̄2 · · · ejkod((M̄−1)/2) cos θ̄N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

and n̄ ∈ C
M̄×1 is an AWGN. Denoting a′(θ̄n) ∈ C

M̄×1 as the steering vector of the virtual array
corresponding to AOA of (θ̄n), where {θ̄n}N

n=1 denotes a grid that covers the set of all possible locations,
Ω and N � L. In this case, the source signal vector s̄ ∈ C

N×1 is given by

s̄(t) = [σ̄1 σ̄2 . . . σ̄n . . . σ̄N ]T (7)

where the nth element of s̄(t), s̄n(t), is nonzero only if (θ̄n = θl) and, in that case, σ̄n = σl. The
compressing sensing (CS) technique is to estimate the signal energy as a function of the source signal
locations given the sensor array output, y. In a noise free scenario, a direct way to investigate the
sparsity on s̄ is by minimizing the �0-norm, which counts the number of nonzero elements in the vector
s̄, as follows

min
s̄

‖s̄‖0 subject to y = Φs̄ (8)

However, this minimization is an NP-hard problem [47], which becomes, even for a moderate dimensional
problem, computationally intractable. For that reason, different alternative approaches to approximate
the solution of �0-norm problems were presented in [47–50]. It has been proven that, for sufficiently
sparse signals and sensing matrices with sufficiently incoherent columns [51, 52], the �0-norm problem
is equivalent to the �1-norm one [53–55], where �1 minimization is given by

min
s̄

‖s̄‖1 subject to y = Φs̄ (9)

Furthermore, �2-norm could be used as an alternative approach to solve �0-norm problem by relaxing
�0-norm into �2-norm as follows

min
s̄

‖s̄‖2 subject to y = Φs̄ (10)

which is a convex problem and has an analytic solution given by

ˆ̄s = ΦH
(
ΦΦH

)−1
y (11)

However, �1-norm problem favors sparse signals than the �2-norm. Furthermore, �1-norm relaxation is
the closest convex optimization to that of the �0-norm and it converges to the global minimum [56].
In practice, CS can be extended to noisy measurement scenarios. The �1-norm problem for a noisy
measurement can written as

min
s̄

‖s̄‖1 subject to ‖Φs̄− y‖2 ≤ β (12)

where β is an error tolerance parameter (β > 0). The �2-norm used for evaluating the error Φs̄−y can
be replaced by any other norm, such as �∞ or �p, 0 < p < 1. Proper choice of β is an important issue
for the success of minimization in Eq. (12) [57, 58]. An �1-norm constrained form of Eq. (12) is known
as LASSO [59]. The LASSO minimization problem can be written as

min
s̄

‖y− Φs̄‖2
2 + τ ‖s̄‖1 (13)
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where τ is a nonnegative regularization parameter. The �1 penalization approach is also known as the
basis pursuit [60]. Two iterative versions of LASSO, namely, the ordinary least squares (OLS) A-LASSO
and the minimum variance distortionless response (MVDR) A-LASSO, were introduced in [45]. It was
shown that the performance of these A-LASSO techniques is superior to that of the classical DOA
estimation techniques and LASSO-based DOA estimation. The A-LASSO is given by [45]

ˆ̄s(k) = min
s̄

‖y − Φs̄‖2
2 + τk

N∑
n=1

ŵn|s̄n| (14)

where k is the iteration number, and ŵn is the n-th element of the weight vector, ŵ which is given by
OLS or MVDR in the first iteration, k = 1.

It should be pointed out that in most of the CS-based DOA estimation techniques, the noise
covariance structure is known in advance; it is assumed to be AWGN (see [1] and the references therein).
However, in practice, this assumption does not hold and the noise covariance structure is probably
unknown. Thus, the DOA estimator performance is highly degraded when the noise covariance is not
known. Further, in such scenarios, more false source signal peaks could appear due to the background
noise.

