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Abstract—Coupling in electronic devices may be a threat for the security of the information they
process. Indeed, a current flowing into a conductor may radiate an electromagnetic field that will
couple onto other conductors creating parasitic signals. If this current conveys sensitive information,
its confidentiality may not be guaranteed. Moreover, depending on the amplitude of these parasitic
signals, dysfunction may occur. It is thus valuable to assess the coupling effects in order to evaluate
the probability that a current or a voltage reaches a given magnitude. This relevant quantity may be
an input for a risk analysis process.

In this study, we will focus on the study of couplings in reverberant cavities, and especially into
the chassis of desktop computers. We will highlight that the Random Coupling Model (RCM) may
be applied to determine statistical quantities related to induced currents or voltages between several
ports placed inside a reverberant environment. Comparisons with experimental data, for several system
configurations, show that the application of this model is relevant and allows to rapidly obtain the
percentiles of the induced currents. At first, the coupling between two monopoles is studied, and then
the coupling between printed circuit boards that are stacked together is investigated. Finally, the effect
of adding broadband absorbers in casings is assessed.

1. INTRODUCTION

ElectroMagnetic SECurity (EMSEC) may be considered as the assembly of the Electromagnetic
Compatibility (EMC) to the information systems security (INFOSEC). The EMSEC study of an
electronic item leads to consider couplings between systems or between the elements of a system [3, 4, 13].
Indeed, if a signal carrying sensitive information couples with another system, the risk that the
information is not anymore under control exists (loss of the confidentiality of information). This risk
defines the TEMPEST threat. Another risk would consist of an attacker handling a malicious equipment
in order to interfere with its victim’s equipment nominal operation, leading to information availability
or integrity losses. This type of agression is called Intentional ElectroMagnetic Interference (IEMI).

The analysis of the electromagnetic emanations from electronic devices to recover information was
firstly outlined in [28], and from then on numerous talks and papers have highlighted that threat.
In [15, 22] the electromagnetic emanations from computer screens, cables, and connectors of digital
video signal are processed to recover the displayed information. In [29] keyboards signals are analyzed
and the keystroke information is recovered. Researches on the effects of IEMI were also conducted like
in [1, 21, 23] where desktop computers are stressed by High Power ElectroMagnetic waves (HPEM).

Received 27 February 2020, Accepted 26 April 2020, Scheduled 21 May 2020
* Corresponding author: Valentin Houchouas (valentin.houchouas@ssi.gouv.fr).
1 National Cybersecurity Agency of France, 51 Boulevard de la Tour-Maubourg, 75700 Paris 07 SP, France. 2 Sorbonne Université,
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It is common to embed electronic devices into casings as they limit the susceptibility to the
environment and their emissivity towards the environment. The casing creates reverberating conditions
for the electromagnetic field. However, to the knowledge of the authors, no study has yet investigated
the issue of reverberant environments from an information security viewpoint. This work is a first
attempt to analyze such environments and to put forward a methodology that can be used for a risk
assessment process from the EMSEC point of view. Furthermore, the great disparity and the lack of
knowledge about the content (printed circuit boards, cables, fans, etc.) of equipment make deterministic
approaches, like circuit models or fullwave electromagnetic simulations, non-relevant. It thus seems
appropriate to favour the use of probabilistic approachs in order to characterize these phenomena by
assessing occurrence probabilities of quantities of interest, such as induced currents or voltages.

Since the fifties, the application of the random matrix theory to physics problems has become more
and more frequent. This method was first applied to quantum physics [7]. From then, this theory
was used to solve semi-classical physics problems especially in electromagnetism where it led to the
foundation of the Random Coupling Model (RCM) [32, 33]. This method seems to be well suited for
the above-mentioned problem, and will be explored in the rest of the paper.

At first, the RCM will be described. Its assumptions and conditions of application will be reminded.
Then, some guidelines will be provided in order to efficiently implement that method. Finally, the
RCM will be applied to two different configurations: the coupling between monopoles and the coupling
between microstrip transmission lines. Experimental data will be compared to RCM based simulations.
An experimental setup that allows to create a reverberant environment will be detailed. In addition,
and for the last configuration, the effect of placing absorbers in the reverberant environment will be
assessed through statistical quantities.

