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Meta-Heuristic Multi-Objective as an Affordable Method for
Improving the Grating Lobe in a Wide Scan Phased Array Antenna

Maryam Shadi* and Zahra Atlasbaf

Abstract—In electronic beam scanning, the number of phase shifters is an obvious challenge. So, there
are several methods to reduce the number of phase shifters. The aim of this paper is to investigate the
use of the meta-heuristic algorithm to lower the grating lobe level in the subarray antenna. Improve the
result obtained by group subarray optimization techniques to determine topology and space between
elements, and complex optimization of weight, simultaneously. Uniform subarray and random subarray
are analyzed in Matlab to determine the coefficient of excitation by the evolutionary algorithm, as well
as swarm and hybrid. The results of the simulation are shown; this method leads to radiation pattern
without grating lobe in wide scanning angle. It indicates that there is a possibility of obtaining wide
electronic scanning with minimum number of phase shifters and improving result.

1. INTRODUCTION

Phased-array antennas have been used in a wide range of applications, from military systems to
commercial cellular communications networks such as wireless communication systems, wireless power
transmission systems, and radar systems. Electronic scanning, a key role of phased array antenna, is
defined as a method of positioning a beam with the antenna remaining fixed. The basic electronic
scanning techniques are phase shifting, true time delay, frequency scanning, and feed switching [1].

If the phase shifter technique is used, the design complexity would be higher. Therefore, the key
feature of the phased array antenna is to use the lowest number of phase shifters to achieve, as much
as possible, a wide range of high-gain radiation patterns with lower cost [2, 3]. Typically, in an optimal
phased array with minimal number of phase shifters the distance between elements is greater than
half wavelength. With respect to array antennas when the distance between elements is smaller than or
equal to half-wavelength, the grating lobe usually appears by increasing the scan angle up to 60 degrees.
Therefore, in antennas in which distance between elements is greater than half wavelength, the grating
lobes are likely to occur at a lower angle of scan [4, 5]. Consequently, what will be critical is to provide
a phased array antenna with the minimum number of phase shifters without the existence of grating
lobes within the scan range.

One way to compensate the side effect of using a minimal number of phase shifter is using tapering
distance (optimizing inter element spacing) [4, 6–9]. Controlling the distance between the elements
in arrays will further reduce the level of the GL. Extensive research has been done on the subarray
antenna [4, 10–12]. Such subarrays were initially selected uniformly. The random subarray (RSA) was
later used to eliminate the second array periodicity in uniform subarray [2]. Also, an overlay subarray
(OSA) technique was suggested to provide an effective phased array by reducing the distance [13].
The most current research is a combination of random and overlap subarrays (OSA) [13], or randomly
overlap subarray (ROSA) [14].
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Another approach that some researchers have proposed is to use complex coefficient tapering [11, 15]
based on two categories of algorithms. The first category is based on Stochastic gradient descent
(an iterative method of optimizing), which involves the least mean square (LMS), constant modulus
algorithm (CMA), and recursive least-squares (RLS) algorithm. These algorithms are characterized by
different complexity levels and periods of convergence. Second, the synthesis of the desired pattern
is based on the optimization algorithm. Determining excitation coefficients with the optimization
algorithm depends on the cost functions. So, the starting point or range of varying complex amplitudes
affects the algorithm’s accuracy and speeds.

In this paper, the combination of the two approaches mentioned is used to achieve a more efficient
phased array than previous work. Distance tapering is managed by ROS configuration, and the optimum
coefficients of excitation are achieved using hybrid optimization algorithm. Compared to earlier studies,
the presented paper has different variations which eventually produce better results. First, using a
hybrid optimization algorithm with a suitable cost function does not result in a local solution getting
stuck. Secondly, the focus is on estimating the optimal coefficients of the second array by consciously
selecting the starting point which makes the optimization algorithm more accurate and quicker.

The paper is organized as follows. Section 2 explains the detail of the optimization algorithm,
and the proposed method to control GL with minimum SLL is illustrated. The simulation results are
provided in Section 3. Finally, Section 4 presents the conclusions of this work.

