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Abstract—Time domain finite element methods (TD-FEM) for computing electromagnetic fields are
well studied. TD-FEM solution is typically effected using Newmark-Beta methods. One of the challenges
of TD-FEM is the presence of a DC null-space that grows with time. This can be overcome by solving
Maxwell equations directly. One approach, called time domain mixed finite element method (TD-
MFEM), discretizes Maxwell’s equations using appropriate spatial basis sets and leapfrog time stepping.
Typically, the basis functions used to discretize field quantities have been low order. It is conditionally
stable, and there is a strong link between time step size and mesh dependent eigenvalues, much like the
Courant-Friedrichs-Lewy (CFL) condition. This implies that the time step sizes can be very small. To
overcome this challenge, we use the Newmark-Beta approach. The principal contribution of this work
is the development of, and rigorous proof of, unconditional stability for higher order TD-MFEM for
different boundary conditions. Further, we analyze nullspaces of the resulting system, and demonstrate
stability and convergence. All results are compared against the conditionally stable leapfrog approach.

1. INTRODUCTION

Efficient solutions to Maxwell’s equations is of significant interest to problems in fields ranging from
microwave engineering to optics to radar to remote sensing to plasma physics [1–5]. As a result, it has
seen extensive development over the past four decades. So much so that there exist reliable commercial
simulators that are trusted for design and analysis; to wit, most microwave engineering and antenna
design is carried out on a laptop before being fabricated and tested. Despite these advances, there are
a number of open problems and challenges, largely brought on by our desire to improve the fidelity
of simulation for increasingly complex geometric and material layouts. Adding temporal dimension to
the analysis increases the challenges as well. The methods used for solution to Maxwell’s equations are
based either on differential or integral equations; this paper will focus on the former.

Over the years, differential equation based methods have become the mainstay of computational
electromagnetic tools, starting with the classical Yee-algorithm for direct discretization of Maxwell’s
equations [6] to finite element methods (FEMs) [7, 8]. A number of challenges had to be overcome
to make FEMs robust and viable for the use in design and analysis of systems [9, 10]. Over the
years, research on FEM has focused on developing methods so as to increase the accuracy and
reduce computational costs; these include higher order interpolatory basis functions [11], higher order
hierarchical basis sets [12], and domain decomposition methods [13]. These techniques have largely been
applied to solving the vector wave equation in the frequency domain. In the time domain, the temporal
discretization follows a Newmark-Beta prescription [14, 15]. With the right choice of parameters, it has
been shown that this prescription is unconditionally stable. The time step size is not intimately tied
to the smallest mesh feature, but chosen to capture the physics to a prescribed order. However, the
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solutions to the vector wave equation are prone to inaccuracies arising from a non-trivial null space that
corresponds to a function of the form t∇φ(r̄), where φ(r̄) is a scalar function of space.

There has been an effort to use finite elements to directly solve Maxwell’s equations [16–18], albeit
less so than vector wave formulations. These methods follow the prescription of the Yee-algorithm.
Faraday’s and Ampere’s laws are staggered in time leading to a leap frog time stepping. As a result, they
do not have a time-growing null space, are conditionally stable, and energy conserving. Unfortunately,
the time step size depends on the size of the features of the mesh and materials defined within it. The
resulting time step sizes are very small, significantly more so than needed to represent content at the
highest frequency. This is in contrast to the state of the art of solving the vector wave equation.

It would be ideal if one could render TD-MFEM provably unconditionally stable (it would enable
reaping the advances made for vector wave equation FEM solvers). Earlier work has analyzed the
stability for leapfrog time stepping in TD-MFEM [19]. Likewise, unconditionally stable time stepping
schemes have been used in TD-MFEM, but without any rigorous analysis to prove stability [20]. In
this work, we will prove that using Newmark-Beta method for TD-MFEM can produce unconditionally
stable time stepping schemes that are up to second order accurate in time. With the correct choice
in parameters, the time stepping schemes are shown to be energy conserving and non-dissipative.
Furthermore, these properties hold for higher-order spatial basis functions used to discretize TD-MFEM.
Thus, the specific contributions of this work are (i) a general framework for creating time stepping
schemes of up to second order for the TD-MFEM of arbitrary spatial order, (ii) proof of stability for
different boundary conditions and error analysis for the time stepping scheme, (iii) analysis of the null
space of the discrete system, and (iv) numerical results verifying the analytic proofs.