2. THE RANDOM COUPLING MODEL

2.1. Description

The Random Coupling Model is a statistical circuit model where the links between the ports of a
reverberant system are represented by a cavity impedance matrix Zcav. A port may be the end of a
cable, of a transmission line or the input of an antenna for example. The eigenmodes density needs
to be high enough in the system so that the cavity can be considered as a chaotic one [33]. This is a
mandatory requirement to apply the RCM. A criterion will be given below to evaluate the chaoticity
of a system [5, 17]. Two behaviors are merged into the RCM. The first one is related to the coupling
between ports that would happen in free space, i.e., without boundary conditions that make the system
reverberant. For an electronic equipment, this can be done by removing its casing or by placing absorbers
against the casing wall [19]. This behavior is characterized by a radiation impedance matrix Zrad which
is frequency-dependent. This impedance may be determined either by simulations, by measurements in
an anechoic chamber or by an ad hoc model. The second behavior takes into account the reverberating
effects of the cavity due to the casing. The normalized impedance matrix ξ, that depends on the
boundary conditions of the system, models the couplings between the ports and the eigenmodes of the
cavity. From Zrad and ξ, the cavity impedance Zcav is defined as [33]:

Zcav = j�
{
Zrad

}
+

[
�

{
Zrad

}]1/2
ξ
[
�

{
Zrad

}]1/2
(1)

symbols � [·] and � [·] denote respectively the real and imaginary parts of a complex quantity. The
normalized random matrix ξ may be expressed as:

ξ(k) = − j
π

M∑
n=1

Δk2�Φn ⊗ �ΦT
n

k2(1 − j/Q) + k2
n

(2)

The random vector �Φn, whose components are distributed according to a normal distribution with zero
mean and unit standard deviation N (0, 1), is responsible for the couplings between the M modes of
the cavity and its N ports (⊗ refers to the outer product). The summation over n accounts for the M
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modes (associated to the wavenumbers kn) taken into account inside the cavity. k is the wavenumber of
interest and Δk2 the so-called mean spacing between two adjacent wavenumbers (Δk2 = 〈k2

n+1 − k2
n〉).

Q is the quality factor of the unloaded cavity (without the ports) [19].
In a statistical approach, the interest is not focused on a specific cavity but on a set of various

ones. Instead of determining the modes of the cavity, these are randomly drawn in accordance with
the random matrix theory [19]. Indeed, Wigner founds that the statistics of the eigenlevel spacings
of the Hamiltonian of some systems are the same as those of the eigenvalues of random matrices of a
given ensemble [7]. Moreover, the Berry hypothesis states that, for a chaotic cavity, an infinite sum
of isotropic plane waves is a good statistical model to describe the eigenfunctions [2, 12]. The RCM
combines both conceptual features.

Equation (2) may be rewritten as [19]:

ξ = − j
π

W [ λ − jα1 ]−1WT (3)

where W is a M × N real matrix, N the number of ports in the system, and M the number of modes
taken into account into the cavity. The elements of W are normally distributed (Wij ∼ N (0, 1)). W

represents the coupling of the modes to the ports of the system. λ is a diagonal matrix populated with
the eigenvalues of a matrix from the Gaussian Orthogonal Ensemble (GOE). From the random matrix
theory, we know that the spacing between these sorted eigenvalues has the same statistical distribution
than Δk2 [24]. The GOE ensemble is chosen since the system is time-reversal invariant [19]. The loss
parameter α may be processed from the quality factor Q of the cavity, as α = k2

QΔk2 .
In this paper, the question of short orbits [14, 31] is not handled. Short orbits are ray trajectories

that do not ergodically travel inside the cavity. Instead, the ray leaves a port and directly returns to
another one [12]. Another formulation of the RCM should be used to take them into account.

To determine the statistics of Zcav, a large number of Monte-Carlo iterations are performed.

For each iteration, a matrix ξ is randomly drawn (as Zrad is deterministic). These iterations are time-
consuming, therefore some optimizations may be implemented.