2. OPTIMIZATION METHOD TO DESIGN RANDOM SUBARRAY ANTENNA

2.1. Hybrid Optimization Algorithm

Over the last two decades, meta-heuristic optimization techniques have become very popular [16]. They
have been mostly inspired by very simple concepts, in which the inspirations are typically related to
physical phenomena, animals’ behaviours, or evolutionary concepts. These algorithms may be classified
into three main classes: evolutionary algorithm (EA) [17], physics-based, and swarm intelligence (SI)
algorithms [18]. EAs are usually influenced by the evolutionary ideas of nature.

The most popular algorithm in this branch is particle swarm (PSO) [19] and genetic algorithm
(GA) [20]. GA [21], which Holland proposed in 1992, is a search and optimization approach inspired by
genetic science and Darwinian evolution and focuses on the survival of the best or nature’s choice. In
general, the algorithm procedure is as follows.

First population production: the initial population in the algorithm is generated randomly
according to the size of the population of interest which is determined by the fitness function. Parental
selection: selection of parents as the next generation is important. There are various methods for parent
selection, such as roulette, competitive, and random selection.

Parents are chosen on the basis of fitness in all those processes. So, the parent roulette form is much
more likely to be chosen, which has a higher fitness value. Crossover: at this stage by combining the
two parents, two children are produced. Intersection methods in the genetic algorithm can be referred
to single point intersection, the intersection of two points, the intersection of multiple points, or uniform
intersection. All the intersection methods, except the uniform intersection method, are used for discrete
problems, and only the uniform intersection method is used for continuous problems. Mutation: a
mutation is one of the phenomena of genetic science that rarely occurs in some chromosomes, in which
children find features that do not belong to any parent. The role of mutation in GA is to restore lost
genetic material in the population. Generating a new population: at this stage of the algorithm, the
fitness value of the population generated during the crossover and mutation is calculated, then the
current population is merged with the former population and the population sorted based on the fitness
level. After sorting the population, the size of population required by half of the population is selected
as the next generation (new population), and the first one has the best value that is considered as the
best answer to the problem.

A chromosome is a set of parameters in GAs which defines a proposed solution to the problem that
the GA is trying to solve. The mutation operator and transverse operator are used to take into account
the configuration of the chromosome.

The PSO algorithm [19] was proposed by Kennedy and Eberhard [22] and inspired from the social
behaviour of birds flocking. In the PSO algorithm, there are a number of organisms, which are called
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a particle and distributed in the search space. Each particle calculates the objective function value in
a location of the space.

All particles choose the direction to move, and then a step from the algorithm ends. These steps
are repeated several times in order to obtain the desired response. In fact, the swarm of particles that
search the minimum value of a function acts like a flock of birds looking for food. In the first stage
of the algorithm, the initial location and velocity of each particle are initialized randomly, and then
using a fitness function or error, these experiences are considered as the best practice of each particle,
then the particle having the best value is selected as the best particle in all particles, and the algorithm
is inserted into its original loop. Then per iteration of the process of optimizing the velocity of each
particle is updated. After updating the particle location and speed of each particle, in the second stage
of the optimization process, the location of each particle must be updated. At this point, the particle
velocity is calculated after updating its position. If the current fitness value is better than the previous
best value, this value will be saved as the best position of the particle. The best amount of fitness of
each particle in the current position is compared with the best value of all previous particle sizes, and
if its value is better than the value of the best particle in previous iterations, it is considered the best
particle. The termination condition of this algorithm is similar to the termination conditions of the
genetic algorithm [23].

Although both of these approaches are highly capable of solving the problem, each has its own
advantages and disadvantages [24, 25]. For example, one of the disadvantages of PSO algorithm is that
the algorithm can be stuck at the local optimum point because of its structure, but the advantage of
this is that the algorithm converges rapidly into the optimal solution. In addition, a larger query space
than the PSO algorithm is available in GA. The crossover and mutation functions used in this algorithm
offer the advantage. Despite GA’s drawbacks, it should be noted that this algorithm is more suited
for discrete problems. Some researchers have suggested a hybrid algorithm [26, 27] to minimize these
drawbacks. So far, in the context of a hybrid algorithm, various combinations of these two optimization
approaches have been provided. In the first model, the obtained results from GA are introduced as
the initial values to the PSO algorithm, and the optimization process is performed by the algorithm.
The second type of hybrid algorithms is GA crossover, and mutation functions are used in the PSO
algorithm in order to escape the local optimum. Moreover, the third model of combination uses GA
and PSO in parallel to optimize the problems.