The rest of the paper is organized as follows. Section 2 describes the general problem. Section
3 presents the spatial and temporal discretization of Maxwell’s equations. This section contrasts the
Newmark-Beta method to the leapfrog method and provides stability and error analysis of the Newmark-
Beta method applied to the MFEM. Section 4 presents several numerical results verifying properties
discussed in previous sections and the overall efficacy of the method. Finally, conclusion and other
remarks are provided in Section 5.

2. PROBLEM STATEMENT

Consider the volume Ω ∈ R
3 bounded by Γ shown in Figure 1. In this domain, assume that the region

has homogeneous, isotropic, and time-independent constitutive parameters, denoted by ε (F/m) for
the permittivity and μ (H/m) for the permeability. Assume that the volume is source free, being free
of impressed charges or currents. The magnetic field H̄(r̄, t) (A/m) and electric flux density D̄(r̄, t)
(C/m2) are defined in terms of the magnetic flux density B̄(r̄, t) (Wb/m2) and electric field Ē(r̄, t)
(V/m), respectively, through the constitutive parameters such that

H̄(r̄, t) = μ−1B̄(r̄, t) (1a)
D̄(r̄, t) = εĒ(r̄, t). (1b)

The electric field and magnetic flux density are governed by Maxwell’s equations
∂B̄(r̄, t)

∂t
= −∇ × Ē(r̄, t)

∂εĒ(r̄, t)
∂t

= ∇ × B̄(r̄, t)
μ

∇ · (εĒ(r̄, t)) = 0
∇ · B̄(r̄, t) = 0.

(2)

The boundary Γ may be partitioned into several subdomains, Γi, such that Γ := ∪iΓi. Each Γi has
a boundary condition, either Dirichlet (ΓD), Neumann (ΓN ), or impedance (ΓI) [10]. The boundary
conditions are defined as

n̂ × Ē(r̄, t) = ΨD(r̄, t) on ΓD (3a)

n̂ × B̄(r̄, t)
μ

= ΨN (r̄, t) on ΓN (3b)
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Figure 1. Sample volume Ω with different boundary conditions.

n̂ × B̄(r̄, t)
μ

− Y n̂ × n̂ × Ē(r̄, t) = ΨI(r̄, t) on ΓI (3c)

where Y =
√

ε/μ (�) is the surface admittance. The functions ΨD(r̄, t), ΨN (r̄, t), and ΨI(r̄, t) represent
some arbitrary functions defined by the user. Additionally, we assume that initial conditions on the
fields, Ē(r, 0) and B̄(r, 0), satisfy Eq. (2).

3. MFEM FORMULATION

3.1. Variational Formulation

Solutions to Eq. (2) are found by creating variational equations with appropriate function spaces. The
suitable function space for the electric field is the Hilbert space

H(curl; Ω) =
{
ū ∈ L̄2(Ω); ∇ × ū ∈ L̄2(Ω)

}
, (4)

which ensures that the tangential component of the field is continuous across tetrahedral faces. Likewise,
the Hilbert space

H(div; Ω) =
{
ū ∈ L̄2(Ω); ∇ · ū ∈ L2(Ω)

}
(5)

is used for the magnetic flux density, which permits functions that have normal continuity across
tetrahedral faces. The Whitney edge basis function and Whitney face basis function reside in H(curl; Ω)
and H(div; Ω), respectively, and can be used to discretize the fields [16]. The variational equations are
formed by taking inner products of Faraday’s law with the Whitney face basis function B̄∗ and Ampere’s
law with the Whitney edge basis function Ē∗ such that∫

dΩ
1
μ

∂

∂t
B̄ · B̄∗ = −

∫
dΩ

1
μ

∇ × Ē · B̄∗, (6a)
∫

dΩε
∂

∂t
Ē · Ē∗ =

∫
dΩ∇ × 1

μ
B̄ · Ē∗. (6b)

3.2. Spatial Discretization

The spatial discretization is obtained by applying Galerkin’s method to the variational equations. As
previously stated, Whitney edge and face elements as seen in [16] define the lowest order representation
of Ē∗ and B̄∗. The electric field is represented using Whitney edge elements and the magnetic flux
using Whitney face elements such that

