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High-Frequency Energy Distribution of a Plasma Coated
Paraboloid Reflector
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Abstract—This paper analyzes the high-frequency energy distribution of a paraboloid reflector in the
presence of a uniform plasma layer. The curved surface of the paraboloid reflector is thought to be coated
with a uniform plasma layer. The geometrical optics technique shows a singularity at the focal point
of the paraboloid reflector. The singularity is removed with the help of Maslov’s method, which also
let us derive the integral equations that give the high-frequency energy distribution at the focal point.
The analytical integral is solved numerically using a computational technique, and the effects of plasma
frequency, collisional frequency, operating frequency, and multiple reflections on energy distribution at
the focal point are observed. Under the special conditions our analytical and numerical results are
obtained which align with the published literature.

1. INTRODUCTION

The communication system’s expansion is progressing quickly, and its performance can be enhanced as
a reconfigurable system as plasma antenna [1]. The plasma based reflecting systems or antenna are the
future of commination technology, and its characteristics depend upon propagation of electromagnetic
waves through plasma environment [2, 3]. The reconfigurable system has the mechanical and electrical
control capabilities that enhance the pattern, shape, and performance, and reduce the cost [4]. Many
researchers have studied the interaction of electromagnetic waves with tunable plasma material; this
area of research has received valuable attention and is a “hot topic” in plasma technology [5–10]. The
enhanced performance of absorption, transmission, and the optical reflection of stealth applications,
radio astronomy, and radio communication may be obtained using plasma as a cover layer on a
communication system [11, 12]. Moreover, when a space vehicle reenters the atmosphere at hypersonic
speed, it is wrapped by a plasma sheath due to highly ionized gases [13–15]. The presence of so many free
electrons in the plasma sheath causes significant attenuation in radio frequency through absorption and
reflection [16]. First, this plasma sheath creates a communication black-out phenomenon that affects the
communication system’s performance. The communication black-out phenomenon significantly reduces
the signal intensity.

The antenna affected in beamforming and pointing due to the presence of the plasma sheath
is reflective and glossy; this effect alters and distorts the field distribution due to the attenuation
and phase delay in the propagation of EM waves in different directions after passing through the
plasma sheath [14]. Second, mutual coupling increases, and the input impedance is altered due to the
plasma sheath’s reflective property [17]. Therefore, the radiation pattern will be distorted, and beam
pointing errors will increase. Therefore, it is necessary to study the effect of the plasma layer on the
paraboloid reflector field distribution in the focal region. There are many theoretical techniques to
study field intensity distribution in the caustic region of any dielectric coated reflector, and one of them
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is geometrical optics (GO). The GO is based on ray theory and unable to show results at focal point
due to the singularity’s physical appearance. Therefore, an alternative technique known as “Maslov’s
method” removes the singularity at the focal point of the GO field [18, 19]. This technique provides
an integral solution that combines the generality of a Fourier transform with the simplicity of the ray.
Many authors have used Maslov’s method to carry out this type of research [20–24].

The reflection and transmission of electromagnetic waves may be affected by the surface charged
particles on the surface, which was pointed out by many researchers [25–30]. These effects may be
significant for charged particles as compared to uncharged particles. The net surface charges toward
the reflection and transmission of electromagnetic waves from the surface occur due to the static
electric dipole induction. The strength of net surface charges vanishes when overall the particles charge
uniformly due to symmetry [31]. The effects of net surface on all the field reflected or transmitted
become zero when the particles on the surface of reflecting or transmitting system are completely
charged uniformly. The presence of plasma layer in the form of charged particles on the surface of
reflector may alter the field distribution due to the attenuation and phase delay in the propagation of
EM waves in different directions after passing through the plasma.

In this study, we consider a metallic paraboloid reflector coated with a uniform un-magnetized
plasma material under normal incidence and ignore the above stated net surface charges. This study
provides the exact distribution of the high-frequency energy distribution in the paraboloid reflector
coated with a plasma material around focal point or caustic point, with the help of Maslov’s method.
The plasma thickness, plasma frequency, and operating frequency’s effects on the energy distributions of
the plasma-layered paraboloid near the focal regions are also deliberated. The described effects on field
energy distribution are studied using numerical computations. The analytical and numerical results
are confirmed from the literature under special conditions. The (jωt) time dependency is taken and
omitted in the following.