In this paper, the third model hybrid algorithm is used to get better results and to achieve the
advantages of GA and PSO simultaneously. Thus, the first half of the population is optimized with GA,
and the remaining half will join the PSO algorithm, then the optimization process will continue until
the end conditions are met, and the results are compared with either of the two approaches.

2.2. Problem Specification and Optimization Model

The optimal phased array design is to find optimum configuration and array factor. For linear antenna
arrays with uniform and nonuniform elements’ spacing, design is considered throughout the whole range
of scan angle and random value of distance between elements with minimum number of phase shifters.
The array factor varies as a function of the distance between element, excitation coefficients, and antenna
scan angle. So, the minimax criterion is:

max
θ

min
Npsh

[|AF (dn.wn.θscan)|] n = 1 . . . Npsh (1)

Suppose that there are m sampling angles belonging to scan range, and minimized SLL is required
according to the dined mask. The optimization model can be described as follows

min
n1...nNpsh

E
(
n1 . . . nNpsh

)
= max

j=1...m
[|AF (dn · wn · θscan)|]

s.t.
nmin ≤ ni ≤ nmaxi = 1 . . . Npsh

di ≥ λ/2
(2)

where nmin and nmax denote the lower and upper number bounds of number of phase shifters.
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Figure 1. Example of array uniform subarrays, M = 4, N = 3.

Assume, as shown in Fig. 1, a linear antenna array of isotropic elements located along the z-axis,
and the array factor is specified by Eq. (4)

AF (θ) =
N∑

n=1

M∑
m=1

amnej 2π
λ

dm sin θ (3)

where AF (θ) is the synthesized array factor. The general element’s excitation coefficient is anm, and
the wavenumber of free space is considered.

As mentioned, the variations in the pattern of the linear array result from the variations in the
magnitude and phase of the coefficients, the distance between the elements, and the number of phase
shifters. Therefore, these three parameters must be calculated at the end of the optimization, and the
efficiency of the algorithm is implemented by the given upper and lower mask with minimum mean
square error (LMSE) between the desired and synthesized pattern.

In addition, the efficiency is calculated by a numerical value that characterizes how well the trial
solution performs by defining a cost function (CF).

By repeatedly evaluating the CF with different trial solutions, the optimizer adjusts the trial
solutions and attempts to converge to the best solution, defined by the solution returning the lowest
cost. The CF used here is given by Eq. (4) in which the user needs to determine the limite of the desired
pattern as upper and lower masks. So, it should be minimized.

score = min

[
1
P

P∑
i=1

(AF (i) − Mask(i))

]
(4)

where P is the number of pattern points that should be sufficiently large enough to cover the variations
in the desired pattern. For a given desired radiation pattern, each pattern point that lies outside the
specified limits contributes a value to the cost function. In addition, to see finer improvement in score,
it is better to use a logarithmic scale. The interaction of the optimizer with cost function to find a
fitness solution is shown in Fig. 2.

Based on the Eq. (4), two strategies are available for generating low side lobes to perform amplitude
tapering. The first involves conducting an exact taper of amplitude at each of the elements in the array,
such as uniform array. The second is available with a uniform primary array for amplitude tapering
only at subarray output.

Amplitude weighting at the subarray’s ports simplifies the antenna architecture, but the resulting
quantized amplitude taper in subarray degrades the side lobe performance. Defining a suitable starting
point for optimization is expected to be efficient at convergence speed with lower local response
probability.