2.2. Implementation of the RCM

To obtain reliable probability density functions (e.g., in order to compute probabilities of rare events),
numerous draws must be carried out. With a naive implementation of Equation (3), thousands of
draws are calculated within a few hours. To reduce computation time, several optimizations may be
realized. First, the use of a compiled language rather than an interpreted one (like Python or MATLAB)
increases the performances. Moreover, calling libraries dedicated to efficient matrix computations results
in a performance gain. It was chosen to take advantage of the Math Kernel Library (MKL) from Intel.
We can explain how the MKL is used for three steps that occur while programming the RCM:

• Eigenvalues of a real symmetric matrix A: the function dsyevd is used, which implements the
divide and conquer algorithm. This algorithm is dedicated to real symmetric matrices;

• Square root of a real symmetric matrix
[
A

]1/2
: by using the dsyevd function, the matrix A is

diagonalized (A = B λ B−1). Then, the square root of each element of λ is extracted, obtaining

λ1/2. Then, we compute B λ1/2 B−1 by using the function zgemm (product of general complex
matrices);

• Inverse of a complex matrix
[
A

]−1
: first the LU factorization of the matrix A = L U is

performed thanks to zgetrf. Then, the backward and forward substitutions are computed by
the function zgetri.

The dedicated codes are also designed to be multithreaded, allowing to split the computations
and to process them in parallel. This requires to design the programs in such a way that resources
are well dispatched between the different threads. Fig. 1 shows the performance gains to compute 300
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Figure 1. CPU time required to compute the eigenvalues of matrices from the GOE (based on 10 runs).
Octave refers to the implementation proposed by the author of the RCM [18] and runs with Octave [6],
and n is the number of threads used to compute the eigenvalues using the listed optimizations. Symbol
(-) denotes a dimensionless quantity. Note that for n > 4 there is no performance gain as the computer
has only 4 physical cores.

matrices λ versus different matrix sizes M . However, it is important to avoid using the simultaneous
multithreading technique (virtual cores) to be able to take advantage of the CPU caches. Some matrices
have large dimensions leading to high computation cost when it comes to multiply matrices. By noticing
that matrix [ λ − jα1 ]−1 is diagonal, it is easy to reduce the computational complexity from O(M2N)
to O(MN) when making the product W by [λ − jα1]−1. By combining all these optimizations, it is
possible to obtain induced currents and voltages within less than 4 minutes for thousands of draws of
the matrix Zcav. These results have been obtained on an Intel(R) Core(TM) i7-4770 CPU (3.40 GHz)
with 32 GB of random access memory and a SSD hard drive.

To deploy the RCM, some results do not need to be computed at each run, like the set of matrices
λ. λ is a diagonal matrix whose elements are the eigenvalues of a random matrix from the GOE ensemble.
As this matrix is not attached to a specific application, it is possible to precompute numerous matrices
λ.

Three independent codes have been implemented to apply the RCM: one to precompute a set of
matrices λ, a second one to implement Equation (1), and a last one to compute ξ from Equation (3).
The latter is in charge of computing many matrices ξα for different values of the loss parameter α.
From ξα, the probability density functions of the elements ξijα are determined by applying a kernel
density estimation [30] and then are stored. These statistical distributions will be used to fit the
elements ξMeasurements

ij obtained experimentally in order to determine the loss parameter αfit.

3. COMPARISON WITH EXPERIMENTAL DATA

3.1. Measurement Setup

To compare the RCM results with experimental ones, a mock-up of a computer chassis (Fig. 2) has
been designed. Exchangeable front and back panels were chosen to be able to use the same mock-up
for several configurations. This mock-up is 400 mm high, 440 mm deep and 170 mm wide. The panels
are screwed to the mock-up body and, for reproducibility purpose, the screws are tightened with a
torque screwdriver. The design of this mock-up and the validation of its performances have already
been assessed [20]. In order to obtain statistics on the magnitude of induced currents or voltages for
a large number of casing geometries, i.e., for different boundary conditions, a small mode stirrer has
been fabricated and installed inside the mock-up (see Fig. 10(c)). It is composed of two blades attached
to a dielectric rod mechanically coupled with the drive shaft of a stepper motor. The motor is set
outside the mock-up (Fig. 10(b)). For each stirrer angle, a measurement of the scattering matrix S
is performed thanks to a Vector Network Analyzer (VNA). 360 stirrer angles will be considered to
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Figure 2. Picture of the mock-up.

generate the results. In the following sections, that mock-up associated to the stirrer will be used to
measure the couplings between monopoles at first, and then between stacked printed circuit boards.
This experimental results will be compared to those produced by the RCM.

