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Abstract—This study proposes a low-profile dual-band MIMO patch antenna array with improved
isolation for 4G-LTE and 5G wireless communications. The proposed antenna design contains
two closely-spaced coaxial-fed patch antennas with U-shaped slots to generate dual-band operation
at 2.6/3.6 GHz 4G/5G bands. The mutual coupling between MIMO elements can be reduced
simultaneously at both operation bands by employing a pair of C-shaped parasitic structures with
different sizes between the radiating patches. The results show that the isolation between the antenna
ports has been enhanced by about 13 dB and 10 dB at the operation frequencies with the presence of
the proposed parasitic structures. The simulation and measurements of the proposed antenna design
have been provided to verify the performance of the design.

1. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems with multiple-antenna units at both transmitter and
receiver sides can take advantage of the multipath components sufficiently to enhance the performance
of wireless systems [1–4]. The MIMO antenna arrays are widely used in the next generation of wireless
communication systems. As MIMO technology can significantly enhance the capacity of the system and
resist multipath fading, it has become a hot spot in the field of wireless communication [5–8].

In wireless systems, to maintain the independence of each antenna element in the MIMO system
within a limited space, it is one of the urgent difficulties to overcome mutual coupling from the adjacent
antenna, especially for dual-band arrays [8–10]. Mutual coupling is a phenomenon that depends upon
the adjacent array elements and greatly affects the characteristics of wireless systems depending on
array antennas and more recently MIMO wireless communication systems. To achieve low mutual
coupling and high isolation between adjacent antenna elements and also suppressing the surface waves,
several methods have been investigated [11–16]. The most common technique is to use the spatial
diversity technique by separating antenna elements. However, this technique may not be suitable for
most wireless systems, since it requires a relatively large space to place the antenna system.In order to
improve the isolation of the planar antenna array, various decoupling methods such as defected ground
slot (GDS) and parasitic structures have been introduced [17–20].

A compact design of a MIMO antenna utilizing a pair of C-shaped parasitic structures to reduce
the mutual coupling of the dual-frequency/dual-port patch antennas is proposed. The configuration of
the design is composed of two patch antenna elements fed by coaxial probes. By cutting a U-shaped slot
on the radiation patch of the single-element design, the antenna can exhibit dual-frequency function.
The results show that about 13 dB and 10 dB at mutual coupling reduction are achieved at first and
second resonances, without any impact on the frequency bandwidth and radiation performance. The
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antenna design is optimized to operate at 2.6 GHz/3.6 GHz. Thus, the proposed MIMO antenna can be
used for fourth and fifth generation (4G/5G) wireless communications.

2. ANTENNA DESIGN AND CHARACTERISTICS

Figure 1(a) depicts the geometrical structure of the proposed dual-band patch antenna array. As can be
observed, the antenna configuration contains two coaxial-fed rectangular patch antenna elements with
U-shaped slots. In order to reduce the mutual coupling characteristic of the closely-spaced antenna
elements, a pair of C-shaped parasitic structures have been embedded between the radiators. It is
designed on an FR4 dielectric with characteristics of permittivity = 4.4, a thickness = 1.6 mm and a
loss tangent = 0.02. The antenna is simulated using the CST software [21]. The parameter values of the
designs are listed in Table 1. Fig. 1(b) illustrates the simulated S-parameter results. As illustrated, the
design provides a good dual-band function with a reduced coupling at the resonance frequencies [22, 23].

(b)(a)

Figure 1. (a) Structure and (b) simulated S-parameters of the dual-band MIMO patch antenna.

Table 1. The values of the design parameters.

Parameter W L W1 L1 W2 L2 W3 L3

Value (mm) 18 23 6 11 10 4.65 5.5 7
Parameter W4 L4 W5 L5 W6 L6 L7 L8

Value (mm) 5.5 9 7 1 2 2 2 0.5

The simulated S11 results of the single patch antenna with and without the U-shaped slot are
shown in Fig. 2(a). It is clearly observed that the basic patch antenna exhibits a single resonance
operation while by employing the modified U-shaped slot, another resonance is achieved at the upper
frequency [24, 25]. Therefore, a good dual-band function is generated for at 2.6/3.6 GHz 4G/5G
applications. To have a better illumination about this dual-band operation, the simulated current
densities at the resonance frequencies are depicted in Fig. 2(b). As seen, at the first resonance (2.6 GHz),
most of the currents are mainly concentrated around the outer boundary of the rectangular radiation
patch. In addition, at 3.6 GHz, the employed U-shaped slot is very active and highly surrounded by the
currents verifying its role in creating the second resonance.