In order to overcome the above mentioned problem, we adopt the following technique for signal
source DOA estimation in unknown correlated noise fields [28]. Consider two ULAs whose output
vectors can be written as

x1(t) = A1s1(t) + n1(t)
x2(t) = A2s2(t) + n2(t)

(15)

where x1(t) and x2(t) are the data vectors of dimensions M1 and M2, respectively; A1 ∈ C
M1×L and

A2 ∈ C
M2×L are the steering matrices of the arrays; and s1(t) and s2(t) are the signal vectors. The

outputs of the two sub-arrays can be considered to be the same, but one is a delayed version of the
other. The noise vectors n1(t) and n2(t) are assumed to be stationary, zero-mean, Gaussian with the
joint covariance, J, given by

J =
{[

n1

n2

] [
nH

1 nH
2

]}
=

[
Rnn1 0

0 Rnn2

]
(16)

Rnn1 and Rnn2 are unknown covariance matrices of the noise of the two sub-arrays. The joint covariance
matrix of the received data from the two sub-arrays, Σ ∈ C

2(M1+M2)×2(M1+M2), can be written as [28]

Σ =
{[

x1

x2

] [
xH

1 xH
2

]}
=

[
R11 R12

R21 R22

]
(17)

where
Rii = AiRssiA

H
i + σ2

nRnni , i = 1, 2

R12 = RH
21 = A1Rss12A

H
2

(18)

where Rssi is the auto-correlation, and Rss12 is the cross-correlation of the signals such that

Rssi = E
{
sisH

i

}
, i = 1, 2

Rss12 = E
{
s1sH

2

} (19)

and both are assumed to be of full rank. In practice, we do not know the true value of Σ, and therefore,
we use the average of the outer products of the output data as an estimate of Σ such that

Σ̂ =
1
T

N∑
n=1

[
x1(n)
x2(n)

] [
xH

1 (n) xH
2 (n)

]
=

[
R̂11 R̂12

R̂21 R̂22

]
(20)

where T is the snapshot number. It should be noted that R12 and R21 contain noiseless DOA
information. So, we can proceed using any technique such as MUSIC [8] to estimate the DOA. However,
the signal subspace estimation from R̂12 is not unique. To uniquely estimate the signal subspace from
R̂12, the GCD is used to develop the UN-MUSIC algorithm in [28].
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Consider now a two-level nested array containing an odd number of sensors, M , as presented in
Section 2; the resulting virtual array will contain M̄ virtual sensors, as given in Table 1. Assume that
the first sub-array contains the virtual sensors from the first virtual sensor to the (M̄ − Q)-th sensor
and the second sub-array contains the sensors from (Q + 1)-th to the last virtual sensor, so that the
total number of sensors in each of the sub-arrays is M̄ −Q. It should be pointed out that the maximum
number of sources to be estimated will be affected by Q and is given by (M̄ − Q − 1)/2. Due to the
overlapping of the two sub-arrays and because the source signals are assumed to be located in the far-
field, the steering matrices A1 and A2 of the two sub-arrays could be assumed to be the same, that is
A1 = A2 = Ā, where Ā is the steering matrix of the sensor array for which the total number of sensors
is M̄ − Q and is given by

Ā =
[
ā(θ̄1) ā(θ̄2) . . . ā(θ̄N )

]
(21)

where ā(θ̄n) ∈ C
(M̄−Q)×1 as the steering vector of the sensor array whose m̄th element can be written

as

ām̄(θ̄n) = ejkodm̄ cos θ̄n , m̄ =

{
− M̄−Q−1

2 , . . . , M̄−Q−1
2 if Q is even

− M̄−Q
2 + 1, . . . , M̄−Q

2 if Q is odd
(22)

Consider extracting R̂12 ∈ C
M̄−Q×M̄−Q from Eq. (20) which can be written as

R̂12 = A1Rss12A
H
2 = ĀRss12Ā

H (23)