Ē(r̄, t) =
Ne∑
i=1

ei(t)W̄ 1
i (r̄), B̄(r̄, t) =

Nf∑
i=1

bi(t)W̄ 2
i (r̄), (7)

where Ne is the number of edges, and Nf is the number of faces. It is natural to use higher order
basis function for more accuracy. We use the interpolatory higher order basis functions defined
in [11] for Whitney edge elements and for Whitney face elements defined in [12]. We define vectors
ē = [e1(t), e2(t), . . . , eNe(t)]T and b̄ = [b1(t), b2(t), . . . , bNf

(t)]T that have the degrees of freedom ei(t)
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and bi(t) as elements. Using the defined expansion for the field and flux quantities, applying the Galerkin
method to Eq. (6) yields the semi-discrete Maxwell’s equations

∂Mμ−1 b̄

∂t
= −Mcē

∂Mεē

∂t
= MT

c b̄ −MI ē + j̄N + j̄I .

(8)

Here, the matrices are defined as

[Mε]i,j =
∫

Ω
dΩεW̄ 1

i (r̄) · W̄ 1
j (r̄), (9a)

[Mμ−1 ]
i,j

=
∫

Ω
dΩ

1
μ

W̄ 2
i (r̄) · W̄ 2

j (r̄), (9b)

[Mc]i,j =
∫

Ω
dΩ

1
μ

W̄ 2
i (r̄) · ∇ × W̄ 1

j (r̄), (9c)

[MT
c ]i,j =

∫
Ω

dΩ
1
μ

W̄ 2
j (r̄) · ∇ × W̄ 1

i (r̄), (9d)

[MI ]i,j =
∫

ΓI

dΓY n̂ × W̄ 1
i (r̄) · n̂ × W̄ 1

j (r̄). (9e)

The elements of the coefficient vectors j̄N and j̄I are defined as

[j̄N ]i(t) =
∫

ΓN

dΓNW̄ 1
i (r̄) · ΨN (r̄, t)

[j̄I ]i(t) =
∫

ΓI

dΓIW̄
1
i (r̄) · ΨI(r̄, t)

(10)

and represent the boundary current due to Neumann and impedance boundary conditions. Another
interpretation of the TD-MFEM is through discrete exterior calculus. The Galerkin discrete Hodge
matrices Mε and Mμ−1 are defined as [21]. The discrete curl operator Dc is defined as

Dc =
1
μ
M−1

μ−1Mc. (11)

The discrete curl operator and its transpose for the lowest order maps edges of a tetrahedron to the faces
it bounds, as well as preserves the direction of the curl on that face [22]. This follows from the concept
of the exterior derivative in the generalized Stokes theorem from exterior calculus. Equation (11) holds
for all orders, however only has a simple mapping of faces to edges for the lowest order.

3.3. Temporal Discretization

The semi-discrete Maxwell’s equations, derived in the previous section, are fully discretized by choosing
an appropriate temporal discretization. Discretization schemes exist which solve the electric field and
magnetic flux density concurrently or in a staggered fashion. In a staggered scheme, the solutions
to Faraday’s law and Ampere’s law lie at different time steps, which allows a different time stepping
method for each equation. A concurrent time stepping scheme couples the equations into a single
system, written in the form[

I 0
0 Mε

] [
∂tb̄
∂tē

]
+

[
0 Dc

−DT
c Mμ−1 MI

] [
b̄
ē

]
=

[
0

j̄N + j̄I

]
, (12)

where I is the identity matrix. The single time derivative allows for the choice of a single time stepping
scheme and implies that the solved quantities lie at the same time step. The following subsections
discuss the leapfrog method (for the sake of completeness) and the Newmark-Beta method and their
applications to finding solutions to the semi-discrete Maxwell’s equations. Note that time step sizes for
leapfrog (Δt,LF ) and Newmark-Beta (Δt,Nβ) will be different.
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3.3.1. Leapfrog Method

In the leapfrog method, the time derivatives in Faraday’s law and Ampere’s law are discretized using
central finite differences staggered at half-time step intervals. Applying this to Eq. (8) yields

b̄n+ 1
2 = b̄n− 1

2 − Δt,LFDcē
n (13a)