2. FORMULATIONS

A perfect metallic paraboloid reflector coated with a uniform isotropic plasma cover is considered. The
geometry of the plasma-coated paraboloid is displayed in Figure 1, and the surface equation of the
paraboloid without a coat is:

ζ0 =
4f2 − ρ2

0

4f
(1)

where ρ0 =
√

ξ2
0 + η2

0 with ξ0, η0, and ζ0 as the surface coordinates of the metallic paraboloid reflector,
and f as the focal length. The surface equation of the plasma-coated metallic paraboloid reflector is
written as

ζ =
4f (f − d) − ρ2

4f
(2)

where d is the width of the plasma coat, ρ =
√

ξ2 + η2 with ξ, η, and ζ as the surface coordinates of
the plasma-coated paraboloid.

A perpendicularly polarized plane electromagnetic wave in the x direction incident normally to the
plasma-coated paraboloid is

Ei(r) =x̂Ei(r)e−ikiz (3)
The plane EM wave is reflected and transmitted at free-space-plasma curved interfaces. The transmitted
electromagnetic wave propagates toward the metallic curved paraboloid surface and reflects back
toward the plasma-free-space interface. Through this, multiple reflections can occur from the metallic
paraboloid surface, and multiple refractions can occur from the plasma to the free space, and rays
approach the focal point. The reflected wave vectors R and transmitted wave vectors T can be obtained
using Snell’s laws

R = − sin 2α cos βix− sin 2α sin βiy− cos 2αiz (4)

T =

⎛
⎝

√
cos2 α−ω2

p

ω2
− cos α

⎞
⎠ (cos β sin αix+ sinβ sin αiy+cos αiz) + iz (5)
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Figure 1. Plasma-coated paraboloid antenna.

where α and β are the angular coordinates of paraboloid. Similarly, the T wave vector hits the curved
metallic paraboloid and is reflected back as a R1 wave vector inside the plasma layer toward the plasma-
free-space interface. In addition, it refracts with the T1 wave vector toward the focal point F. The
expressions for R1 and T1 can be obtained by Snell’s laws

R1 = −X1cos β sinαix + X1sin β sin αiy +

⎛
⎝sin2 α − cos α

√
cos2 α − jω2

p

(v + jω)ω

⎞
⎠ iz (6)

T1 = (X2 − cos α) (cos β sin αix + sin β sinαiy) +
(
sin2 α + cos αX2

)
iz (7)

where X1 =
√

cos2 α − jω2
p

(v+jω)ω + cos α and X2 =
√

cos2 α − 2jω2
p

(v+jω)ω−2
√

cos2 α − jω2
p

(v+jω)ω ; v is the
collisional frequency, ωp the plasma frequency, and ω the operating frequency of the EM plane wave.

The solutions of Hamilton’s equations are obtained at the focal point F for the reflected and
transmitted rays

x = ξ + Rxτ1, y = η + Ryτ1, z = ζ + Rzτ1 (8)
x = ξ + T1xτ2, y = η + T1yτ2, z = ζ + T1zτ2 (9)

where τ1 and τ2 are respectively the path length of the reflected wave and the transmitted wave from
the paraboloid plasma layer to the caustic point. The Jacobian of the refracted ray from the plasma
layered paraboloid is

D (τ2) =
∂ (x, y, z)
∂ (ξ, η, τ2)

=

∣∣∣∣∣∣∣∣∣∣

1+
∂T1x

∂ξ
τ2

∂T1y

∂ξ
τ2

∂ζ

∂ξ
+

∂T1z

∂ξ
τ2

∂T1x

∂η
τ2 1 +

∂T1y

∂η
τ2

∂ζ

∂η
+

∂T1z

∂η
τ2

T1x T1y T1z

∣∣∣∣∣∣∣∣∣∣
(10a)
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J (τ) =
D (τ2)
D (0)

(10b)

The geometric optics field expressions for transmitted rays out of the paraboloid plasma layer are