Following linear algebra theory, each column (vector) of R̂12 can be linearly represented by any complete
basis in the (M̄ − Q)-dimensional complex vector space [61]. The qth column of R̂12 can be written as

r̂q = Φ∗bq, q = 1, . . . , M̄ − Q (24)

where bq is the representation coefficient vector in terms of the overcomplete steering matrix, and
Φ∗ ∈ C

(M̄−Q)×N is the overcomplete steering matrix for the sensor array for which the total number of
sensors is M̄ − Q. In matrix form, Eq. (24) can be written as

R̂12 = ΦB (25)

where B = [b1, . . . ,bq, . . . ,bM̄−Q]. It should be noted that {bq}M̄−Q
q=1 have the same sparsity structure,

i.e., the non-zero elements of each vector of B appear in the same index [61]. Based on Eq. (24), DOA
estimation is the same as seeking the sparsity of bq, which has the same structure as that of the signal
to be estimated. Using Eq. (24), the DOA estimation problem can be reformulated using A-LASSO [45]
as follows:

b(k)
q = min

bq

‖r̂q − Φbq‖2
2 + τk

N∑
n=1

ŵn|bqn| (26)

We denote Eq. (26) as GCD A-LASSO. Algorithm 1 illustrates single iteration of the GCD A-LASSO
technique. Following [45], two initial weights are considered for the first iteration (k = 1) of the GCD
A-LASSO algorithm, these initial weights are given by OLS or MVDR. Depending on whether OLS
or MVDR weights are used as initial weights, the algorithm will be known as GCD OLS A-LASSO or
GCD MVDR A-LASSO, respectively.

4. EXPERIMENTAL RESULTS

Consider a sparse linear two-level nested array, for which M is odd, consisting of three elements in the
first level and with four elements in the second level. Thus, the total number of sensors is M = 7, as
shown in Fig. 1. Investigating the array output by applying Eqs. (1)–(3), and extracting the equivalent
distinct virtual elements from the virtual array manifold (A∗ � A), one can see that the virtual array
is a uniform linear array containing M̄ = 31 elements. The number of sensors in each of the two sub-
arrays of the virtual array is chosen to be 29, that is, Q = 2. As a sequence, we see from Eq. (22)
that m̄ = (−14, . . . , 14). We shall call such an array of antennas as array #1. The sampling grid
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Algorithm 1 GCD A-LASSO
1: Collect T snapshots of the received signals, x(t).

2: Calculate the covariance matrix, Rxx.

3: Vectorize Rxx and construct the virtual sensor array output as given in Section 2.

4: Divide the virtual array into two equal uniform linear sub-array with M̄ −Q virtual sensor in each

sub-array.

5: Calculate the joint covariance matrix, Σ, from Eq. (20) and extract R̂12 from the result.

6: Select q-th column of R̂12 where q = 1, . . . , M̄ − Q.

7: Compute the initial estimate for the signal, s̄, using OLS or MVDR as initial weights.

8: Find ŵ, where the n-th element of ŵ, ŵn, is given by ŵn = 1/|ŝn|γ , n = 1, . . . , N .

9: Define Φ′ ∈ C
(M̄−Q)×N matrix, such that its (q, n)-th element is given by φqn/ŵn, where q =

1, . . . , M̄ − Q and n = 1, . . . , N .

10: for k = 1, 2, . . . ,K iterations do

Solve the LASSO problem as:

b∗
q = min

bq

∥∥r̂q − Φ′bq

∥∥2

2
+ τk ‖bq‖1

Calculate b(k) = b∗n/ŵn, n = 1, 2, . . . , N .

11: end for

12: Find the final DOA estimation.

Figure 1. Two level nested array with 7 elements.

θ̄n ∈ [1◦ : 180◦] that covers Ω is chosen to be of 1◦ step. The received signals are assumed to be
contaminated by a mixture of correlated noise and AWGN in all the simulations.