(Mε + MI)ēn+1 = Mεē
n + Δt,LFDT

c Mμ−1 b̄n+ 1
2 + Δt,LF

(
j̄
n+ 1

2
N + j̄

n+ 1
2

I

)
. (13b)

The time stepping scheme consists of an explicit update in Faraday’s law and a matrix inversion in
Ampere’s law as the Galerkin Hodge matrix is sparse, but not diagonal. It is conditionally stable [23, 24]
provided that time step size satisfies

Δt,LF ≤ 2√
ρ(M−1

ε DT
c Mμ−1Dc)

. (14)

When the time step size satisfies the stability requirement, the time stepping scheme also conserves
energy. The mesh that discretizes the volume Ω determines the maximum time step size. The spectral
radius of the matrices tends to grow as elements in the mesh shrink, limiting the time step size in
relation to the maximum frequency the mesh could resolve.

3.3.2. Spectral Radius

One drawback of this time-stepping scheme is that its stability is tied to the discretization of the mesh
and the dielectric and magnetic material within Ω. As the electrical size of the elements shrinks, so
does the maximum time step size, regardless of coarser features of the mesh.

In Table 1, the relationships between the edge lengths h, spectral radius λmax, and time step sizes
Δt,LF for the leapfrog scheme are presented. The spectral radius increases as the edge lengths shrink,
resulting in a smaller maximum time step. Instead, it is preferred that time step is dictated by the
bandwidth of the signals present in the simulation. In the results, it will show that the spatial errors tend
to dominate error far more than temporal error, especially for the lowest order spatial basis functions.

Table 1. Leapfrog maximum time-step vs mesh edge lengths.

λmax cΔt,LF hmax havg hmin

1.0587E+03 6.1468E−02 5.0000E−01 3.2400E−01 1.9376E−01
2.5661E+03 3.9481E−02 3.2773E−01 2.1477E−01 1.3689E−01
6.4293E+03 2.4943E−02 2.2165E−01 1.4365E−01 7.8437E−02
9.8165E+03 2.0186E−02 1.6865E−01 1.0925E−01 5.7826E−02
1.2769E+02 1.7699E−01 1.4142E+00 1.0424E+00 8.5782E−01
2.3979E+02 1.2916E−01 1.5326E+00 8.8836E−01 4.2409E−01
1.4249E+03 5.2983E−02 1.4142E+00 5.6001E−01 1.8142E−01
1.1535E+04 1.8622E−02 1.4142E+00 2.2648E−01 6.2023E−02

3.3.3. Newmark-Beta

The Newmark-Beta method is a concurrent time stepping method to solve second order differential
equations [25, 26] and is a popular method of choice for solving TD-FEM. To begin, the first order
differential equation from Eq. (12) is recast as a second order differential equation,

A2∂
2
t ū + A1∂tū + A0ū + f̄ = 0, (15)
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where

ū =
[
b̄
ē

]
, f̄ =

[
0

−(j̄I + j̄N )

]
,

A2 = 0, A1 =
[
I 0
0 Mε

]
, A0 =

[
0 Dc

−DT
c Mμ−1 MI

]
.

(16)

Applying a 1-dimensional finite element method in time and identifying particular weights in
the formulation results in a three-step recurrence relation that uses two parameters to yield different
accuracy and stability properties [27]. The three-step recurrence relation for Eq. (16) is defined as

[γA1 + βΔt,NβA0]ūn+1 +
[
(1 − 2γ)A1 +

(
1
2

+ γ − 2β
)

Δt,NβA0

]
ūn

+
[
(γ − 1)A1 +

(
1
2
− γ + β

)
Δt,NβA0

]
ūn−1

+(βΔt,Nβ)f̄n+1 +
(

1
2

+ γ − 2β
)

Δt,Nβ f̄n +
(

1
2
− γ + β

)
Δt,Nβ f̄n−1 = 0 (17)

which has the degrees of freedom for the electric field and magnetic flux density at the same time step.
The parameters γ and β affect the accuracy and stability properties. The following sections prove
and demonstrate that with appropriate choice of parameters, the TD-MFEM system with Dirichlet,
Neumann, and impedance boundary conditions is not only unconditionally stable, but also energy
conserving.