Er (x, z) = Ei[J (τ2)]
− 1

2 exp [−jk (−ζ + τ2)] (11)

As expected, we can observe the above field becoming infinite when J(τ1) = 0 at the focal points.
Maslow’s method may be used here to avoid a singularity. The field expression with help from Maslov’s
method is as follows:

Et (r) =
k

2π

∫ ∞

−∞

∫ ∞

−∞
Et0

[
Dτ2

D (0)
∂ (T1x, T1y)

∂ (x, y)

]− 1
2

× exp{jk [S0+τ2−x(T1x, T1y, z)T1x−y(T1x, T1y , z)T1y +T1xx+T1yy]} dT1xdT1y (12)

The phase function S(T1x, T1y) of the integral in Eq. (12) is given by

S (T1x, T1y) = −ζ +
z − ζ

T1z
− (ξ + T1x)T1x − (η + T1y) T1y + T1xx + T1yy

= ζ − ξT1x − ηT1y − ζT1z + T1xx + T1yy + T1zz (C1)

as we have
ξ = 2f cos β tan α, η = 2f sin β tan α, ζ = f

cos 2α
cos2α

(C2)

and the polar coordinates

x = r cos ϕ sin θ, y = r sinϕ sin θ, z = r cos θ (C3)

The ray vector components (T1xT1yT1z) are written below

T1x = cos β sin α (− cos α + X2)
T1y = sin β sin α (− cos α + X2)

T1z = sin2 α + cos αX2

⎫⎬
⎭ (C4)

Using Eqs. (C2) and (C4) we get

ζ − ξT1x − ηT1y − ζT1z = f − fX2secα (C5)

T1xx + T1yy + T1zz = r
(
cos θ

(
X2 cos α + sin2 α

)
+ (X2 − cos α) cos (β − ϕ) sin α sin θ

)
(C6)

Putting Eqs. (C5) and (C6) into Eq. (C1), we now have transmission

S =f − fX2secα + r cos θ
(
X2 cos α + sin2 α

)
+ r (X2 − cos α) cos (β − ϕ) sin α sin θ (13)

The amplitude of the integrand is

J (τ)
∂ (T1x, T1y)

∂ (x, y)
=

1
D (0)

∂ (T1x, T1y , z)
∂ (ξ, η, τ2)

=
(X2− cos α) cos4α

(
X2cos α+sin2α

) (− cos 2α + cos α
(
X2+

√
2X3sin2α

))
4f2X2

(14)

Changing (ξ, η) to angular coordinates (α, β) by

∂ (α, β)
∂ (ξ, η)

=
cos3 α

4f2 sin α
(15)

The relationship between Cartesian (T1x, T1y) coordinates and surface coordinates (ξ, η) is

∂ (T1x, T1y)
∂ (ξ, η)

=
(X2− cos α) cos3α

(− cos 2α + cos α
(
X2+

√
2X3sin2α

))
4f2

(16)
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Using Equations (13) to (16) and the final field expression in Equation (12), the final field expressions
are obtained as

Er (r) =
2jkf

π

∫ T

0

∫ 2π

0
Et0

√
(X2− cos α)

(− cos 2α + cos α
(
X2 +

√
2X3 sin2 α

))
cos α

(
X2 cos α + sin2 α

) tan α

× exp
{−jk(f − fX2secα + r cos θ

(
X2 cos α + sin2 α

)
+r (X2 − cos α) cos (β − ϕ) sin α sin θ)} dαdβ (17)

The integral is solved analytically over variable β, and we get:

Ex (r) = jkfEt0e
−jkf (P1 (r, θ) +P2 (r, θ) cos 2ϕ) (18a)

Ey (r) = jkfEt0e
−jkfP2 (r, θ) sin 2ϕ (18b)

Ez (r) = jkfEt0e
−jkfP3 (r, θ) cos ϕ (18c)

P1 (r, θ) =
kf

π

∫ T

0

√
(X2− cos α)