The signal sources are modeled as ej2πfdt where fd is the Doppler frequency, and 10 snapshots
are assumed for the simulations, except in the first simulation. A single iteration A-LASSO [45] is
considered for all the simulations. All the simulated source signals are assumed to be equi-power and
uncorrelated with one another or with the noise except in the third simulation, where the sources are
assumed to be correlated with each other. The total number of trials, Nsim, is set to 100 for each
observation point. For each experiment, the regularization parameter, τ , is selected based on the idea
of the L-Curve [62, 63] and following the same procedure as given in [45].

The CVX toolbox [64, 65] for convex optimization that is available within the MATLAB
environment is used for examining the performance of the proposed algorithms.

We investigate, in the first experiment, the capabilities of the proposed algorithm in detecting
the sources even when the number of sources exceeds the number of physical array elements in the
presence of unknown noise fields. In other words, the proposed algorithm is for an underdetermined
DOA scenario. For that purpose, let 14 fixed source signals impinge the array from uniformly distributed
DOAs over θ = [38◦, 142◦]. The number of snapshots is set to 100, SNR is set to 0 dB and the noise is
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a mixture of AWGN and pink noise.
For UN-MUSIC simulations, two different scenarios are assumed. In the first scenario, two separate

ULAs are considered for the simulation and the number of sensors in each one of them is chosen to be 7,
that is, M1 = M2 = 7 (the same number of sensors as that of the two-level nested array). Such an array
will be denoted as array #2. However, using this scenario, we cannot identify the 14 source signals
because the maximum number of sources that can be estimated using UN-MUSIC is upper limited by
the number of the used sensors, that is, Lmax < {M1,M2} [28]. Hence, one can detect only up to 6
source signals using UN-MUSIC. Furthermore, the number of sources to be estimated is assumed to be
known in advance in the UN-MUSIC technique.

(a) GCD MVDR A-LASSO, array #1, 10 snapshots (b) GCD OLS A-LASSO, array #1, 10 snapshots

(c) UN-MUSIC, array #3, 10 snapshots (d) UN-MUSIC, array #3, 105 snapshots

Figure 2. DOA estimation when the number of sources is more than the number of sensors, 200
snapshots, SNR = 0 dB, using (a), (b) array #1 and 10 snapshots, (c) array #3 and 10 snapshots, and
(d) array #3 and 105 snapshots.
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We therefore assume, in the second scenario, for UN-MUSIC technique, two separate ULAs each
containing 15 elements, that is, M1 = M2 = 15. Therefore, the maximum number of sources that can
be estimated using this array, which we shall call array #3, is 14 sources [28].

Simulations are carried out on array #1 using both of the proposed techniques, namely, GCD OLS
A-LASSO and GCD MVDR A-LASSO, as well as array #3 using the UN-MUSIC technique to identify
the 14 sources. The results are as shown in Fig. 2. Figs. 2(a) and 2(b), show that all of the 14 source
signals are identified correctly by both the GCD OLS A-LASSO and GCD MVDR A-LASSO, even in the
presence of unknown noise, whereas even when we use 15 sensors and theoretically the maximum number
of sources that can be identified is 14, UN-MUSIC has identified only 6 source signals, see Fig. 2(c).
However, increasing the number of snapshots to be 105 snapshots, UN-MUSIC is able to identify the
14 sources as shown in Fig. 2(d). This clearly shows the capability of the proposed techniques in being
able to identify all the sources ((M̄ −Q− 1)/2), which is exactly the maximum number of sources that
our method is supposed to be able to identify. In view of this result, for the succeeding experiments we
assume the number of sources to be three, except in the last one where we assume only 2 sources.