3.4. Stability Analysis

In order to determine the stability of the Newmark-Beta time-stepping scheme, the zero-input response
of the system is examined using a z -transform. For the system to be stable, the roots of the z -
transformed scheme must lie on or within the unit circle in the complex plane. The spectral theorem
is used on Eq. (17) such that the matrix A−1

1 A0 is replaced by its eigenvalue λ [10, 28]. Taking the
z -transform yields the quadratic equation(

[γ + βΔt,Nβλ]z2 +
[
(1 − 2γ) +

(
1
2

+ γ − 2β
)

Δt,Nβλ

]
z

+
[
(γ − 1) +

(
1
2
− γ + β

)
Δt,Nβλ

] )
ū(z) = 0 (18)

with zeros

z =
1 − 2γ + (1/2 + γ − 2β)Δt,Nβλ

2γ + 2βΔt,Nβλ
±

√
1 + (1 − 2γ)Δt,Nβλ + [(1/2 + γ)2 − 4β](Δt,Nβλ)2

2γ + 2βΔt,Nβλ
. (19)

The parameters γ and β must be chosen to have the desired accuracy and stability characteristics for
a given time step of size Δt,Nβ . For a time stepping scheme to be unconditionally stable, |z| ≤ 1 for all
Δt,Nβ. This leaves the characterization of the eigenvalue λ of the coupled Maxwell system, which will
be shown to have a nonnegative real part.

3.4.1. Eigenanalysis of System with Dirichlet and Impedance Boundary Conditions

The zeros of the stability equation values depend on the parameters γ and β, the time step size Δt,Nβ,
and the eigenvalues of the matrix system. First, consider a system with no impedance boundary
conditions. The coupled Maxwell system can be analyzed by forming the generalized eigenvalue system

A−1
1 A0

[
b̄
ē

]
=

[
0 Dc

−M−1
ε DT

c Mμ−1 0

] [
b̄
ē

]
= λ

[
b̄
ē

]
, (20)
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which leads to

Dcē = λb̄, (21a)
−M−1

ε DT
c Mμ−1 b̄ = λē. (21b)

It follows that

DcM−1
ε DT

c Mμ−1 b̄ = −λ2b̄ = Λb̄ (22a)

M−1
ε DT

c Mμ−1Dcē = −λ2ē = Λē. (22b)

The eigenvalues λ of the system matrix A−1
1 A0 are purely imaginary when there are no impedance

boundary conditions. This fact can be used to simplify Eq. (19) to find values γ and β that will result
in a stable time stepping scheme.

The eigenvalues of the system change when impedance boundary conditions are imposed. The
eigenvalues of A−1

1 A0 have nonnegative real parts with impedance boundary conditions. First, the
matrices in Eq. (16) are redefined in a more general form,

A1 =
[
Mμ−1 0

0 Mε

]
, A0 =

[
0 μ−1

0 Mc

−μ−1
0 MT

c MI

]
(23)

where the basis functions can be of any order. To determine the behaviour of A−1
1 A0, we create a

similar matrix AS = FASF−1, where F = A−1
1 , leading to

As =

⎡
⎣ 0 −μ−1

0 M
−1
2

μ−1McM
−1
2

ε

μ−1
0 M

−1
2

ε MT
c M

−1
2

μ−1 M
−1
2

ε MIM
−1
2

ε

⎤
⎦ . (24)

This matrix is a non-symmetric saddle point matrix, whose properties are discussed in Theorem 3.6
in [29]. The matrix As can be proven to be positive semi-definite because the matrix MI is positive
semi-definite. Therefore, the eigenvalues of As, and by the properties of similar matrices A−1

1 A0, have
nonnegative real parts. This is demonstrated for the zeroth and second order vector basis functions for
both Dirichlet and impedance boundary conditions in Figure 2. The eigenvalues for the Dirichlet case lie
on the imaginary axis, while the impedance boundary condition case is symmetric about the real axis in
right half plane. Knowing that the eigenvalues have nonnegative real parts, it is possible to find general
regions of stability and conditions for which the Newmark-Beta time-stepping scheme is nondissipative.
The scheme is unconditionally stable for γ ≥ 0.5 and β ≥ γ/2. When γ = 0.5, β ≥ 0.25, |z| = 1 for
all the possible eigenvalues of A−1

1 A0, Eq. (17) forms a nondissipative time-stepping scheme, which is
essential in many applications. When γ = 0.5 and β = 0.25 or β = 0.5, we obtain a Crank-Nicholson
scheme, which is known to be unconditionally stable and second order. Other choices of γ and β lead
to dissipative, yet still stable time stepping schemes.
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4. RESULTS

In this section, we numerically demonstrate the utility of using the Newmark-Beta time stepping
scheme with TD-MFEM. In particular, the resulting time stepping scheme is unconditionally stable
while maintaining the convergence and accuracy properties of the more common leapfrog method.