The experimental impedance matrix is computed from the scattering matrix S as:

ZMeasurements = [Z01]
1
2 (1 + S)(1 − S)−1[Z01]

1
2 (4)

where 1 is the identity matrix, and Z0 is the characteristic impedance of the VNA ports, i.e., Z0 = 50 Ω.
Then the induced currents are computed in the same way as for the measured and simulated (RCM)
data from:

�I Measurements/RCM = (ZMeasurements/cav + Z01)−1

⎡
⎢⎣

√
2Z0P1

...√
2Z0PN

⎤
⎥⎦ (5)

where Pi is the power injected into the port i of the system. As a VNA is used, the excitation source
is a frequency sweep.

3.2. Methods to Determine the Parameters of the Random Coupling Model

Three quantities need to be determined to apply the RCM: the free space impedance matrix Zrad, the
number of modes M taken into account inside the cavity and the loss parameter α. The free space
impedance matrix Zrad for all the tested configurations has been determined from experimental data
acquired by a VNA in free space (see Fig. 5 for the monopoles and Fig. 10(a) for a stacking of printed
circuit boards). Setting M is a trade-off between the number of modes to consider inside the cavity and
the computation time. As the RCM applies only for chaotic cavities (thus overmoded), M must not be
small. In the literature, two values are commonly found: M = 600 in [10, 11], and M = 200 in [32].
The impact on the PDF of the elements of ξ as M increases is given in Fig. 3. It can be shown that the
real part of the elements ξ11 converges rapidly as M increases. The other elements ξij for both the real
and imaginary parts follow the same behavior. Thus, in what follows, M is set to 600 as a trade-off.

The parameter α is the more difficult one to assess. It characterizes the losses inside the cavity and
is frequency-dependent. Several techniques may be applied to evaluate it, as explained in [9, 19], based
on experimental data. The first method is to compute and to store the PDF of the elements of ξα for

different values of α. Then, from acquired data, ξMeasurements is computed by inverting (1) as:

ξMeasurements = �
[
Zrad

] 1
2
(
Zcav −�

[
Zrad

])
�

[
Zrad

] 1
2 (6)

A fitting process then allows to match the elements of ξMeasurements with the elements of the matrices
ξα=αmin

, . . . , ξα=αmax . The best fit determines the value of α.
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Figure 3. Variations of the PDF of the real part of the elements ξ11 for a loss parameter α = 10 and
for a two-ports system versus M . (a) PDF of the real part of the element ξ11 for M between 10 and
3000. The PDF converges rapidly as M increases. (b) Mean μ, first Q1, second (median) Q2 and third
Q3 quartiles of the elements � [ξ11] according to M .

The second method computes α from [9]:

Var
[� [

ξMeasurements
ii

]]
= Var

[� [
ξMeasurements
ii

]]
=

1
παii

(7)

Var
[� [

ξMeasurements
ij

]]
= Var

[� [
ξMeasurements
ij

]]
=

1
2παij

(8)

then α = 1
N2

∑
i,j αij (where Var [·] stands for the variance). The benefit of this latter method is that

no ξα matrix needs to be computed. However, it is important to note that for both methods, the
determination of α relies on experimental data. Both methods have been employed in this work. A
comparison can be found between them in [9].

3.3. Coupling between Two Monopoles

The first application of the RCM is about the coupling between two monopoles that are placed inside
a cavity. The scattering matrix S between the two monopoles placed in a computer chassis mock-
up is measured between 10 and 26.5 GHz, and for 360 stirrer angular positions. Then the free space
impedance Zrad is measured (see Fig. 5). Both monopoles are composed of a 46 mm long wire soldered
to a bulkhead through hole SMA connector (see Fig. 4). The aim is to determine the Probability

Figure 4. A monopole attached to the front
panel.