In the second experiment, we consider two cases: (a) three uncorrelated signals impinging on array
#1 and 2 at 40◦, 60◦ and 160◦, and (b) three signals impinging at the same angles, but with the first two
signals being fully correlated (coherent). The received signal is assumed to be contaminated by pink
noise and AWGN with SNR set to 0 dB and only 10 snapshots are employed. Figs. 3(a), (b), and (c) show
that all the three techniques (namely, the two proposed and the UN-MUSIC) are able to identify the
three signals when they are uncorrelated. However, when two of the sources are correlated, Figs. 3(d),

(a) GCD MVDR A-LASSO (b) GCD OLS A-LASSO (c) UN-MUSIC

(d) GCD MVDR A-LASSO (e) GCD OLS A-LASSO (f) UN-MUSIC

Figure 3. DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦, where the first 2 source
signals are fully correlated, 10 snapshots, and pink noise and AWGN with SNR = 0 dB, using (a) and
(d) GCD MVDR A-LASSO, (b) and (e) GCD MVDR A-LASSO, and (c) and (f) UN-MUSIC, (a)–(c)
uncorrelated sources and (d)–(f) correlated sources.



56 Salama, Omair Ahmad, and Swamy

(e), and (f) show that all the source signals are correctly identified by the two proposed techniques,
whereas UN-MUSIC is not able to do so. In fact, UN-MUSIC is unable to identify correlated signals.

In the third experiment, we examine the capability of the proposed techniques in identifying closely-
spaced sources. For this purpose, let three sources impinge arrays #1 and 2 form DOAs of 55◦, 60◦,
and 170◦. The received signal sources are assumed to be contaminated with pink noise with SNR is set
to 0 dB, and 10 snapshots of the received data are used. The simulations results are shown in Fig. 4.
From this figure, three peaks can easily be identified using GCD MVDR A-LASSO and GCD MVDR
A-LASSO, thus identifying the three sources. However, UN-MUSIC is not able to identify the sources
properly, and the two closely-spaced sources are identified as a single source. However, increasing the

(a) GCD MVDR A-LASSO, 10 snapshots (b) GCD OLS A-LASSO, 10 snapshots

(c) UN-MUSIC, 10 snapshots (d) UN-MUSIC, 2   10   snapshots×
4

Figure 4. DOAA estimation for spatially closed two source signals, pink Noise with SNR = 0dB, two
source signals at DOAs 60◦ and 64◦, 10 snapshots, using (a) GCD MVDR A-LASSO, (b) GCD MVDR
A-LASSO, and (c) and (d) UN-MUSIC.
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number of snapshots to be 2 × 104 snapshots, UN-MUSIC is able to discriminate the sources.
In the next two experiment, the root mean square error (RMSE) is used as the performance measure,

which is given by

RMSE =
1
L

L∑
l=1

√√√√ 1
Nsim

Nsim∑
n=1

(
θ̂l,n − θl

)2
(27)

where θ̂l,n is the estimate of the DOA angle θl of the n-th Monte Carlo trial.

(a) UN-MUSIC VS. GCD OLS A-LASSO (b) UN-MUSIC VS. GCD MVDR A-LASSO

(c) GCD OLS A-LASSO vs. GCD MVDR A-LASSO

Figure 5. Performance comparison of the different algorithms as SNR is varied using UN-MUSIC, GCD
MVDR A-LASSO (single iteration), and GCD OLS A-LASSO (single iteration). (a) GCD MVDR A-
LASSO vs. GCD MVDR A-LASSO, (b) UN-MUSIC vs. GCD MVDR A-LASSO, and (c) UN-MUSIC
vs. GCD MVDR A-LASSO.
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Figure 6. DOA estimation error for two sources as a function of separation between the two sources,
SNR = 5dB, 10 snapshots.

In the fourth experiment, we investigate the performance of the GCD MVDR A-LASSO, GCD
MVDR A-LASSO, and UN-MUSICC algorithms as we vary SNR. For this purpose, let three source
signals impinge on the arrays from DOA of 60◦, 70◦ and 120◦. For UN-MUSIC, as before two separated
ULAs are used wherein each ULA contains 7 sensors (M1 = M2 = 7). The performance of the various
algorithms as SNR is varied is shown in Fig. 5. It is observed from the figure that both GCD OLS
A-LASSO and GCD MVDR A-LASSO outperform UN-MUSIC algorithm for the four assumed different
noise mixtures. Furthermore, GCD MVDR A-LASSO performs better than GCD OLS A-LASSO for
all the different noise mixtures.