(− cos 2α + cos α
(
X2+

√
2X3sin2α

))
cos α

(
X2cos α + sin2α

)
sin 2αJ0 (r (X2 − cos α) sinα sin θ) exp

{−jk(−fX2secα + r cos θ
(
X2 cos α + sin2 α

)}
dα

P2 (r, θ) =
2kf

π

∫ T

0

√
(X2− cos α)

(− cos 2α + cos α
(
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√
2X3sin2α

))
cos α

(
X2cos α + sin2α

)
sin2 α tan αJ2 (r (X2 − cos α) sinα sin θ)
exp

{−jk( − fX2secα + r cos θ
(
X2 cos α + sin2 α

)}
dα

P3 (r, θ) =
2kf

π

∫ T

0

√
(X2− cos α)

(− cos 2α + cos α
(
X2+

√
2X3sin2α

))
cos α

(
X2cos α + sin2α

)
sin 2α tan αJ1 (r (X2 − cos α) sinα sin θ)
exp

{−jk( − fX2secα + r cos θ
(
X2 cos α + sin2 α

)}
dα

where T is the angle with the aperture. The transmission coefficients are obtained using the boundary
conditions at the curved free-space-curved paraboloid plasma interface at z = ζ. There are several
bounces inside the plasma-coated layer at plasma-metal interface and plasma-free-space interface.
Similarly, there are several transmissions at the plasma-free-space boundary. The first reflection
coefficient Γ12 and first transmission coefficient T21 at the curved free-space-curved plasma interface
can be obtained respectively as

Γ12 =
1 − n

1 + n
e−j2kζ (19)

T21 =
2n

1 + n
e−j(−kζn+kζ) (20)

The transmitted wave propagates inside the plasma coat and incident at the metallic paraboloid reflector
and bounces back toward the free-space-plasma boundary. The reflected coefficient Γ23 at the plasma-
metal boundary is

Γ23 = −T21e
j2kζn (21)

Since there are multiple reflections within the plasma layer, the total transmission coefficient in the
geometric series [32, 33] is

Et0 = Γ12 +
(1 − T 21Γ23 exp (−2jkζ0n))m

1 − Γ21Γ23 exp (−2jkζ0n)
× T12T 21Γ23exp (−2jkζ) (22)

where m = 1, 2, 3 . . . for multiple bounces of rays inside the plasma layer.
Interestingly, we can observe that the above integrals expression approaches the analytical and

numerical results represented by Equations (41a), (41b), and (41c) of [20] if the plasma frequency
ωp = 0.



16 Shahzad et al.

3. RESULTS AND DISCUSSION

The above analytical study was developed to calculate the high-frequency energy distribution of
the paraboloid reflector in the presence of a uniform plasma layer under normal incidence. The
energy distribution of a paraboloid reflector along the focal region is obtained by numerically solving
|E(r)2|=|E2

x(r)+E2
y(r)+E2

z (r)| with Mathematica software. The energy distribution of a paraboloid
reflector is obtained with the help of Maslov’s method, which is a successful method that combines
geometrical optics and the Fourier transform method [16–21]. Our work’s accuracy can be verified by
considering the plasma frequency ωp = 0. Each of our obtained expressions will transform precisely as
the expressions obtained in [20]. Figure 2 shows the computational results of our developed analytical
expression at plasma frequency ωp = 0 and the field expression obtained at [20]; they are in agreement.
After verifying our work’s validity, analysis is carried out in the following paragraphs.
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Figure 2. Comparison of the electric field distribution in the focal region w.r. to z-axis of our work
(solid line) at ωp = 0 and ωp = 0 [21] (dashed line).

Figure 3 illustrates the energy distribution of the paraboloid reflector in the presence of a uniform
plasma layer under normal incidence around the focal point with respect to the z-axis for different values
of plasma electron densities ne = 30×1012, 25×1012, 20×1012, and 15×1012 at the operating frequency
ω = 1×106 Hz, collisional frequency v = 5×1010 Hz, kf = 5, ka = 10, and plasma thickness kd = 0.01.
In this figure, the energy distribution of the paraboloid reflector is evidently higher at higher values
of the plasma electron density at the focal point along the z-axis due to good matching between the
electromagnetic wave and the plasma; this matching occurs by increasing the electron density in the
direction of propagation. At the decreasing value ne = 1×1012, the plasma layer behaves as a PEC
reflector, and the increasing value behaves as a non-reflecting medium.