Figure 5. Setup to measure the free space
impedance Zrad between two monopoles (front
panel on the left, back panel on the right). Two
blocks of styrofoam are used as stands.
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Density Functions (PDF) of the voltage induced on the port of one monopole when the other one is
transmitting. This configuration is similar to the one presented in [9] or in [16]. However, in [9], the
free-space impedance was approximated as Zrad = [Z01]

1
2 (1 + 〈S〉)(1 − 〈S〉)−1[Z01]

1
2 , where 〈S〉 is the

mean scattering matrix over the 360 stirrer angular positions. In [16], the free-space impedance was
determined by either installing absorber materials on the cavity walls to simulate a free space behavior,
or by a full-wave simulation. In the present work, the free-space impedance is measured with monopoles
set in genuine free-space conditions.

3.3.1. Evaluation of the System Chaoticity

As mentioned above, the RCM applies only to chaotic systems. In [5, 17] a method is proposed to
determine if a system is chaotic or not, which is based on the properties of the eigenvalues of the
normalized scattering matrix of the system. It specifies that the phase of the eigenvalues has to be
uniformly distributed, and that the phase and magnitude of the eigenvalues need to be independent.
From the normalized impedance ξMeasurements, the normalized scattering matrix s is computed and
diagonalized:

s = (ξMeasurements − 1)(ξMeasurements + 1)−1 (9)

s = U

⎛
⎜⎝
|λ1|ejφλ1 · · · 0

...
. . .

...
0 · · · |λN |ejφλN

⎞
⎟⎠ U−1 (10)

where U is the change of basis matrix.
Figure 6 depicts, for four adjacent frequency bands, histograms of the real and imaginary parts of

the eigenvalues of s and of their phases. We can state that the system, composed of the two monopoles
into the mock-up fitted with the stirrer, is a chaotic system. Thus, the RCM can be applied.

3.3.2. Fitting of the Loss Parameter α and PDF of the Induced Voltages

At the center of each four frequency bandwidths for which the chaoticity of the system has been
evaluated (i.e., 7.5, 12.5, 17.5 and 22.5 GHz), the loss parameter α has been determined. As previously
explained, a fitting process allows to fit the PDF of the elements of ξMeasurements to that of the elements
of ξα. Frequency samples within a bandwidth of 500 MHz acquired for 360 stirrer positions have been

gathered to compute the PDF of the elements of ξMeasurements. Fig. 7 depicts the PDF of the real part
of ξij and the fitted PDF associated to a given loss parameter α. We notice that α increases as the
frequency does. This phenomenon complies with the results given in [9].

We highlight the fact that fitting only the off-diagonal elements (ξ12 and ξ21) gives results closer
to experimental data when it comes to compute the induced voltages. Fig. 8 shows the comparison
between the PDF of the induced voltages computed from experimental data and the PDF obtained
from RCM simulations. A good agreement can be noticed for all four frequencies. Moreover, we observe
that the induced voltages decrease when the frequency rises.

3.4. Application of the RCM to the Coupling between Stacked Printed Circuit Boards
within Computer Chassis

In this section, we will assess the probabilities of occurrence of induced currents at one end of microstrip
transmission lines. These transmission lines are printed on circuit boards that are stacked together and
placed into a cavity with changing boundary conditions (by using the stirrer). These configurations can
be representative of a computer chassis in which cables are not constrained (in such a way that they
can move), or when an unwanted mechanical constraint of the chassis occurs and change the boundary
conditions of the problem. This may also obviously happen when additional parts are integrated inside
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Figure 6. (a), (c), (e), and (g) show the 2D histograms of the real �[λs] and imaginary �[λs] parts of
the eigenvalues of the matrix s, and (b), (d), (f), and (h) present the distribution P (Φλs) of the phase
of the eigenvalues of s. As the 2D histogram is rotation invariant and as P (Φλs) is almost uniformly
distributed P (Φλs) ≈ 1[−π,π](Φλs)

1
2π we consider that the system is chaotic. (a) 5 to 10 GHz. (b) 5 to

10 GHz. (c) 10 to 15 GHz. (d) 10 to 15 GHz. (e) 15 to 20 GHz. (f) 15 to 20 GHz. (g) 20 to 25 GHz. (h)
20 to 25 GHz.

the chassis. The final objective is to be able to provide placement rules of the boards inside the chassis,
and to minimize, if possible, the probability that a current magnitude exceeds a given threshold.