We choose a close approximation to the optimal amplitude distribution of the uniformly weighted
elements of the related antenna elements in each subarray to improve the estimation of the exact
element amplitude tapering. The average of the coefficients forms our starting point as shown in Fig. 3.
Furthermore, critical approximation of amplitude could change the slope of data to quantize.
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Figure 2. Interaction of optimizer with cost function to find fitness solution.

Figure 3. Tapering of amplitude for uniform subarray, M = 32, N = 8.

3. SIMULATION RESULT

3.1. Hybrid Optimization Algorithm

In our simulation, the linear uniform subarray (USA) with 32 total elements and 8 subarrays (To equate
the findings according to [2]) is considered as a case study, which is shown in Fig. 1. Related results
are shown in Fig. 4, using the Chebyshev window to evaluate the desired array element. The broadside
array factor is a suitable result, as it is obtained by the null primary array product to the secondary
array grating lobes. Thus, the grating lobe appears by scanning beam.

One factor to compensate is excitement. Therefore, we use GA, PSO, and GAPSO algorithm
to determine this complex coefficient. The cost function considers the same for all of optimization
algorithms. The results of the GA and PSO algorithm are shown in Fig. 5. More grating lobes usually
rise, but there is the grating lobe on one side compared to the main lobe.

GAPSO is used in order to have hybrid advantages of each algorithm, and the result and the
defined upper and lower masks are shown in Fig. 6. The GAPSO algorithm, however, is effective, and
the result could be better. The large distance between the elements is the principal reason for the
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Figure 4. Radiation pattern of uniform subarray (Nt = 32, Np = 4, Npsh = 8) with applying Chebyshev
window for a 12. angular scan with a 4◦ resolution.
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Figure 5. Radiation pattern of uniform subarray (Nt = 32, Np = 4, Npsh = 8) for a 12. angular
scan with a 4◦ resolution. (a) with applying GA and (b) with applying PSO algorithm to amplitude
weighting.

occurring of grating lobe. In the mentioned example, the distance between the elements is 2 times of
the wavelength. So, although the GAPSO has been applied, the grating lobes have not been eliminated.
So, it is necessary to determine the best configuration with complex excitation coefficients.

In the end, the convergence of optimization algorithm during iteration should be shown by
describing the cost function’s score of the trial solution. For USA the convergence was investigated, and
it is shown in Fig. 7, because of allowing the user to see finer improvements as the optimizer converges
choosing logarithm scale. The findings indicate that the following is true:

• The GA has fewer iterations in comparison.
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Figure 6. Radiation pattern of uniform subarray (Nt = 32, Np = 4, Npsh = 8) for a 12. angular scan
with a 4◦ resolution with applying GAPSO algorithm to amplitude weighting.
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Figure 7. The convergence of algorithms (GA, PSO, GAPSO) of USA with 200 iterations and the
same cost function.

• The PSO rapidly converges into the optimal solution.
• Greater query space is needed in the GA.
• The GA has expensive computational cost.
• The PSO has better reliability and accuracy.

3.2. Improvement the Specification of Linear Array Antenna

From Subsection 3.1, we understand that electromagnetic antenna parameters could not be achieved
by only using the proper coefficient of excitation. Distance between elements is another key parameter.
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Because of the periodicity in distance in USA with minimum number of phase shifters, GL will be
accrued in any way.

Firstly, we should choose the desirable configuration of OSA in order to decrease the distance
between the elements, or the desirable configuration of RSA this is an aperiodic structure with less
distance between elements. In the USA, only one topology exists by specifying the total number of
elements (Nt), the number of primary arrays (Np), and the number of secondary arrays (Npsh). Unlike
in the USA, when selecting the RSA to boost the array parameters, the optimal solution should be
found. There are various combinations of RSA for the particular values of Nt, Np, and Npsh. A sample
of OSA topology and RSA (with the total number as USA in the prior section) is shown in Fig. 8.

(b)

(a)

Figure 8. Configuration array with Np = 4 and M = 32 (a) overlap subarray with 15 number of phase
shifters and (b) random subarray Np = [1, 2, 3] with 12 phase shifter.