The final experiment involves the investigation of the effect of varying the angular separation
between the source signals. Consider two source signals, the first being held fixed at DOA of 60◦, while
for the second one the DOA ranges from 62◦ to 90◦ in steps of 2◦. The SNR is set to be 5 dB, 10
snapshots are considered for the simulation, 100 trials for each observation point, and a sampling grid
varying from 1◦ to 180◦ with 1◦ steps. In UN-MUSIC, for source signals with separation ≤ 10◦, the
DOA estimation error is high. Hence, the simulations for the UN-MUSIC are conducted starting form a
source signal separation > 10◦. Fig. 6 illustrates the DOA estimation error as a function of the angular
separation between the two source signals using the proposed DOA estimation techniques. It can be
seen from this figure that, the performance of GCD OLS A-LASSO and GCD MVDR A-LASSO are
superior to that of the UN-MUSIC technique. Moreover, The DOA estimation error for of the GCD
MVDR A-LASSO technique is always less than that of the GCD OLS A-LASSO; in fact the DOA of
GCD MVDR A-LASSO estimation error is < 0.2◦ for an angular separation of ≥ 8◦.

5. CONCLUSION

This paper has presented two novel techniques using the compressive sensing framework on a sparse
linear array for DOA estimation in the presence of unknown noise; based on the generalized correlation
decomposition (GCD); these have referred to as GCD OLS A-LASSO and GCD MVDR A-LASSO,
depending on whether ordinary least squares or minimum variance distortionless response is used as
the initial weights. The performance of the proposed techniques is studied and compared with that of
the UN-MUSIC technique. Neither of the proposed techniques require a priori knowledge about the
number of source signals. The proposed algorithms are able to perform the DOA estimation using
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a small number of snapshots and are able to estimate correlated source signals and closely-spaced
source signals in the presence of unknown noise. The proposed algorithms can identify source signals
of order O(M2) using an array of order O(M) sensor, with high resolution. For UN-MUSIC, even
when the number of antennas is more than the number of sources, it is not able to distinguish source
signals that are close to one another nor able to identify coherent sources. Even when the sources are
not correlated, the UN-MUSIC technique requires more number of snapshots than that required by
the proposed techniques in order to identify the sources but not necessarily all of them. It has been
shown that the DOA estimation performance using the proposed techniques is superior to that of the
UN-MUSIC; further, the performance of GCD MVDR A-LASSO is better than that of GCD MVDR
A-LASSO.

REFERENCES

1. Shen, Q., W. Liu, W. Cui, and S. Wu, “Underdetermined doa estimation under the compressive
sensing framework: A review,” IEEE Access, Vol. 4, 8865–8878, 2016.

2. Babur, G., G. O. Manokhin, A. A. Geltser, and A. A. Shibelgut, “Low-cost digital beamforming on
receive in phased array radar,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 53,
No. 3, 1355–1364, 2017.

3. Wang, V. T. and M. P. Hayes, “Synthetic aperture sonar track registration using SIFT image
correspondences,” IEEE Journal of Oceanic Engineering, Vol. 42, No. 4, 901–913, 2017.

4. Grzegorowski, M., “Massively parallel feature extraction framework application in predicting
dangerous seismic events,” 2016 Federated Conference on Computer Science and Information
Systems (FedCSIS), 225–229, IEEE, 2016.

5. Moore, A. H., C. Evers, P. A. Naylor, A. H. Moore, C. Evers, and P. A. Naylor, “Direction of arrival
estimation in the spherical harmonic domain using subspace pseudointensity vectors,” IEEE/ACM
Transactions on Audio, Speech and Language Processing (TASLP), Vol. 25, No. 1, 178–192, 2017.

6. Chen, X., D. W. K. Ng, W. Gerstacker, and H.-H. Chen, “A survey on multiple-antenna techniques
for physical layer security,” IEEE Communications Surveys & Tutorials, Vol. 19, No. 2, 1027–1053,
2017.