To the knowledge of the authors, this work is the first comparison between measurements and RCM
simulations for systems with more than two ports. Moreover, as already mentioned, in previous works
related to the RCM, only monopoles were considered, as in [9, 16]. We focus here on configurations with
more complex ports, i.e., PCBs, and more complex arrangements between the ports.

3.4.1. Tested Configurations

Several stacking configurations (Table 1) composed of a maximum of four printed circuit
boards (PCB) (Fig. 9) are considered. On each board a microstrip transmission line (characteristic
impedance 50 Ω) is printed, terminated at one end by a bulkhead through hole SMA connector (that
also allows to hold the PCB in the mock-up) and at the other end by a 50 Ω load (surface mount
resistor and via). Each PCB can be installed at a chosen location (among four) in the stacking. Notice
that some locations may be left empty. Position 1 of a board corresponds to the lower location of the
stacking, and position 4 to the upper location (Fig. 10(d)). Two consecutive positions are spaced by a
2 cm gap (like in a real desktop computer). The first location is at a height of 5 cm above the bottom
of the mock-up, and the left edge of the boards is next to the left panel of the mock-up (see Fig. 2
and Fig. 9(a)). These configurations were chosen to allow to test the RCM with configurations that
present different spacings (multiple of 2 cm) between the boards, thus different modal configurations of
the electromagnetic field within the stacking.
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Table 1. The five configurations considered. The number prefixed by the symbol # corresponds to
the port index of the board for a given configuration. For example, configuration C4 corresponds to a
stacking of two boards (“L right” and “L left”), installed at the positions 1 and 3. The board “L right”
is connected to the first port of the VNA (port index #1) and the board “L left” to its second port
(port index #2). As the position 2 is left empty, a 4 cm gap spaces the two boards.

Configuration Number of ports N Position 1 Position 2 Position 3 Position 4
C1 4 Meander #1 Straight #2 L right #3 L left #4
C2 4 L right #1 Meander #2 L left #3 Straight #4
C3 2 L right #1 - - L left #2
C4 2 L right #1 - L left #2 -
C5 3 Meander #1 Straight #2 - L left #3

3.4.2. Computing of the Experimental Results

The scattering parameters S between the N ports of the system have been measured from 10 to 26.5 GHz
with a step of 1 MHz (16501 frequency samples), and for 360 stirrer positions. Using S and Equation (4),
ZMeasurements is calculated, then the current vector �I RCM is computed from Equation (5). Fig. 11
and Fig. 12 show the cumulative distribution functions (CDF) |IMeasurements

#a,Cb,#i | of the measured current
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Figure 8. Comparison between the probability density functions of the magnitude of the induced
voltages on port 2, measured and simulated by the RCM. These PDF are computed within a frequency
bandwidth of 500 MHz, and with a loss factor αfit considered as constant within the bandwidth. (a)
7.5 GHz, αfit = 3.1. (b) 12.5 GHz, αfit = 8. (c) 17.5 GHz, αfit = 20. (d) 22.5 GHz, αfit = 21.

Left edge

Right edge

(b)(a) (d)(c)

Figure 9. The four available boards used in the stacking. Each board is 12 cm wide and 13 cm long.
(a) Straight. (b) L left. (c) L right. (d) Meander.

amplitudes, where:

• a corresponds to the port index number. It merges with the port index of the VNA where the
transmission line is connected to;

• b is the configuration number as listed in Table 1;
• i corresponds to the source port index. Thus, only Pi is not null in Equation (5). In Fig. 11

the power is injected into port index #1 (P1 = 10 dBm) and in Fig. 12 into the port index #2
(P2 = 10 dBm).

3.4.3. Computing of the RCM Results

The matrices Zrad have been measured in free space (see Fig. 10(a)) for the five configurations. The

loss parameter α has been determined from Equations (7) and (8) using ξMeasurements (computed from
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"L right" board (loc. 3)
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Figure 10. Illustrations of the experimental setup. (a) Example of measurement of the free space
impedance Zrad. (b) The stepper motor and SMA connectors of four boards, attached to the back
panel of the mock-up. This situation may depict either configurations C1 or C2. (c) The stirrer inside
the mock-up. (d) The stacking of four printed circuit boards attached on the back panel of the mock-up.
This picture shows configuration C1, as listed in Table 1.