Figure 3(a) depicts the S21 characteristic of the design for various configurations. It can be observed
that the design without the embedded parasitic structures provides −10 dB and −18 dB mutual coupling.
By adding the first and second parasitic structures, the mutual coupling of the design is reduced at first
and second resonance frequencies, respectively. The employed C-shaped parasitic structures act as a
decoupling structure with band-pass filtering to reduce the mutual coupling of the MIMO antenna.
Fig. 3(b) shows the simulated transmission/reflection characteristics (S11/S21) of the single C-shaped
parasitic structure. It shows a rejectband at the transmission zero frequency of 3.6 GHz. By using
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Figure 2. (a) S11 results for the antenna with and without the U-shaped slot and (b) current
distributions at the resonance frequencies of the antenna element.

(b)(a)

Figure 3. (a) Various mutual couplings of the design and (b) S-parameters of a C-shaped decoupling
structure.

another C-shaped structure with optimizes dimension, a dual stop band response can be achieved to
reduce the mutual coupling of the closely spaced dual-band MIMO antenna [26–28].

In order to have a better illumination about the working mechanism of the decoupling structures
in the proposed design, the current distribution of the design without and with the parasitic structures
at the resonance frequencies (2.6 GHz and 3.6 GHz) are studied and represented in Fig. 4. In this
approach, the left antenna element is excited while the right one is terminated with a matched load of
50 Ω. It is observed from the figure that the mutual coupling has been significantly reduced with the
implementation of the parasitic structures. In addition, the employed parasitic structures very active
and highly surrounded by the currents at the relevant resonance frequencies [29–31]. As shown, the
employed parasitic structures are very active at the relative frequencies and reduce the mutual function.

The reflection coefficient (S11) and transmission coefficient (S21) characteristics of the dual-band
MIMO patch antenna array can be adjusted and tuned by changing the values for fundamental antenna
parameters. The S11/S22 results of the antenna mainly depend on the sizes of the antenna radiation
patch and the U-shaped slot while the mutual coupling (S21/S12) characteristic of the array can also
be tuned by changing the parameters of the employed C-shaped parasitic structures [32–35]. In the
following, the S11 and S21 results of the antenna for different values of the design parameters are
investigated. Figs. 5 and 6 investigate the S11 and S21 characteristics of the proposed antenna for
different values of the design parameters. Figs. 5(a)–(d) plot the S11 results for various values of L
(length of the main radiator) and L1(length of the U-slot), W2 (Width of U-slot), and, W (width of
the radiation patch) respectively. As can be observed from Fig. 5(a), changing the length of the patch
radiator has a significant impact on the first resonant frequency and just a little impact on the upper-
frequency band. However, as shown in Fig. 5(b), the length of U-slot (L1) mainly affects the second
resonance while it has a little impact on the first resonance at 2.6 GHz. Changing the value of W2

could affect both resonance frequencies as illustrated in Fig. 5(c). It can be also observed from 5(d)
that unlike other parameters, changing the size of W does not affect the antenna frequency response
significantly.
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(b)(a)

Figure 4. Current distributions at the resonance frequencies for the design (b) without and (c) with
the employed parasitic structures.

(b)(a)

(d)(c)

Figure 5. S11 characteristics for varying the values of (a) L and (b) L1, (c) W , and (d) W2.