4.1. Field Convergence

To numerically demonstrate convergence, a TEM plane wave is simulated propagating in free space
normally incident through a 0.5 m × 0.5 m × 0.5 m cube. The electric field of the plane wave is defined
as

Ē(r̄, t) = ŷ cos(2πf0t)e−(t−r̄·ẑ/c−8σ)2/2σ2
(V/m), (25)

where σ = 3/[2(fmax − f0)] with the center and maximum frequencies denoted as f0 and fmax,
respectively. The relative error is defined as

Relative Error =

∥∥∥∥
∫

dΩ(φ̄exp(r̄, t) − φ̄ana(r̄, t))
∥∥∥∥

2∥∥∥∥
∫

dΩφ̄ana(r̄, t)
∥∥∥∥

2

(26)

where φ̄(r̄, t) can be either the electric field or magnetic flux density. The speed of propagation is the
speed of light c = 1/

√
εμ = 1/

√
ε0μ0 (m/s). Dirichlet boundary conditions as defined in Eq. (3) are

used on each face of the volume, where Ē(r̄, t) is defined in Eq. (25), and B̄(r̄, t) follows from Maxwell’s
equations.

For the spatial convergence tests, the center frequency is 11 MHz, maximum frequency 21 MHz.
Figure 3 shows the convergence properties of the fields with respect to space and basis function order.
The convergence rates of the two time stepping schemes are the same, with similar errors as well. This
is expected as the spatial discretization is the same. It is also noted that increasing the order of the
basis function yields a greater improvement in accuracy than simply decreasing the element sizes.
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Figure 3. Space convergence.

Figure 4 shows the relative error in the electric field and magnetic flux as the time step size is
changed using the Newmark-Beta time stepping scheme with γ = 0.5 and β = 0.25 for different orders
of vector basis functions. The domain Ω is a 0.5 m × 0.5 m × 0.5 m cube partitioned into 439 tetrahedra
with an average edge length havg = 143.7 mm. As the order of the Newmark-Beta time stepping scheme
is the same as the Leapfrog scheme, it behaves similarly to the Newmark-Beta, but only for time step
sizes smaller than the maximum time step size that is marked. Increasing the order of basis functions
results in a smaller maximum time step size, whereas the unconditionally stable method allows for much
larger time step sizes while maintaining the advantages of using higher order basis functions.
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Figure 4. Time convergence.

4.2. Computational Cost Comparison

In the previous section, the spatial and temporal convergence of the Newmark-Beta time stepping
scheme was compared to the leapfrog method. Here we compare the cost of using the Newmark-Beta
time marching scheme. The leapfrog method requires matrix inversion for Eq. (13b). The Newmark-
Beta method in Eq. (17) requires matrix inversion as well. The matrices in both Eqs. (13b) and (17)
are sparse, having O(Ne) and O(Ne + Nf ) nonzero elements, respectively. For practical problems,
direct inversion is expensive, and iterative solvers are used instead. We assume that a Krylov subspace
based method like GMRES converges in Niter steps for both leapfrog and Newmark-Beta. Assuming
that the duration of analysis is T gives Nt,lf and Nt,Nβ as the numbers of time steps for leapfrog
and Newmark-Beta, respectively. It follows that runtime is scales as O(Nt,lfNiterNe) for leapfrog and
O(

Nt,NβNiter(Ne+Nf )
)

for Newmark-Beta. It is apparent that the increased degree of freedom required
for a Newmark system could lead to higher costs; however, the time step sizes can be vastly different.
Indeed, depending on the geometry (especially when discretization is driven by the need to capture
feature sizes), the cost of the increased degrees of freedom can be counterbalanced by the number of
time steps taken when there is flexibility in the time step size. Thus, as the ceiling of Δt,LF is fixed
by the mesh, so is the number of time steps for a fixed duration. However, this is not the case for
Newmark-Beta. The numerical experiment conducted next illustrates the cost tradeoff.