ZMeasurements with Equation (6)), as α = 1
N2

∑
i,j αi,j with N the number of ports in the system. Then,

from Equation (1), 360 × 16501 matrices Zcav have been computed as well as the port currents vector
�I RCM (from Equation (5)). Depending on N , the time needed to compute the 5940360 vectors �I RCM

varies from 40 s to 3 min. Likewise, Fig. 11 and Fig. 12 display the CDF |IRCM
#a,Cb,#i| of the simulated

current amplitudes.

3.4.4. Discussion

The results depend on the existence of a line of sight configuration between the source board and the
other ones. The line of sight case appears for example when the source port index is #1 and the
measurement port index is #2, or when the source port index is #2 and the measurement port indexes
are #1 and #3. There is a good agreement between the CDF of the simulated data and the measured
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Figure 11. Cumulative distribution functions of induced currents for the five configurations. The
power is injected into the port of index #1.

ones. In the line of sight case, the probability of having higher current is greater than when the source
and the destination ports are not in a line of sight. In [8, 25–27], the same problem (stacking of PCB)
was considered, also from an experimental point of view, and an equivalent conclusion was raised. For
boards not line of sight, the RCM and the measurements data are in even better agreement.
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Figure 12. Cumulative distribution functions of induced currents for two configurations among five.
The power is injected into the port of index #2.

Table 2. 95% percentile in µA for the five configurations with source location at port indexes #1 or
#2. Fig. 10(d) indicates the four positions. Grey cells refer to line of sight configurations.

Position 1 Position 2 Position 3 Position 4
Configuration Source port index M RCM M RCM M RCM M RCM

C1 #1 (Meander board) Source 925 789 327 321 333 319
C1 #2 (Straight board) 927 787 Source 802 706 307 310
C2 #1 (“L right” board) Source 883 785 321 303 336 299
C2 #2 (Meander board) 884 785 Source 791 733 298 301
C3 #1 (“L right” board) Source - - - - 524 375
C3 #2 (“L left” board) 525 374 - - - - Source
C4 #1 (“L right” board) Source - - 595 416 - -
C4 #2 (“L left” board) 594 407 - - Source - -
C5 #1 (Meander board) Source 946 659 - - 358 332
C5 #2 (Straight board) 948 658 Source - - 534 408

The higher the voltage and current magnitudes are, the higher the threat for the confidentiality
of the information that an equipment processes, is. Therefore, we can analyze high percentiles of the
induced currents. Table 2 lists the 95% percentiles for the five configurations, for two port source indexes
(#1 and #2) and for both experimental and simulation data. When the source port is not in line of
sight with the destination port, then the two percentiles (Measurements/RCM) are close.

Moreover, for all the configurations, the probability to obtain a given current amplitude is higher
for the RCM than for the experimental data (i.e., |IMeasurements| < |IRCM| for all the configurations).
Thus, RCM simulations tend to slightly overestimate the magnitude of the induced currents.

3.5. Effects of Absorbers on the Magnitude of Induced Currents

We will now assess the effect of adding some absorber materials inside the mock-up on the current
magnitude. The boards are placed in the mock-up according to configuration C5 (refer to Table 1).
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The absorbers manufacturer indicates that the absorbers (HR-25) have a reflection coefficient less than
−20 dB from 10 GHz to 60 GHz. They have been placed on the bottom of the mock-up (see Fig. 13),
and the surface occupied by these is approximately of 1100 cm2.

The resulting CDF are depicted in Fig. 14, and again the 95% percentile are listed in Table 3.
Without the absorbers, the 95% percentile is p95%,|IMeasurements

3,withoutabsorbers| = 372 µA for the measurement
data and p95%,|IRCM

3,withoutabsorbers| = 352 µA for the RCM simulations. And with the absorbers, we get

p95%,|IMeasurements
3,withabsorbers| = 82 µA and p95%,|IRCM

3,withabsorbers| = 124 µA. Thus, adding a surface of 1100 cm2 into
the mock-up mitigates the magnitude of the induced current between 13.1 dB (experimental data) and
9.1 dB (RCM simulations).