7. Van Trees, H. L., Detection, Estimation, and Modulation Theory, Optimum Array Processing, John
Wiley & Sons, 2004.

8. Schmidt, R., “Multiple emitter location and signal parameter estimation,” IEEE Transactions on
Antennas and Propagation, Vol. 34, No. 3, 276–280, 1986.

9. Roy, R. and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance
techniques,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984–
995, 1989.

10. Fan, X., L. Pang, P. Shi, G. Li, and X. Zhang, “Application of bee evolutionary genetic algorithm
to maximum likelihood direction-of-arrival estimation,” Mathematical Problems in Engineering,
Vol. 2019, No. 12, 1–11, 2019.

11. Baktash, E., M. Karimi, and X. Wang, “Maximum-likelihood direction finding under elliptical noise
using the em algorithm,” IEEE Communications Letters, Vol. 23, No. 6, 1041–1044, 2019.

12. Pillai, S. U., Y. Bar-Ness, and F. Haber, “A new approach to array geometry for improved spatial
spectrum estimation,” Proceedings of the IEEE, Vol. 73, No. 10, 1522–1524, 1985.

13. Pillai, S. and F. Haber, “Statistical analysis of a high resolution spatial spectrum estimator utilizing
an augmented covariance matrix,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. 35, No. 11, 1517–1523, 1987.

14. Moffet, A., “Minimum-redundancy linear arrays,” IEEE Transactions on Antennas and
Propagation, Vol. 16, No. 2, 172–175, 1968.

15. Ma, W.-K., T.-H. Hsieh, and C.-Y. Chi, “DOA estimation of quasi-stationary signals via Khatri-
Rao subspace,” 2009 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2165–2168, IEEE, 2009.



60 Salama, Omair Ahmad, and Swamy

16. Ma, W.-K., T.-H. Hsieh, and C.-Y. Chi, “DOA estimation of quasi-stationary signals with less
sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach,”
IEEE Transactions on Signal Processing, Vol. 58, No. 4, 2168–2180, 2010.

17. Zhang, Y. D., M. G. Amin, and B. Himed, “Sparsity-based DOA estimation using co-prime arrays,”
2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3967–
3971, IEEE, 2013.

18. Adhikari, K., J. R. Buck, and K. E. Wage, “Beamforming with extended co-prime sensor arrays,”
2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4183–
4186, IEEE, 2013.

19. Shen, Q., W. Liu, W. Cui, S. Wu, Y. D. Zhang, and M. G. Amin, “Low-complexity direction-
of-arrival estimation based on wideband co-prime arrays,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, Vol. 23, No. 9, 1445–1456, 2015.

20. Pal, P. and P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced
degrees of freedom,” IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167–4181, 2010.

21. Stoica, P. and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 5, 720–741, 1989.

22. Stoica, P. and A. Nehorai, “Performance study of conditional and unconditional direction-of-arrival
estimation,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 38, No. 10, 1783–
1795, 1990.

23. Jaffer, A. G., “Maximum likelihood direction finding of stochastic sources: A separable solution,”
1988 International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2893–2896,
IEEE, 1988.

24. Zheng, Y., L. Liu, and X. Yang, “Spice-ml algorithm for direction-of-arrival estimation,” Sensors,
Vol. 20, No. 1, 119, 2020.

25. Yang, B., C. Wang, and D. Wang, “Direction-of-arrival estimation of strictly noncircular signal
by maximum likelihood based on moving array,” IEEE Communications Letters, Vol. 23, No. 6,
1045–1049, 2019.

26. Filippini, F., F. Colone, and A. De Maio, “Threshold region performance of multicarrier maximum
likelihood direction of arrival estimator,” IEEE Transactions on Aerospace and Electronic Systems,
Vol. 55, No. 6, 3517–3530, 2019.