In our simulation, the minimum of two and the maximum of four separate groups can be considered
as the primary arrays. If we consider a vector to describe the number of primary arrays ([a1, a2, a3,
a4]), each of them can be changed from 1 to 8, and the array configuration can be a combination of the
following modes:

1. Combination of four groups: [1, 2, 3, 4], [1, 3, 5, 7], [2, 4, 6, 8]
2. Combination of three groups: [1, 2, 3], [1, 3, 5], [2, 3, 4]
3. Combination of two groups: [1, 2], [2, 3], [3, 4]

To simulate our algorithm, we choose that the primary array groups are composed of [1, 2, 3]
elements between which the spacing is half of the wavelength. The desired SLL is considered −15 dB,
scan up to ±27◦ with 32 elements and 12 phase shifters. If we want lower SLL (20 dB), it can be
available with less scanning angle (±16◦). Then, according to the result of USA, GAPSO is considered
to determine the excitation coefficient to obtain the desired array factor while optimizing the distance
between elements by different combinations to form RSA. Only amplitude control of each element in
primary array and amplitude and phase control of elements in secondary array are assumed. The
maximum and minimum levels of the amplitude and phase are defined before running the algorithm.
The total array factor for RSA as the product of the primary array and secondary array and the results
of beam scanning are shown in Fig. 9 for both the GAPSO algorithms. In general, a maximum scanning
with 4◦ and 2◦ resolutions is considered to be 27◦. GAPSO algorithm’s analysis has a similar response
to the Chebyshev window in broadside, but for angular scanning this does not occur. As shown that
the Chebyshev window uses additional grating lobe also occurs. Unlike this, the result is appropriate in
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Figure 9. Radiation pattern of RSA (Nt = 32, Np = [1, 2, 3], Npsh = 12) for a 27◦ angular scan with a
4◦ and 2◦ resolution with applying GAPSO algorithm to amplitude weighting.
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Figure 10. Radiation pattern of RSA (Nt = 30, Np = [2, 3], Npsh = 12) for a 14◦ angular scan with a
2◦ resolution with applying GAPSO algorithm to amplitude weighting.

another angle as well with GAPSO, because of the possibility to provide complex weight with GAPSO
algorithm and to optimize the topology array simultaneity. As a result, the array factor by reducing
the number of phase shifters is obtained by the GAPSO algorithm for RSA.

Certain combinations of primary array are considered to demonstrate the validity of our algorithm,
and the results are clarified in Fig. 10 and Fig. 11.

Also, if we need a lower SLL, Fig. 10 shows that we can obtain a topology with an excitation
coefficient and the same number of phase shifters as it has less SLL than previous references. Fig. 11
shows that with our procedure, a wider scanning angle with SLL equal to −15 dB can be accessed based
on the references.

In comparison, according to previous papers, our method will boost parameters such as SLL and
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Table 1. Comparing different topology with our algorithm and other references.

our Ref. [2] our Ref. [2] our Ref. [17]
Nt 30 30 30 30 42 42
Np [1,2,3] [1, 2, 3] [2,3] [2, 3] [3,4] [3, 4]

Npsh 12 12 12 12 12 12
SLL (dB) −15 −15 −20 −15 −15 −15
Scan angle ±27◦ ±21◦ ±12◦ ±12◦ ±15◦ ±8◦

scanning angle with the same number of phase shifters. As shown in Table 1, the results obtained from
our approach are compared to previous ones, and the proposed method is more effective in determining
the topology and excitation coefficients of the aperiodic linear phased array antenna with minimum
number of phase shifters.

4. CONCLUSION

An efficient algorithm based on a combination of the GA and PSO algorithm (GAPSO) is presented in
this paper. The algorithm is efficiently used to reduce the grating lobe with estimating the excitation
coefficients of the antenna array and configuration of the array. The proposed algorithm provides a
strong synthesis tool for shaping array factor. The two distributed subarrays antennas, as the USA
and RSA, have been considered, and the simulation results are shown. Finally, by applying the
GAPSO algorithm to RSA, minimum grating lobe during beam scanning could be acceptable. It is
also characterized by fast convergence and high accuracy compared to other weighting functions.
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