Figure 13. Absorbers placed at the bottom of the mock-up. The boards are arranged according to
configuration C5.
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Figure 14. Induced currents with and without absorbers inside the mock-up.

Table 3. 95% percentile in µA for the configuration C5 with and without absorbers. The source is
located at port index #1.

Absorbers with without

M RCM M RCM

95% percentile 82 124 372 352
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4. CONCLUSION ON ELECTROMAGNETIC ASPECTS

At first, the random coupling model has been reminded as well as its application domain (only for
chaotic systems). Then, some guidelines have been given in order to efficiently implement the RCM
into a compiled language. After that, a practical setup to acquire experimental data has been proposed.
It is based on a computer chassis mock-up fitted with a small mode stirrer that changes the boundary
conditions inside it.

Three applications of the RCM have been finally proposed. The first one is relative to the coupling
between two monopoles. From experimental data, the chaoticity of the system has been assessed between
5 and 25 GHz, and we can conclude that the system can be considered as chaotic in this frequency range.
The loss parameter α has been then determined for some frequencies by a fitting process. Finally, the
RCM has been applied, and the probability density functions of the induced voltages, for experimental
and simulated data, have been compared with good agreements.

The second application is about the stacking of several printed circuit boards with microstrip
transmission lines. It addresses configurations that are more varied than previously published ones.
Indeed, the ports are more complex as well as the arrangements between the ports. Induced currents have
been investigated by means of cumulative distribution functions, computed from both RCM simulations
and experimental data. The results have revealed two behaviors depending on whether the boards are
in a line of sight or not. Comparison between the RCM simulations and experimental data has shown
a good agreement for all the tested configurations.

The last study is about the effect of placing absorbers in the mock-up, and we have highlighted
that adding a surface of 1100 cm2 in the mock-up reduces the 95% percentile by a factor between 9.1 dB
and 13.1 dB.

5. EMSEC ANALYSIS

We have illustrated that the RCM is able to quickly simulate complex reverberant environments by
providing statistical quantities when the free space impedance matrix and the cavity losses are available.
This study has shown that to mitigate couplings between two sensitive devices, it is necessesary to
interleave other non sensitive buffer boards between them. Furthermore, if the risk assessment process
reveals that the magnitude of the induced current is even too high (regarding the 95% percentile for
example), the insertion of absorbers inside the chassis could help to meet the requirements.

A possible application workflow, related to EMSEC is the following one. Consider the design of
a new electronic equipment fitted within a chassis. Inside it, a board processing sensitive information
generates parasitic signals that couple onto a given cable which should not exceed a threshold given
by a risk analysis process. The first step would be to determine the free space impedance matrix Zrad

between the board and the cable from a fullwave simulation software for example. Then, the quality
factor Q (or the loss factor α) of the cavity should be assessed for a bandwidth depending on the
spectral occupancy of the parasitic signals. Finally, the RCM may be applied to determine at what
voltage/current magnitude the 95% percentile is reached.

A straightforward application is relative to encryption devices which are dedicated to encipher
sensitive data. In such devices, the signal that carries the plaintext information penetrates the device
from a cable, then the information is enciphered and this generated signal exits the equipment through
another cable. It is thus mandatory to prevent couplings of the signal containing the plaintext (that
may radiate inside the equipment chassis) to the conductor that carries the ciphered data. Indeed, if
need be, the information confidentiality is not guaranteed anymore as a parasitic signal, correlated to
the plaintext, will be superposed on the outgoing signal. For this situation, advantage may be taken
from the RCM, as the designer of such specific equipment has the full knowledge about its constitutive
elements since the making is managed from scratch. The quantity Zrad and α may thus be easily
accessed.

Let’s consider another situation where a server is employed to run a sensitive information
system (i.e., data storage, active directory, etc.). An integrator will select commercial off-the-shelves
elements (casing, hard drive, processor, ethernet controller, etc.) and will arrange these pieces of
hardware together. Here, one does not control the hardware design of these elements but needs to
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guarantee low couplings between two inner components like the processor and the ethernet controller.
For this case, Zrad and α are difficult to obtain, and it thus requires an additional modelization work.
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