27. Viberg, M., P. Stoica, and B. Ottersten, “Array processing in correlated noise fields based on
instrumental variables and subspace fitting,” IEEE Transactions on Signal Processing, Vol. 43,
No. 5, 1187–1199, 1995.

28. Wu, Q. and K. M. Wong, “UN-MUSIC and UN-CLE: An application of generalized correlation
analysis to the estimation of the direction of arrival of signals in unknown correlated noise,” IEEE
Transactions on Signal Processing, Vol. 42, No. 9, 2331–2343, 1994.

29. Li, T. and A. Nehorai, “Maximum likelihood direction finding in spatially colored noise fields using
sparse sensor arrays,” IEEE Transactions on Signal Processing, Vol. 59, No. 3, 1048–1062, 2011.

30. Bhandary, M., “Estimation of covariance matrix in signal processing when the noise covariance
matrix is arbitrary,” Journal of Modern Applied Statistical Methods, Vol. 7, No. 1, 16, 2008.

31. Pan, M., G. Zhang, and Z. Hu, “Covariance difference matrix-based sparse bayesian learning for off-
grid DOA estimation with colored noise,” 2019 IEEE MTT-S International Microwave Biomedical
Conference (IMBioC), Vol. 1, 1–4, IEEE, 2019.

32. Wen, F., J. Shi, and Z. Zhang, “Direction finding for bistatic mimo radar with unknown spatially
colored noise,” Circuits, Systems, and Signal Processing, 1–13, 2019.

33. Yao, Y., T. N. Guo, Z. Chen, and C. Fu, “A fast multi-source sound doa estimator considering
colored noise in circular array,” IEEE Sensors Journal, Vol. 19, No. 16, 6914–6926, 2019.

34. Zhang, Y., G. Zhang, and H. Leung, “Atomic norm minimization methods for continuous
doa estimation in colored noise,” 2019 IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), 1–5, IEEE, 2019.



Progress In Electromagnetics Research C, Vol. 102, 2020 61

35. Sui, J., F. Ye, X. Wang, and F. Wen, “Fast parafac algorithm for target localization in bistatic
mimo radar in the co-existence of unknown mutual coupling and spatially colored noise,” IEEE
Access, Vol. 7, 185720–185729, 2019.

36. Nagesha, V. and S. Kay, “Maximum likelihood estimation for array processing in colored noise,”
IEEE Transactions on Signal Processing, Vol. 44, No. 2, 169–180, 1996.

37. Liao, B., S.-C. Chan, L. Huang, and C. Guo, “Iterative methods for subspace and DOA estimation
in nonuniform noise,” IEEE Transactions on Signal Processing, Vol. 64, No. 12, 3008–3020, 2016.

38. Vorobyov, S., A. B. Gershman, K. M. Wong, et al., “Maximum likelihood direction-of-arrival
estimation in unknown noise fields using sparse sensor arrays,” IEEE Transactions on Signal
Processing, Vol. 53, No. 1, 34–43, 2005.

39. Chen, Z., G. Gokeda, and Y. Yu, Introduction to Direction-of-arrival Estimation, Artech House,
2010.

40. Godara, L. C., “Limitations and capabilities of directions-of-arrival estimation techniques using
an array of antennas: A mobile communications perspective,” IEEE International Symposium on
Phased Array Systems and Technology, 327–333, IEEE, 1996.

41. Gorodnitsky, I. F. and B. D. Rao, “Sparse signal reconstruction from limited data using FOCUSS:
A re-weighted minimum norm algorithm,” IEEE Transactions on Signal Processing, Vol. 45, No. 3,
600–616, 1997.

42. Fuchs, J.-J., “Linear programming in spectral estimation: Application to array processing,” 1996
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 6,
3161–3164, IEEE, 1996.

43. Fuchs, J.-J., “On the application of the global matched filter to DOA estimation with uniform
circular arrays,” IEEE Transactions on Signal Processing, Vol. 49, No. 4, 702–709, 2001.
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