Figure 4 illustrates the energy distribution of the paraboloid reflector in the presence of a uniform
plasma layer under normal incidence around the focal point with respect to the operating frequency ω
for different plasma electron densities ωp = 12×109 Hz, 11×109 Hz, 10×109 Hz, and 9×109 Hz at z = f ,
collisional frequency v = 5×1010 Hz, kf = 20, ka = 10, and plasma thickness kd = 0.01. In this
figure, the energy distribution of the paraboloid reflector is evidently lower at higher plasma frequency
values. We also observe that the energy distribution of the paraboloid reflector is concentrated within
the operating frequency range bandgap of −0.05 GHz. Note that at a lower plasma frequency, the
maximum energy is transmitted due to a very small reflection. Therefore, nearly all of the electric field
intensity is absorbed or transmitted according to the operating frequency of an electromagnetic wave
with ignorable reflection.
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Figure 3. Electric field distribution at ω = 1×106 Hz in the focal region along the z-axis for different
values of plasma electron densities ne = 30×1012 m−3 (thin solid), 25×1012 m−3 (dashed), 20×1012 m−3

(dotted), 415×1012 m−34 (thick solid).
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Figure 4. Electric field distribution in the focal region w.r.to operating frequency for different plasma
frequency values ωp = 12×1012 Hz (thin solid), 11×1012 Hz (dashed), 11×1012 Hz (dotted), 10×1012 Hz
(thick solid).

Figure 5 illustrates the energy distribution of the paraboloid reflector in the presence of a uniform
plasma layer under normal incidence with respect to the operating frequency ω for different values of
the plasma collisional frequency v = 5×1011 Hz (thin solid), 4×1011 Hz (dashed), 3×1011 Hz (dotted),
2×1011 Hz (thick solid) at z = f , plasma frequency ωp = 9×109 Hz, kf = 10, ka = 20, and plasma
thickness kd = 0.01. This figure shows that the energy distribution of the paraboloid reflector is higher
at higher values for the plasma frequency. Note that the plasma layer is more likely to be a good reflector
as the collisional frequency decreases. We conclude that the reflected electric field intensity increases
as the collisional frequency decreases. Note that the bandwidth of the reflected energy distribution and
transmitted energy distribution characteristics change considerably for a selected value of the maximum
electron density and collision frequency.
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Figure 5. Electric field distribution in the focal region w.r.to operating frequency for different plasma
frequency values v = 5 × 1011 Hz (thin solid), 4 × 1011 Hz (dashed), 3 × 1011 Hz (dotted), 2 × 1011 Hz
(thick solid).

4. CONCLUSION

This study presents theoretical analyses of the electromagnetic fields in the focal region of a metallic
paraboloid reflector in the presence of a uniform plasma layer under a normal incident angle. The field
intensity distribution components near the focal point are derived using Maslov’s method. The reflected
and transmitted fields focused at the focal point of the plasma coated paraboloid reflector are in good
agreement with the available literature under special conditions. The effects of the plasma, collisional
and wave frequency on the transmitted energy distribution are examined. The focused field intensities
decrease as the plasma frequency decreases. In the results presented, the effects of multiple reflections
inside the layer are considered, and we observe that multiple reflections inside the layer are ignorable
due to high loss by the plasma itself. We conclude that tuning the plasma parameters such as the
electron number density and collisional frequency means that the proposed plasma layer may be used
as a broadband transmitter in stealth applications.

The plasma coated paraboloid has potential application as a possibility for fast switching of working
frequency in mobile communication. In defence technology plasma layer ability of de-energizing and
energizing in microsecond may behave as a dielectric tube having small scattering radar cross section
which causes difficulty to detect from hostile radar. It is very helpful in electronic warfare that when
plasma frequency is lower it becomes transparent for higher frequency band, and dangerous signals may
pass without interfering the reception and transmission. The plasma coated reflector is also useful in
satellite communication due to its steering and fast beam focusing property.
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