Figures 6(a)–(d) illustrate the antenna mutual coupling for different sizes of W3, L6, W4, and L7,
respectively. It is shown in Fig. 6(a) that by varying the width of the second parasitic structure (W3),
the mutual coupling function at the first operation band (2.6 GHz) can be highly varied. As evident
from Fig. 6(b), unlike W3, changing the size of L6 has no impact on the mutual coupling if the array at
2.6 GHz. However, at 3.6 GHz, the mutual coupling characteristic is influenced and tuned significantly.
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Figure 6. S21 (mutual coupling) characteristics for different values of (a) W3, (b) L6, (c) W4, and
(d) L7.

(b)(a)

Figure 7. (a) 3D-radiation patterns of the antenna at 2.6/3.6 GHz with directivity values and (b) 2D-
polar normalized patterns (H-plane) with/without parasitic structures at the resonance frequencies.

In addition, as shown in Fig. 6(c), changing the value of W4, could affect the mutual coupling of the
MIMO design at both resonance frequencies. However, unlike other parameters, changing the size
of L7 does not affect the mutual coupling significantly. The 3D radiation patterns of the proposed
MIMO antenna elements are illustrated in Fig. 7(a). It is evident that the MIMO design exhibit good
radiation behaviour with high directivity characteristic. It can be also observed from Fig. 7(b) that
the antenna exhibits good 2D-polar normalized patterns with low side and back lobes at the resonance
frequencies [36–38].

The MIMO antenna has been fabricated on a cheap FR4 substrate and its S-parameters were
measured to validate experimentally the approach to achieve good isolation and mutual coupling
reduction. Fig. 8(a) illustrates the photograph of the fabricated antenna array. Fig. 8(b) compares
the simulated and measured S-parameters of the proposed dual-band MIMO patch antenna array. It
can be observed that the fabricated prototype exhibits good S-parameter results with an acceptable
agreement with the simulated results.

The envelope correlation coefficient (ECC) and total active reflection coefficient (TARC)
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(b)(a)

Figure 8. (a) The prototype sample and (b) S-parameters (S11/S21) of the dual-band antenna.

characteristics are important parameters in diversity/MIMO antennas [39, 40]. The ECC and TARC
characteristics of MIMO antenna can be calculated from S-parameter results using the below formulas:

ECC =
|S∗

mmSmn + S∗
nmSnn|2

(1 − |Smm|2 − |Smn|2) (1 − |Snm|2 − |Snn|2)∗ (1)

TARC = −
√

(Smm + Smn)2 + (Snm + Snn)2

2
(2)

Figure 9 represents the calculated ECC and TARC characteristics for the proposed dual-port
diversity antenna. As shown in Figs. 9(a) and (b), the ECC and TARC results of this dual-band
MIMO antenna are very low within the operation bands proving that the designed dual-band antenna is
competent for diversity reception/transmission in the MIMO channels. Furthermore, it can be observed
that the ECC and TARC results of the antenna are reduced by using the employed parasitic structure
in the proposed antenna.

(b)(a)

Figure 9. Calculated (a) ECC and (b) TARC results of the dual-band MIMO antenna w/wo the
parasitic structure (PS).

3. LINEAR ARRAY PERFORMANCE OF THE ANTENNA

The linear array performance of the designed dual-band patch antenna is studied in this section.
Fig. 10(a) depicts the schematic of the linear array. As shown, it is composed of eight dual-band
patch antennas with decoupling structures arranged in a linear form. The simulated S-parameters of
the design are given in Fig. 10(b). It can be observed that the proposed phased array can exhibit good
S-parameters at the target operation band. Moreover, the array provides low mutual coupling, less
than −20, at the resonance frequencies. The main radiation beams of the array at 2.6 and 3.6 GHz are
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Figure 10. (a) Schematic, (b) S-parameters and (c) radiation beams of the linear antenna array at
2.6/3.6 GHz, respectively.

illustrated in Fig. 10(c). It is evident that the array has high-gain radiation beams with low side/back
lobes which can be easily scanned to different angles [41, 42].

Figure 11 illustrates the directivity characteristics of the arrays (at 0◦ scanning angle) with different
numbers of elements. As clearly shown, by increasing the number of antenna elements, the directivity
values of the array at both 2.6 GHz and 3.6 GHz have been significantly increased, especially for 1 × 8
array design). In addition, the radiation beams of the array can be more directive which is sufficient
for point to point communications [43–45].