This experiment is shown in Figure 5 and is conducted using three 1 m × 1 m × 1 m cubes with
Dirichlet boundary conditions. A normally-incident TEM plane wave is simulated propagating in free
space. The electric field is defined in Eq. (25) with a center frequency of 110 MHz and a maximum
frequency of 210 MHz. The Newmark-Beta time stepping scheme was run three times for the same
amount of simulated time. Once at the maximum time step size for leapfrog, once at half that time
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Figure 5. Runtime comparison.
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step size, and once with a time step size of 1/20fmax ≈ 238 ps. GMRES was used with a diagonal
preconditioner and a tolerance of 10−4. When Δt,Nβ = 1/20fmax, the runtime for Newmark-Beta was
equal to or faster than leapfrog. While this was a simple example, we expect to reap significant benefits
as the model representation drives discretization.

4.3. Eigenvalues of Space-Time matrix

In this test, we further verify the stability of the proposed Newmark-Beta time-marching scheme. To
determine the stability of a time stepping schemes, we analyze the eigenvalues of a space-time matrix
A that satisfies

ūn+1 = Aūn (27)

for some input vector ūn. The space-time matrix is an amplification matrix for some input, and for it to
have a bounded output, the absolute value of the eigenvalues must lie on or within the unit circle in the
complex domain. For an energy-conserving system, all the eigenvalues lie on the unit circle, signifying
that there is no numerical loss in the system. In this example, two different meshes discretize the same
1m cube. The first mesh is nearly uniformly discretized, with a ratio of hmax/hmin ≈ 1.5, where h is
the edge length. The second mesh is not uniformly discretized, in which the edges become smaller near
one face. The ratio of the largest edge to smallest edge in the nonuniform mesh is ≈ 8. Figures 6, 7,
and 8 compare the eigenvalues of the space-time matrices for both the leapfrog and Newmark-Beta time
stepping schemes for varying time step size. The reference time step size Δt = 1/(30fmax).
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Figure 9. Newmark-Beta eigenvalues for uniform airbox with first order basis functions.

When the time step size of the leapfrog method satisfies the stability criterion, the eigenvalues all
lie on the unit circle. However, when the time step size no longer satisfies the stability criterion, the
eigenvalues close to −1 leave the unit circle and head toward 0 and −∞.

Figures 7 and 8 show that the space-time eigenvalues of the Newmark-Beta time stepping scheme
with γ = 0.5 and β = 0.25 always lie on the unit circle for a wide range of time step sizes, lending
credence to it unconditionally stable nature. The eigenvalues of the system when these particular values



28 Crawford et al.

are chosen are analytically ±1. Figure 7 uses the uniformly discretized volume, and Figure 8 uses the
nonuniformly discretized volume, with both showing the behavior with Dirichlet boundary conditions
and impedance boundary conditions. As the overall eigenvalue behavior holds as the basis function
order increases, similar results are seen in Figures 9 and 10, which shows the space-time eigenvalues
of the same uniform airbox with Dirichlet boundary conditions, but with first and second order basis
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Figure 11. Plane wave simulation for 100,000 time steps.
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functions. Closer inspection of the eigenvalues show that there is an error, as the eigenvalues lie outside
the unit circle, but it is strictly numerical in nature and related to the condition number of the matrix
A−1

1 A0.
Finally, to numerically confirm late-time stability, Figure 11 shows the electric field and magnetic

flux density run for 100,000 time steps at a time step size of Δt,Nβ = 1/10fmax or 4.762 ns. There is a
noise floor that corresponds to a DC null space. However, the noise does not grow over time, indicating
that the nullspace does not contain t∇φ(r̄) present in TD-FEM.

5. SUMMARY

In this work, it was proven that the Newmark-Beta algorithm can be used to create an unconditionally
stable time stepping framework for solving TD-MFEM. We proved stability for systems arising from
different boundary conditions, as well as showed convergence and energy conservation. The benefit of
being able to use different time step sizes is apparent. In future work, this method will be applied to
simulating plasmas. Utilizing higher order basis sets with optimal particle pushing strategies will be
investigated. Preconditioning strategies will also be developed to improve the use of iterative solvers
for TD-MFEMs.
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