(b)(a)

Figure 11. Directivities of the arrays with different numbers of the elements at (a) 2.6 GHz and
(b) 3.6 GHz.

4. CONCLUSION

In this paper, a new MIMO patch antenna array with a reduced mutual coupling function is proposed.
The antenna configuration contains two coaxial-fed rectangular patch antenna elements with U-shaped
slots. Simulations and measurements show that employing two C-shaped parasitic structures between
the antenna elements effectively reduces the mutual coupling of the MIMO design at the desired
operation bands simultaneously. The antenna is designed to work at 2.6 GHz and 3.6 GHz to support
4G and 5G frequency bands. Its linear array performance is also discussed. The proposed dual-band
MIMO patch antenna has a planar and simple structure and can be easily integrated with the circuit
boards.
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12. Rajo-Iglesias, E., Ó. Quevedo-Teruel, and L. Inclán-Sánchez, “Mutual coupling reduction in patch
antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE
Transactions on Antennas and Propagation, Vol. 56, 1648–1655, 2008.

13. Malmstrom, J., H. Holter, and B. L. G. Jonsson, “On mutual coupling and coupling paths between
antennas using the reaction theorem,” IEEE Trans. Electromagn. Compat., Vol. 60, 2037–2040,
2018.

14. Alzahed, A. M., S. M. Mikki, and Y. M. M. Antar, “Nonlinear mutual coupling compensation
operator design using a novel electromagnetic machine learning paradigm,” IEEE Antennas
Wireless Propag. Lett., Vol. 18, 861–865, 2019.

15. Nurhayati, G. Hendrantoro, F. Takeshi, and E. Setijadi, “Mutual coupling reduction for a
UWB coplanar vivaldi array by a truncated and corrugated slot,” IEEE Antennas and Wireless
Propagation Letter, Vol. 17, 2018.

16. Iqbal, A., O. A. Saraereh, A. W. Ahmad, and S. Bashir, “Mutual coupling reduction using F-shaped
stubs in UWB-MIMO antenna,” IEEE Access, Vol. 6, 2755–2799, 2018.

17. Hameed, K. W. H., et al., “The performance of SLNR beamformers in multi-user MIMO systems,”
Broad Nets’ 2018, Faro, Portugal, 2018.

18. Kiani-Kharaji, M., H. R. Hassani, and S. Mohammad-Ali-Nezhad, “Wide scan phased array patch
antenna with mutual coupling reduction,” IET Microw., Antennas Propag., Vol. 12, 1932–1938,
2018.

19. Mazloum, J., et al., “Compact triple-band S-shaped monopole diversity antenna for MIMO
applications” Applied Computational Electromagnetics Society (ACES) Journal, Vol. 28, 975–980,
2015.



Progress In Electromagnetics Research C, Vol. 101, 2020 79

20. Basherlou, H. J., et al., “MIMO monopole antenna design with improved isolation for 5G WiFi
applications,” International Journal of Electrical and Electronic Science, Vol. 7, 1–5, 2019.

21. CST Microwave Studio, ver. 2018, CST, Framingham, MA, USA, 2018.
22. Ojaroudi, N., “Design of microstrip antenna for 2.4/5.8 GHz RFID applications,” German

Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, March 10–12, 2014.
23. Wong, K.-L., “Isolation between GSM/DCS and WLAN antennas in a PDA phone,” Microw. Opt.

Technol. Lett., Vol. 45, 347–352, 2005.
24. Ojaroudi, N., et al., “Quad-band planar inverted-f antenna (PIFA) for wireless communication

systems,” Progress In Electromagnetics Research Letters, Vol. 45, 51–56, 2014.
25. Ojaroudi, N., et al., “A new design of triple-band WLAN/WiMAX monopole antenna for multiple-

input/multiple-output applications,” Microwave and Optical Technology Letters, Vol. 56, 2667–
2671, 2014.

26. Parchin, N. O., et al., “Multi-band MIMO antenna design with user-impact investigation for 4G
and 5G mobile terminals,” Sensors, Vol. 19, 1–16, 2019.

27. Al-Yasir, Y., et al., “Design of very compact combline band-pass filter for 5G applications,”
LAPC’2018, UK, 2018.

28. Ojaroudi, N., et al., “Enhanced bandwidth of small square monopole antenna by using inverted U-
shaped slot and conductor-backed plane,” Applied Computational Electromagnetics Society (ACES)
Journal, Vol. 27, 685–690, 2012.

29. Jiang, W., B. Liu, Y. Cui, and W. Hu, “High-isolation eight-Element MIMO array for 5G
smartphone applications,” IEEE Access, Vol. 7, 34104–34112, 2019.

30. Parchin, N. O., “Low-profile air-filled antenna for next generation wireless systems,” Wireless
Personal Communications, Vol. 97, 3293–3300, 2018.

31. Ojaroudi Parchin, N., et al., “Dual-polarized MIMO antenna array design using miniaturized
self-complementary structures for 5G smartphone applications,” 13th European Conference on
Antennas and Propagation (EuCAP), Krakow, Poland, Mar. 31–Apr. 5, 2019.

32. Ojaroudi, M., et al., “Dual band-notch small square monopole antennawith enhanced bandwidth
characteristics for UWB applications,” ACES J., Vol. 25, 420–426, 2012.

33. Ojaroudi, N., “Circular microstrip antenna with dual band-stop performance for ultra-wideband
systems,” Microw. Opt. Technol. Lett., Vol. 56, 2095–2098, 2014.

34. Syrytsin, I., S. Zhang, and G. F. Pedersen, “Performance investigation of a mobile terminal phased
array with user effects at 3.5 GHz for LTE advanced,” IEEE Antennas and Wireless Propagation
Letters, Vol. 16, 1847–1850, 2017.

35. Ojaroudiparchin, N., et al., “Design of Vivaldi antenna array with end-fire beam steering function
for 5G mobile terminals,” 23rd Telecommunications Forum Telfor (TELFOR), 587–590, Belgrade,
Serbia, Nov. 24–26, 2015.

36. Ojaroudi, N., et al., “Enhanced bandwidth of small square monopole antenna by using inverted
Ushaped slot and conductor-backed plane,” Applied Computational Electromagnetics Society
(ACES) Journal, Vol. 27, 685–690, 2012.

37. Parchin, N. O., et al., “Dual-band monopole antenna for RFID applications, Future Internet,
Vol. 11, 1–10, 2019.

38. Valizade, A., et al., “Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips
protruded inside rectangular slots for UWB applications, Appl. Comput. Electromagn. Soc. (ACES)
J., Vol. 27, 816–822, 2012.

39. Parchin, N. O., et al., “8 × 8 MIMO antenna system with coupled-fed elements for 5G handsets,”
IET Conference on Antennas and Propagation, Birmingham, UK, Nov. 2019.

40. Parchin, N. O. and R. A. Abd-Alhameed, “A compact Vivaldi antenna array for 5G channel
sounding applications,” EuCAP, London, UK, 2018.

41. Parchin, N. O., et al., “A radiation-beam switchable antenna array for 5G smartphones,” 2019
PhotonIcs & Electromagnetics Research Symposium — Fall (PIERS — FALL), Xiamen, China,
Dec. 17–20, 2019.



80 Parchin et al.

42. Parchin, N. O., et al., “MM-wave phased array quasi-yagi antenna for the upcoming 5G cellular
communications,” Applied Sciences, Vol. 9, 1–14, 2019.

43. Musavand, A., et al., “A compact UWB slot antenna with reconfigurable band-notched function
for multimode applications,” Applied Computational Electromagnetics Society (ACES) Journal,
Vol. 13, No. 1, 975–980, 2016.

44. Ullah, A., et al., “Coplanar waveguide antenna with defected ground structure for 5G Millimeter
wave communications,” IEEE MENACOMM’19, Bahrain, 2019.

45. Ojaroudiparchin, N., et al., “Small-size tapered slot antenna (TSA) design for use in 5G phased
array applications,” Applied Computational Electromagnetics Society Journal, Vol. 32, 193–202,
2018.


